doi: 10.3934/jimo.2020114

Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem

Department of Mathematics, P.G.D.A.V. College, University of Delhi, Delhi-110065, India

Received  May 2019 Revised  March 2020 Published  June 2020

The main aim of this paper is to establish sufficient optimality conditions using an upper estimate of Clarke subdifferential of value function and the concept of convexifactor for optimistic bilevel programming problems with convex and non-convex lower-level problems. For this purpose, the notions of asymptotic pseudoconvexity and asymptotic quasiconvexity are defined in terms of the convexifactors.

Citation: Bhawna Kohli. Sufficient optimality conditions using convexifactors for optimistic bilevel programming problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020114
References:
[1]

I. AhmadK. KummariV. Singh and A. Jayswal, Optimality and duality for nonsmooth minimax programming problems using convexifactors, Filomat, 31 (2017), 4555-4570.  doi: 10.2298/FIL1714555A.  Google Scholar

[2]

J. F. Bard, Practical Bilevel Optimization. Algorithms and Applications, Nonconvex Optim. Appl., 30, Kluwer Acad. Publ., Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[3]

J. F. Bard, Optimality conditions for the bilevel programming problem, Naval Res. Logist. Quart., 31 (1984), 13-26.  doi: 10.1002/nav.3800310104.  Google Scholar

[4]

J. F. Bard, Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.  doi: 10.1007/BF00941574.  Google Scholar

[5]

C. R. Bector, S. Chandra and J. Dutta, Principles of Optimization Theory, Narosa Publishing House, 2005. Google Scholar

[6]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[7]

S. Dempe, Foundations of Bilevel Programming, Nonconvex Optim. Appl., 61, Kluwer Acad. Publ., Dordrecht, 2002. doi: 10.1007/b101970.  Google Scholar

[8]

S. Dempe, A necessary and a sufficient optimality condition for bilevel programming problems, Optimization, 25 (1992), 341-354.  doi: 10.1080/02331939208843831.  Google Scholar

[9]

S. Dempe, First-order necessary optimality conditions for general bilevel programming problems, J. Optim. Theory Appl., 95 (1997), 735-739.  doi: 10.1023/A:1022646611097.  Google Scholar

[10]

S. DempeJ. Dutta and B. S. Mordukhovich, New necessary optimality conditions in optimistic bilevel programming, Optimization, 56 (2007), 577-604.  doi: 10.1080/02331930701617551.  Google Scholar

[11]

V. F. Demyanov, Convexification and concavification of positively homogeneous function by the same family of linear functions, Report 3,208,802 from Universita di Pisa, 1994. Google Scholar

[12]

V. F. Demyanov and A. M. Rubinov, An introduction to quasidifferential calculus, in Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, Kluwer Acad. Publ., Dordrecht, 2000, 1–31. doi: 10.1007/978-1-4757-3137-8_1.  Google Scholar

[13]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and optimality conditions, J. Optim. Theory Appl., 113 (2002), 41-64.  doi: 10.1023/A:1014853129484.  Google Scholar

[14]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and vector optimization, Optimization, 53 (2004), 77-94.  doi: 10.1080/02331930410001661505.  Google Scholar

[15]

A. JayswalK. Kummari and V. Singh, Duality for a class of nonsmooth multiobjective programming problems using convexifactors, Filomat, 31 (2017), 489-498.  doi: 10.2298/FIL1702489J.  Google Scholar

[16]

A. Jayswal, I. Stancu-Minasian and J. Banerjee, Optimality conditions and duality for interval-valued optimization problems using convexifactors, Rend. Circ. Mat. Palermo (2), 65 (2016), 17–32. doi: 10.1007/s12215-015-0215-9.  Google Scholar

[17]

V. Jeyakumar and D. T. Luc, Nonsmooth calculus, maximality and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599-621.  doi: 10.1023/A:1021790120780.  Google Scholar

[18]

