• Previous Article
    Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets
  • JIMO Home
  • This Issue
  • Next Article
    A lattice method for option evaluation with regime-switching asset correlation structure
doi: 10.3934/jimo.2020116

Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party

1. 

College of Information Science and Engineering, Northeastern University, Fundamental Teaching Department of Computer and Mathematics, Shenyang Normal University, Shenyang, Liaoning, 110034, China

2. 

Research Institute of Business Analytics and Supply Chain Management, College of Management, Shenzhen University, Shenzhen, 518060, China

3. 

College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, Liaoning, 110819, China

4. 

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong, China

5. 

College of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China

* Corresponding author: Min Huang

Received  June 2019 Revised  March 2020 Published  June 2020

Due to the fast growing of the waste electrical and electronic equipment (WEEE), the business values of closed-loop supply chains (CLSCs) have been well recognized. In this paper, we investigate the performance of the CLSCs under different combinations of the recycling channel and the channel leadership when the recycling price is determined by the recycling party. Specially, we consider a CLSC consisting of two channel members, i.e., a manufacturer and a retailer. Each member acting as the channel leader has three different channels to collect the used products, and they are (ⅰ) the manufacturer (M-channel), (ⅱ) the retailer (R-channel) and (ⅲ) the third-party (T-channel). Given the recycling party determines the recycling price, mathematical models are developed to investigate the performance of the CLSC under different combinations of the channel leadership and the recycling channel. Through a comparison analysis, we find that M-channel is the most effective recycling channel. Moreover, once the M-channel be adopted, the retailer-led structure is as good as manufacture-led structure. We find that the recycling channel structure could be more important than the channel leadership in the CLSC. Finally, we illustrate that the CLSC can be coordinated by a two-part tariff contract.

Citation: Zhidan Wu, Xiaohu Qian, Min Huang, Wai-Ki Ching, Hanbin Kuang, Xingwei Wang. Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020116
References:
[1]

E. Almehdawe and B. Matin, Vendor managed inventory with a capacitated manufacturer and multiple retailer: Retailer versus manufacturer leadership, Internat. J. Prod. Econ., 128 (2010), 292-302.  doi: 10.1016/j.ijpe.2010.07.029.  Google Scholar

[2]

A. AtasuV. D. R. Guide and L. N. Van Wassenhove, Product reuse economics in closed-loop supply chain research, Prod. Oper. Manag., 17 (2010), 483-496.  doi: 10.3401/poms.1080.0051.  Google Scholar

[3]

A. AtasuL. B. Toktay and L. N. Van Wassenhove, How collection cost structure drives a manufacturer's reverse channel choice, Prod. Oper. Manag., 22 (2013), 1089-1102.  doi: 10.1111/j.1937-5956.2012.01426.x.  Google Scholar

[4]

M. Bhattacharyya and S. S. Sana, A mathematical model on eco-friendly manufacturing system under probabilistic demand, RAIRO Oper. Res., 53 (2019), 1899-1913.  doi: 10.1051/ro/2018120.  Google Scholar

[5]

G. P. Cachon and A. G. Kök, Competing manufacturers in a retail supply chain: On contractual form and coordination, Manag. Sci., 56 (2010), 571-589.  doi: 10.1287/mnsc.1090.1122.  Google Scholar

[6]

J.-M. Chen and C.-I. Chang, The co-operative strategy of a closed-loop supply chain with remanufacturing, Transpor. Res. Part E, 48 (2012), 387-400.  doi: 10.1016/j.tre.2011.10.001.  Google Scholar

[7]

T.-M. ChoiY. Li and L. Xu, Channel leadership, performance and coordination in closed loop supply chains, Internat. J. Prod. Econ., 146 (2013), 371-380.  doi: 10.1016/j.ijpe.2013.08.002.  Google Scholar

[8]

