-
Previous Article
Coordinating a supply chain with demand information updating
- JIMO Home
- This Issue
-
Next Article
The comparison between selling and leasing for new and remanufactured products with quality level in the electric vehicle industry
Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem
Department of Mathematics, P.G.D.A.V. College, University of Delhi, Delhi-110065, India |
The main aim of this paper is to establish sufficient optimality conditions using an upper estimate of Clarke subdifferential of value function and the concept of convexifactor for optimistic bilevel programming problems with convex and non-convex lower-level problems. For this purpose, the notions of asymptotic pseudoconvexity and asymptotic quasiconvexity are defined in terms of the convexifactors.
References:
[1] |
I. Ahmad, K. Kummari, V. Singh and A. Jayswal,
Optimality and duality for nonsmooth minimax programming problems using convexifactors, Filomat, 31 (2017), 4555-4570.
doi: 10.2298/FIL1714555A. |
[2] |
J. F. Bard, Practical Bilevel Optimization. Algorithms and Applications, Nonconvex Optim. Appl., 30, Kluwer Acad. Publ., Dordrecht, 1998.
doi: 10.1007/978-1-4757-2836-1. |
[3] |
J. F. Bard,
Optimality conditions for the bilevel programming problem, Naval Res. Logist. Quart., 31 (1984), 13-26.
doi: 10.1002/nav.3800310104. |
[4] |
J. F. Bard,
Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.
doi: 10.1007/BF00941574. |
[5] |
C. R. Bector, S. Chandra and J. Dutta, Principles of Optimization Theory, Narosa Publishing House, 2005. Google Scholar |
[6] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. |
[7] |
S. Dempe, Foundations of Bilevel Programming, Nonconvex Optim. Appl., 61, Kluwer Acad. Publ., Dordrecht, 2002.
doi: 10.1007/b101970. |
[8] |
S. Dempe,
A necessary and a sufficient optimality condition for bilevel programming problems, Optimization, 25 (1992), 341-354.
doi: 10.1080/02331939208843831. |
[9] |
S. Dempe,
First-order necessary optimality conditions for general bilevel programming problems, J. Optim. Theory Appl., 95 (1997), 735-739.
doi: 10.1023/A:1022646611097. |
[10] |
S. Dempe, J. Dutta and B. S. Mordukhovich,
New necessary optimality conditions in optimistic bilevel programming, Optimization, 56 (2007), 577-604.
doi: 10.1080/02331930701617551. |
[11] |
V. F. Demyanov, Convexification and concavification of positively homogeneous function by the same family of linear functions, Report 3,208,802 from Universita di Pisa, 1994. Google Scholar |
[12] |
V. F. Demyanov and A. M. Rubinov, An introduction to quasidifferential calculus, in Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, Kluwer Acad. Publ., Dordrecht, 2000, 1–31.
doi: 10.1007/978-1-4757-3137-8_1. |
[13] |
J. Dutta and S. Chandra,
Convexifactors, generalized convexity and optimality conditions, J. Optim. Theory Appl., 113 (2002), 41-64.
doi: 10.1023/A:1014853129484. |
[14] |
J. Dutta and S. Chandra,
Convexifactors, generalized convexity and vector optimization, Optimization, 53 (2004), 77-94.
doi: 10.1080/02331930410001661505. |
[15] |
A. Jayswal, K. Kummari and V. Singh,
Duality for a class of nonsmooth multiobjective programming problems using convexifactors, Filomat, 31 (2017), 489-498.
doi: 10.2298/FIL1702489J. |
[16] |
A. Jayswal, I. Stancu-Minasian and J. Banerjee, Optimality conditions and duality for
interval-valued optimization problems using convexifactors, Rend. Circ. Mat. Palermo (2),
65 (2016), 17–32.
doi: 10.1007/s12215-015-0215-9. |
[17] |
V. Jeyakumar and D. T. Luc,
Nonsmooth calculus, maximality and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599-621.
doi: 10.1023/A:1021790120780. |
[18] |
A. Kabgani and M. Soleimani-damaneh,
Relationships between convexificators and Greensberg-Pierskalla subdifferentials for quasiconvex functions, Numer. Funct. Anal. Optim., 38 (2017), 1548-1563.
doi: 10.1080/01630563.2017.1349144. |
[19] |
A. Kabgani, M. Soleimani-damaneh and M. Zamani,
Optimality conditions in optimization problems with convex feasible set using convexifactors, Math. Methods Oper. Res., 86 (2017), 103-121.
doi: 10.1007/s00186-017-0584-2. |
[20] |
A. Kabgani and M. Soleimani-damaneh,
Characterizations of (weakly/properly/roboust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators, Optimization, 67 (2018), 217-235.
doi: 10.1080/02331934.2017.1393675. |
[21] |
B. Kohli,
Optimality conditions for optimistic bilevel programming problem using convexifactors, J. Optim. Theory Appl., 152 (2012), 632-651.