A. Kabgani and M. Soleimani-damaneh, Relationships between convexificators and Greensberg-Pierskalla subdifferentials for quasiconvex functions, Numer. Funct. Anal. Optim., 38 (2017), 1548-1563.  doi: 10.1080/01630563.2017.1349144.  Google Scholar

[19]

A. KabganiM. Soleimani-damaneh and M. Zamani, Optimality conditions in optimization problems with convex feasible set using convexifactors, Math. Methods Oper. Res., 86 (2017), 103-121.  doi: 10.1007/s00186-017-0584-2.  Google Scholar

[20]

A. Kabgani and M. Soleimani-damaneh, Characterizations of (weakly/properly/roboust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators, Optimization, 67 (2018), 217-235.  doi: 10.1080/02331934.2017.1393675.  Google Scholar

[21]

B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexifactors, J. Optim. Theory Appl., 152 (2012), 632-651.  doi: 10.1007/s10957-011-9941-0.  Google Scholar

[22]

B. Kohli, A note on the paper "Optimality conditions for optimistic bilevel programming problem using convexifactors", J. Optim. Theory Appl., 181 (2019), 706-707.  doi: 10.1007/s10957-018-01463-x.  Google Scholar

[23]

B. Kohli, Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints, RAIRO Oper. Res., 53 (2019), 1617-1632.  doi: 10.1051/ro/2018084.  Google Scholar

[24]

X. F. Li and J. Z. Zhang, Necessary optimality conditions in terms of convexificators in Lipschitz optimization, J. Optim. Theory Appl., 131 (2006), 429-452.  doi: 10.1007/s10957-006-9155-z.  Google Scholar

[25]

D. V. Luu, Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications, J. Optim. Theory Appl., 171 (2016), 643-665.  doi: 10.1007/s10957-015-0815-8.  Google Scholar

[26]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[27]

B. S. Mordukhovich and N. M. Nam, Variational stability and marginal functions via generalized differentiation, Math. Oper. Res., 30 (2005), 800-816.  doi: 10.1287/moor.1050.0147.  Google Scholar

[28]

B. S. MordukhovichN. M. Nam and N. D. Yen, Subgradients of marginal functions in parametric mathematical programming, Math. Program., 116 (2009), 369-396.  doi: 10.1007/s10107-007-0120-x.  Google Scholar

[29]

J. V. Outrata, Necessary optimality conditions for Stackelberg problems, J. Optim. Theory Appl., 76 (1993), 305-320.  doi: 10.1007/BF00939610.  Google Scholar

[30]

S. K. Suneja and B. Kohli, Optimality and duality results for bilevel programming problem using convexifactors, J. Optim. Theory Appl., 150 (2011), 1-19.  doi: 10.1007/s10957-011-9819-1.  Google Scholar

[31]

S. K. Suneja and B. Kohli, Generalized nonsmooth cone convexity in terms of convexifactors in vector optimization, Opsearch, 50 (2013), 89-105.  doi: 10.1007/s12597-012-0092-3.  Google Scholar

[32]

S. K. Suneja and B. Kohli, Duality for multiobjective fractional programming problem using convexifactors, Math. Sci. (Springer), 7: 6 (2013), 8pp. doi: 10.1186/2251-7456-7-6.  Google Scholar

[33]

J. J. Ye, Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM J. Optim., 15 (2004), 252-274.  doi: 10.1137/S1052623403424193.  Google Scholar

[34]

J. J. Ye, Constraint qualifications and KKT conditions for bilevel programming problems, Math. Oper. Res., 31 (2006), 811-824.  doi: 10.1287/moor.1060.0219.  Google Scholar

[35]

J. J. Ye and D. L. Zhu, Optimality conditions for bilevel programming problems, Optimization, 33 (1995), 9-27.  doi: 10.1080/02331939508844060.  Google Scholar

show all references

References:
[1]