C.-H. ChuangC. X. Wang and Y. Zhao, Closed-loop supply chain models for a high-tech product under alternative reverse channel and collection cost structures, Internat. J. Prod. Econ., 156 (2014), 108-123.  doi: 10.1016/j.ijpe.2014.05.008.  Google Scholar

[9]

P. De Giovanni and G. Zaccour, A two-period game of a closed-loop supply chain, European J. Oper. Res., 232 (2014), 22-40.  doi: 10.1016/j.ejor.2013.06.032.  Google Scholar

[10]

V. D. R. Guide and L. N. Van Wassenhove, The evolution of closed-loop supply chain research, Oper. Res., 57 (2009), 10-18.   Google Scholar

[11]

G. Ertek and P. M. Griffin, Supplier-and buyer-driven channels in a two-stage supply chain, IIE Transactions, 34 (2002), 691-700.  doi: 10.1023/A:1014920510164.  Google Scholar

[12]

L. FengK. Govindan and C. Li, Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior, European J. Oper. Res., 260 (2017), 601-612.  doi: 10.1016/j.ejor.2016.12.050.  Google Scholar

[13]

H. Garg, Fuzzy inventory models for deteriorating items under different types of lead-time distributions, in Intelligent Techniques in Engineering Management, Intelligent Systems Reference Library, 87, Springer, Cham, 2015,247–274. doi: 10.1007/978-3-319-17906-3_11.  Google Scholar

[14]

V. D. R. GuideR. H. Teunter and L. N. Van Wassenhove, Matching demand and supply to maximize profits from remanufacturing, Manufac. Service Oper. Manag., 5 (2003), 303-316.  doi: 10.1287/msom.5.4.303.24883.  Google Scholar

[15]

X. HongZ. Wang and H. Zhang, Decision models of closed-loop supply chain with remanufacturing under hybrid dual-channel collection, Internat. J. Advanced Manufac. Tech., 68 (2013), 1851-1865.  doi: 10.1007/s00170-013-4982-1.  Google Scholar

[16]

M. HuangM. SongL. H. Lee and W. K. Ching, Analysis for strategy of closed-loop supply chain with dual recycling channel, Internat. J. Prod. Econ., 144 (2013), 510-520.  doi: 10.1016/j.ijpe.2013.04.002.  Google Scholar

[17]

A. P. Jeuland and S. M. Shugan, Managing channel profits, Marketing Science, 2 (1983), 239-272.  doi: 10.1287/mksc.2.3.239.  Google Scholar

[18]

I. KarakayaliH. Emir-Farinas and E. Akcal, An analysis of decentralized collection and processing of end-of-life products, J. Oper. Manag., 25 (2007), 1161-1183.  doi: 10.1016/j.jom.2007.01.017.  Google Scholar

[19]

Y. LiangS. Pokharel and G. H. Lim, Pricing used products for remanufacturing, European J. Oper. Res., 193 (2009), 390-395.  doi: 10.1016/j.ejor.2007.11.029.  Google Scholar

[20]

H. LiuM. LeiH. DengG. K. Leong and T. Huang, A dual channel, quality-based price competition model for the WEEE recycling market with government subsidy, Omega, 59 (2016), 290-302.  doi: 10.1016/j.omega.2015.07.002.  Google Scholar

[21]

P. Majumder and A. Srinivasan, Leadership and competition in network supply chains, Manag. Science, 54 (2008), 1189-1204.  doi: 10.1287/mnsc.1070.0752.  Google Scholar

[22]

T. W. McGuire and R. Staelin, An industry equilibrium analysis of downstream vertical integration, Marketing Science, 2 (1983), 161-190.  doi: 10.1287/mksc.2.2.161.  Google Scholar

[23]

P. R. Messinger and C. Narasimhan, Has power shifted in the grocery channel?, Marketing Science, 14 (1995), 189-223.   Google Scholar

[24]

S. Mitra, Revenue management for remanufactured products, Omega, 35 (2007), 553-562.  doi: 10.1016/j.omega.2005.10.003.  Google Scholar