doi: 10.1007/s10957-011-9941-0. |
[22] |
B. Kohli,
A note on the paper "Optimality conditions for optimistic bilevel programming problem using convexifactors", J. Optim. Theory Appl., 181 (2019), 706-707.
doi: 10.1007/s10957-018-01463-x. |
[23] |
B. Kohli,
Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints, RAIRO Oper. Res., 53 (2019), 1617-1632.
doi: 10.1051/ro/2018084. |
[24] |
X. F. Li and J. Z. Zhang,
Necessary optimality conditions in terms of convexificators in Lipschitz optimization, J. Optim. Theory Appl., 131 (2006), 429-452.
doi: 10.1007/s10957-006-9155-z. |
[25] |
D. V. Luu,
Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications, J. Optim. Theory Appl., 171 (2016), 643-665.
doi: 10.1007/s10957-015-0815-8. |
[26] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-31247-1. |
[27] |
B. S. Mordukhovich and N. M. Nam,
Variational stability and marginal functions via generalized differentiation, Math. Oper. Res., 30 (2005), 800-816.
doi: 10.1287/moor.1050.0147. |
[28] |
B. S. Mordukhovich, N. M. Nam and N. D. Yen,
Subgradients of marginal functions in parametric mathematical programming, Math. Program., 116 (2009), 369-396.
doi: 10.1007/s10107-007-0120-x. |
[29] |
J. V. Outrata,
Necessary optimality conditions for Stackelberg problems, J. Optim. Theory Appl., 76 (1993), 305-320.
doi: 10.1007/BF00939610. |
[30] |
S. K. Suneja and B. Kohli,
Optimality and duality results for bilevel programming problem using convexifactors, J. Optim. Theory Appl., 150 (2011), 1-19.
doi: 10.1007/s10957-011-9819-1. |
[31] |
S. K. Suneja and B. Kohli,
Generalized nonsmooth cone convexity in terms of convexifactors in vector optimization, Opsearch, 50 (2013), 89-105.
doi: 10.1007/s12597-012-0092-3. |
[32] |
S. K. Suneja and B. Kohli, Duality for multiobjective fractional programming problem using convexifactors, Math. Sci. (Springer), 7: 6 (2013), 8pp.
doi: 10.1186/2251-7456-7-6. |
[33] |
J. J. Ye,
Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM J. Optim., 15 (2004), 252-274.
doi: 10.1137/S1052623403424193. |
[34] |
J. J. Ye,
Constraint qualifications and KKT conditions for bilevel programming problems, Math. Oper. Res., 31 (2006), 811-824.
doi: 10.1287/moor.1060.0219. |
[35] |
J. J. Ye and D. L. Zhu,
Optimality conditions for bilevel programming problems, Optimization, 33 (1995), 9-27.
doi: 10.1080/02331939508844060. |
show all references
References:
[1] |
I. Ahmad, K. Kummari, V. Singh and A. Jayswal,
Optimality and duality for nonsmooth minimax programming problems using convexifactors, Filomat, 31 (2017), 4555-4570.
doi: 10.2298/FIL1714555A. |
[2] |
J. F. Bard, Practical Bilevel Optimization. Algorithms and Applications, Nonconvex Optim. Appl., 30, Kluwer Acad. Publ., Dordrecht, 1998.
doi: 10.1007/978-1-4757-2836-1. |
[3] |
J. F. Bard,
Optimality conditions for the bilevel programming problem, Naval Res. Logist. Quart., 31 (1984), 13-26.
doi: 10.1002/nav.3800310104. |
[4] |
J. F. Bard,
Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.
doi: 10.1007/BF00941574. |
[5] |
C. R. Bector, S. Chandra and J. Dutta, Principles of Optimization Theory, Narosa Publishing House, 2005. Google Scholar |
[6] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. |
[7] |
S. Dempe, Foundations of Bilevel Programming, Nonconvex Optim. Appl., 61, Kluwer Acad. Publ., Dordrecht, 2002.
doi: 10.1007/b101970. |
[8] |
S. Dempe,
A necessary and a sufficient optimality condition for bilevel programming problems, Optimization, 25 (1992), 341-354.
doi: 10.1080/02331939208843831. |
[9] |
S. Dempe,
First-order necessary optimality conditions for general bilevel programming problems, J. Optim. Theory Appl., 95 (1997), 735-739.
doi: 10.1023/A:1022646611097. |
[10] |
S. Dempe, J. Dutta and B. S. Mordukhovich,
New necessary optimality conditions in optimistic bilevel programming, Optimization, 56 (2007), 577-604.
doi: 10.1080/02331930701617551. |
[11] |
V. F. Demyanov, Convexification and concavification of positively homogeneous function by the same family of linear functions, Report 3,208,802 from Universita di Pisa, 1994. Google Scholar |
[12] |
V. F. Demyanov and A. M. Rubinov, An introduction to quasidifferential calculus, in Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, Kluwer Acad. Publ., Dordrecht, 2000, 1–31.
doi: 10.1007/978-1-4757-3137-8_1. |
[13] |
J. Dutta and S. Chandra,
Convexifactors, generalized convexity and optimality conditions, J. Optim. Theory Appl., 113 (2002), 41-64.