I. AhmadK. KummariV. Singh and A. Jayswal, Optimality and duality for nonsmooth minimax programming problems using convexifactors, Filomat, 31 (2017), 4555-4570.  doi: 10.2298/FIL1714555A.  Google Scholar

[2]

J. F. Bard, Practical Bilevel Optimization. Algorithms and Applications, Nonconvex Optim. Appl., 30, Kluwer Acad. Publ., Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[3]

J. F. Bard, Optimality conditions for the bilevel programming problem, Naval Res. Logist. Quart., 31 (1984), 13-26.  doi: 10.1002/nav.3800310104.  Google Scholar

[4]

J. F. Bard, Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.  doi: 10.1007/BF00941574.  Google Scholar

[5]

C. R. Bector, S. Chandra and J. Dutta, Principles of Optimization Theory, Narosa Publishing House, 2005. Google Scholar

[6]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[7]

S. Dempe, Foundations of Bilevel Programming, Nonconvex Optim. Appl., 61, Kluwer Acad. Publ., Dordrecht, 2002. doi: 10.1007/b101970.  Google Scholar

[8]

S. Dempe, A necessary and a sufficient optimality condition for bilevel programming problems, Optimization, 25 (1992), 341-354.  doi: 10.1080/02331939208843831.  Google Scholar

[9]

S. Dempe, First-order necessary optimality conditions for general bilevel programming problems, J. Optim. Theory Appl., 95 (1997), 735-739.  doi: 10.1023/A:1022646611097.  Google Scholar

[10]

S. DempeJ. Dutta and B. S. Mordukhovich, New necessary optimality conditions in optimistic bilevel programming, Optimization, 56 (2007), 577-604.  doi: 10.1080/02331930701617551.  Google Scholar

[11]

V. F. Demyanov, Convexification and concavification of positively homogeneous function by the same family of linear functions, Report 3,208,802 from Universita di Pisa, 1994. Google Scholar

[12]

V. F. Demyanov and A. M. Rubinov, An introduction to quasidifferential calculus, in Quasidifferentiability and Related Topics, Nonconvex Optim. Appl., 43, Kluwer Acad. Publ., Dordrecht, 2000, 1–31. doi: 10.1007/978-1-4757-3137-8_1.  Google Scholar

[13]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and optimality conditions, J. Optim. Theory Appl., 113 (2002), 41-64.  doi: 10.1023/A:1014853129484.  Google Scholar

[14]

J. Dutta and S. Chandra, Convexifactors, generalized convexity and vector optimization, Optimization, 53 (2004), 77-94.  doi: 10.1080/02331930410001661505.  Google Scholar

[15]

A. JayswalK. Kummari and V. Singh, Duality for a class of nonsmooth multiobjective programming problems using convexifactors, Filomat, 31 (2017), 489-498.  doi: 10.2298/FIL1702489J.  Google Scholar

[16]

A. Jayswal, I. Stancu-Minasian and J. Banerjee, Optimality conditions and duality for interval-valued optimization problems using convexifactors, Rend. Circ. Mat. Palermo (2), 65 (2016), 17–32. doi: 10.1007/s12215-015-0215-9.  Google Scholar

[17]

V. Jeyakumar and D. T. Luc, Nonsmooth calculus, maximality and monotonicity of convexificators, J. Optim. Theory Appl., 101 (1999), 599-621.  doi: 10.1023/A:1021790120780.  Google Scholar

[18]

A. Kabgani and M. Soleimani-damaneh, Relationships between convexificators and Greensberg-Pierskalla subdifferentials for quasiconvex functions, Numer. Funct. Anal. Optim., 38 (2017), 1548-1563.  doi: 10.1080/01630563.2017.1349144.  Google Scholar

[19]

A. KabganiM. Soleimani-damaneh and M. Zamani, Optimality conditions in optimization problems with convex feasible set using convexifactors, Math. Methods Oper. Res., 86 (2017), 103-121.  doi: 10.1007/s00186-017-0584-2.  Google Scholar