[25]

S. K. MukhopadhyayD.-Q. Yao and X. Yue, Information sharing of value-adding retailer in a mixed channel hi-tech supply chain, J. Business Res., 61 (2008), 950-958.  doi: 10.1016/j.jbusres.2006.10.027.  Google Scholar

[26]

I. E. NielsenS. MajumderS. S. Sana and S. Saha, Comparative analysis of government incentives and game structures on single and two-period green supply chain, J. Cleaner Prod., 235 (2019), 1371-1398.  doi: 10.1016/j.jclepro.2019.06.168.  Google Scholar

[27]

A. ÖrsdemirE. Kemahlioğlu-Ziya and A. K. Parlaktürk, Competitive quality choice and remanufacturing, Prod. and Oper. Manag., 23 (2014), 48-64.  doi: 10.1111/poms.12040.  Google Scholar

[28]

S. SahaN. M. ModakS. Panda and S. S. Sana, Managing a retailer's dual-channel supply chain under price- and delivery time-sensitive demand, J. Modelling Manag., 13 (2018), 351-374.  doi: 10.1108/JM2-10-2016-0089.  Google Scholar

[29]

S. SahaN. M. ModakS. Panda and S. S. Sana, Promotional coordination mechanisms with demand dependent on price and sales efforts, J. Industrial Prod. Engrg., 36 (2019), 13-31.  doi: 10.1080/21681015.2019.1565451.  Google Scholar

[30]

S. S. SanaJ. Ferro-CorreaA. Quintero and R. Amaya, A system dynamics model of financial flow in supply chains: A case study, RAIRO Oper. Res., 52 (2018), 187-204.  doi: 10.1051/ro/2017025.  Google Scholar

[31]

R. C. SavaskanS. Bhattacharya and L. N. Van Wassenhove, Closed-loop supply chain models with product remanufacturing, Manag. Science, 50 (2004), 239-252.  doi: 10.1287/mnsc.1030.0186.  Google Scholar

[32]

R. C. Savaskan and L. N. Van Wassenhove, Reverse channel design: The case of competing retailers, Manag. Science, 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.  Google Scholar

[33]

J. ShiG. Zhang and J. Sha, Optimal production and pricing policy for a closed loop system, Resources Conservation Recycling, 55 (2011), 639-647.  doi: 10.1016/j.resconrec.2010.05.016.  Google Scholar

[34]

S. TiwariC. K. Jaggi and S. S. Sana, Integrated supply chain of supplier and retailer for stochastic demand, Math. Model. Anal., 23 (2018), 582-595.  doi: 10.3846/mma.2018.035.  Google Scholar

[35]

A. A. TaleizadehM. S. Moshtagh and I. Moon, Pricing, product quality, and collection optimization in a decentralized closed-loop supply chain with different channel structures: Game theoretical approach, J. Cleaner Prod., 189 (2018), 406-431.  doi: 10.1016/j.jclepro.2018.02.209.  Google Scholar

[36]

R. H. Teunter, Determining optimal disassembly and recovery strategies, Omega, 34 (2006), 533-537.  doi: 10.1016/j.omega.2005.01.014.  Google Scholar

[37]

M. ThierryM. Salomon and N. L. V. Wassenhove, Strategies issues in product recovery management, California Manag. Review, 37 (1995), 114-135.  doi: 10.2307/41165792.  Google Scholar

[38]

A. A. Tsay and N. Agrawal, Channel dynamics under price and service competition, Manufacturing and Service Oper. Manag., 2 (2000), 93-110.  doi: 10.1287/msom.2.4.372.12342.  Google Scholar

[39]

J. Vorasayan and S. M. Ryan, Optimal price and quantity of refurbished products, Prod. Oper. Manag., 15 (2006), 369-383.  doi: 10.1111/j.1937-5956.2006.tb00251.x.  Google Scholar

[40]