doi: 10.1023/A:1014853129484. |
[14] |
J. Dutta and S. Chandra,
Convexifactors, generalized convexity and vector optimization, Optimization, 53 (2004), 77-94.
doi: 10.1080/02331930410001661505. |
[15] |
A. Jayswal, K. Kummari and V. Singh,
Duality for a class of nonsmooth multiobjective programming problems using convexifactors, Filomat, 31 (2017), 489-498.
doi: 10.2298/FIL1702489J. |
[16] |
A. Jayswal, I. Stancu-Minasian and J. Banerjee, Optimality conditions and duality for
interval-valued optimization problems using convexifactors, Rend. Circ. Mat. Palermo (2),
65 (2016), 17–32.
doi: 10.1007/s12215-015-0215-9. |
[17] |
V. Jeyakumar and D. T. Luc,
Nonsmooth calculus, maximality and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599-621.
doi: 10.1023/A:1021790120780. |
[18] |
A. Kabgani and M. Soleimani-damaneh,
Relationships between convexificators and Greensberg-Pierskalla subdifferentials for quasiconvex functions, Numer. Funct. Anal. Optim., 38 (2017), 1548-1563.
doi: 10.1080/01630563.2017.1349144. |
[19] |
A. Kabgani, M. Soleimani-damaneh and M. Zamani,
Optimality conditions in optimization problems with convex feasible set using convexifactors, Math. Methods Oper. Res., 86 (2017), 103-121.
doi: 10.1007/s00186-017-0584-2. |
[20] |
A. Kabgani and M. Soleimani-damaneh,
Characterizations of (weakly/properly/roboust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators, Optimization, 67 (2018), 217-235.
doi: 10.1080/02331934.2017.1393675. |
[21] |
B. Kohli,
Optimality conditions for optimistic bilevel programming problem using convexifactors, J. Optim. Theory Appl., 152 (2012), 632-651.
doi: 10.1007/s10957-011-9941-0. |
[22] |
B. Kohli,
A note on the paper "Optimality conditions for optimistic bilevel programming problem using convexifactors", J. Optim. Theory Appl., 181 (2019), 706-707.
doi: 10.1007/s10957-018-01463-x. |
[23] |
B. Kohli,
Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints, RAIRO Oper. Res., 53 (2019), 1617-1632.
doi: 10.1051/ro/2018084. |
[24] |
X. F. Li and J. Z. Zhang,
Necessary optimality conditions in terms of convexificators in Lipschitz optimization, J. Optim. Theory Appl., 131 (2006), 429-452.
doi: 10.1007/s10957-006-9155-z. |
[25] |
D. V. Luu,
Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications, J. Optim. Theory Appl., 171 (2016), 643-665.
doi: 10.1007/s10957-015-0815-8. |
[26] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006.
doi: 10.1007/3-540-31247-1. |
[27] |
B. S. Mordukhovich and N. M. Nam,
Variational stability and marginal functions via generalized differentiation, Math. Oper. Res., 30 (2005), 800-816.
doi: 10.1287/moor.1050.0147. |
[28] |
B. S. Mordukhovich, N. M. Nam and N. D. Yen,
Subgradients of marginal functions in parametric mathematical programming, Math. Program., 116 (2009), 369-396.
doi: 10.1007/s10107-007-0120-x. |
[29] |
J. V. Outrata,
Necessary optimality conditions for Stackelberg problems, J. Optim. Theory Appl., 76 (1993), 305-320.
doi: 10.1007/BF00939610. |
[30] |
S. K. Suneja and B. Kohli,
Optimality and duality results for bilevel programming problem using convexifactors, J. Optim. Theory Appl., 150 (2011), 1-19.
doi: 10.1007/s10957-011-9819-1. |
[31] |
S. K. Suneja and B. Kohli,
Generalized nonsmooth cone convexity in terms of convexifactors in vector optimization, Opsearch, 50 (2013), 89-105.
doi: 10.1007/s12597-012-0092-3. |
[32] |
S. K. Suneja and B. Kohli, Duality for multiobjective fractional programming problem using convexifactors, Math. Sci. (Springer), 7: 6 (2013), 8pp.
doi: 10.1186/2251-7456-7-6. |
[33] |
J. J. Ye,
Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM J. Optim., 15 (2004), 252-274.
doi: 10.1137/S1052623403424193. |
[34] |
J. J. Ye,
Constraint qualifications and KKT conditions for bilevel programming problems, Math. Oper. Res., 31 (2006), 811-824.
doi: 10.1287/moor.1060.0219. |
[35] |
J. J. Ye and D. L. Zhu,
Optimality conditions for bilevel programming problems, Optimization, 33 (1995), 9-27.
doi: 10.1080/02331939508844060. |
[1] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[2] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[3] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[4] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[5] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[6] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[7] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[8] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[9] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[10] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[11] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[12] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[13] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[14] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[15] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[16] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[17] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
[18] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[19] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[20] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]