[20]

A. Kabgani and M. Soleimani-damaneh, Characterizations of (weakly/properly/roboust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators, Optimization, 67 (2018), 217-235.  doi: 10.1080/02331934.2017.1393675.  Google Scholar

[21]

B. Kohli, Optimality conditions for optimistic bilevel programming problem using convexifactors, J. Optim. Theory Appl., 152 (2012), 632-651.  doi: 10.1007/s10957-011-9941-0.  Google Scholar

[22]

B. Kohli, A note on the paper "Optimality conditions for optimistic bilevel programming problem using convexifactors", J. Optim. Theory Appl., 181 (2019), 706-707.  doi: 10.1007/s10957-018-01463-x.  Google Scholar

[23]

B. Kohli, Necessary and sufficient optimality conditions using convexifactors for mathematical programs with equilibrium constraints, RAIRO Oper. Res., 53 (2019), 1617-1632.  doi: 10.1051/ro/2018084.  Google Scholar

[24]

X. F. Li and J. Z. Zhang, Necessary optimality conditions in terms of convexificators in Lipschitz optimization, J. Optim. Theory Appl., 131 (2006), 429-452.  doi: 10.1007/s10957-006-9155-z.  Google Scholar

[25]

D. V. Luu, Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications, J. Optim. Theory Appl., 171 (2016), 643-665.  doi: 10.1007/s10957-015-0815-8.  Google Scholar

[26]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[27]

B. S. Mordukhovich and N. M. Nam, Variational stability and marginal functions via generalized differentiation, Math. Oper. Res., 30 (2005), 800-816.  doi: 10.1287/moor.1050.0147.  Google Scholar

[28]

B. S. MordukhovichN. M. Nam and N. D. Yen, Subgradients of marginal functions in parametric mathematical programming, Math. Program., 116 (2009), 369-396.  doi: 10.1007/s10107-007-0120-x.  Google Scholar

[29]

J. V. Outrata, Necessary optimality conditions for Stackelberg problems, J. Optim. Theory Appl., 76 (1993), 305-320.  doi: 10.1007/BF00939610.  Google Scholar

[30]

S. K. Suneja and B. Kohli, Optimality and duality results for bilevel programming problem using convexifactors, J. Optim. Theory Appl., 150 (2011), 1-19.  doi: 10.1007/s10957-011-9819-1.  Google Scholar

[31]

S. K. Suneja and B. Kohli, Generalized nonsmooth cone convexity in terms of convexifactors in vector optimization, Opsearch, 50 (2013), 89-105.  doi: 10.1007/s12597-012-0092-3.  Google Scholar

[32]

S. K. Suneja and B. Kohli, Duality for multiobjective fractional programming problem using convexifactors, Math. Sci. (Springer), 7: 6 (2013), 8pp. doi: 10.1186/2251-7456-7-6.  Google Scholar

[33]

J. J. Ye, Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM J. Optim., 15 (2004), 252-274.  doi: 10.1137/S1052623403424193.  Google Scholar

[34]

J. J. Ye, Constraint qualifications and KKT conditions for bilevel programming problems, Math. Oper. Res., 31 (2006), 811-824.  doi: 10.1287/moor.1060.0219.  Google Scholar

[35]

J. J. Ye and D. L. Zhu, Optimality conditions for bilevel programming problems, Optimization, 33 (1995), 9-27.  doi: 10.1080/02331939508844060.  Google Scholar

[1]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[2]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[3]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[4]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[5]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

[6]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[7]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[8]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[9]

Najeeb Abdulaleem. $ V $-$ E $-invexity in $ E $-differentiable multiobjective programming. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021014

[10]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[11]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[12]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[15]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[16]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[17]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[18]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[19]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[20]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (99)
  • HTML views (272)
  • Cited by (0)

Other articles
by authors

[Back to Top]