Z. WangB. ZhangJ. Yin and X. Zhang, Willingness and behavior towards e-waste recycling for residents in Beijing city, China, J. Cleaner Prod., 19 (2011), 977-984.  doi: 10.1016/j.jclepro.2010.09.016.  Google Scholar

[41]

W. WangY. ZhangK. ZhangT. Bai and J. Shang, Reward-penalty mechanism for closed-loop supply chains under responsibility-sharing and different power structures, Internat. J. Prod. Econ., 170 (2015), 178-190.  doi: 10.1016/j.ijpe.2015.09.003.  Google Scholar

[42]

D.-Q. Yao and J. J. Liu, Competitive pricing of mixed retail and e-tail distribution channels, OMEGA, 33 (2005), 235-247.  doi: 10.1016/j.omega.2004.04.007.  Google Scholar

show all references

References:
[1]

E. Almehdawe and B. Matin, Vendor managed inventory with a capacitated manufacturer and multiple retailer: Retailer versus manufacturer leadership, Internat. J. Prod. Econ., 128 (2010), 292-302.  doi: 10.1016/j.ijpe.2010.07.029.  Google Scholar

[2]

A. AtasuV. D. R. Guide and L. N. Van Wassenhove, Product reuse economics in closed-loop supply chain research, Prod. Oper. Manag., 17 (2010), 483-496.  doi: 10.3401/poms.1080.0051.  Google Scholar

[3]

A. AtasuL. B. Toktay and L. N. Van Wassenhove, How collection cost structure drives a manufacturer's reverse channel choice, Prod. Oper. Manag., 22 (2013), 1089-1102.  doi: 10.1111/j.1937-5956.2012.01426.x.  Google Scholar

[4]

M. Bhattacharyya and S. S. Sana, A mathematical model on eco-friendly manufacturing system under probabilistic demand, RAIRO Oper. Res., 53 (2019), 1899-1913.  doi: 10.1051/ro/2018120.  Google Scholar

[5]

G. P. Cachon and A. G. Kök, Competing manufacturers in a retail supply chain: On contractual form and coordination, Manag. Sci., 56 (2010), 571-589.  doi: 10.1287/mnsc.1090.1122.  Google Scholar

[6]

J.-M. Chen and C.-I. Chang, The co-operative strategy of a closed-loop supply chain with remanufacturing, Transpor. Res. Part E, 48 (2012), 387-400.  doi: 10.1016/j.tre.2011.10.001.  Google Scholar

[7]

T.-M. ChoiY. Li and L. Xu, Channel leadership, performance and coordination in closed loop supply chains, Internat. J. Prod. Econ., 146 (2013), 371-380.  doi: 10.1016/j.ijpe.2013.08.002.  Google Scholar

[8]

C.-H. ChuangC. X. Wang and Y. Zhao, Closed-loop supply chain models for a high-tech product under alternative reverse channel and collection cost structures, Internat. J. Prod. Econ., 156 (2014), 108-123.  doi: 10.1016/j.ijpe.2014.05.008.  Google Scholar

[9]

P. De Giovanni and G. Zaccour, A two-period game of a closed-loop supply chain, European J. Oper. Res., 232 (2014), 22-40.  doi: 10.1016/j.ejor.2013.06.032.  Google Scholar

[10]

V. D. R. Guide and L. N. Van Wassenhove, The evolution of closed-loop supply chain research, Oper. Res., 57 (2009), 10-18.   Google Scholar

[11]

G. Ertek and P. M. Griffin, Supplier-and buyer-driven channels in a two-stage supply chain, IIE Transactions, 34 (2002), 691-700.  doi: 10.1023/A:1014920510164.  Google Scholar

[12]

L. FengK. Govindan and C. Li, Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior, European J. Oper. Res., 260 (2017), 601-612.  doi: 10.1016/j.ejor.2016.12.050.  Google Scholar

[13]

H. Garg, Fuzzy inventory models for deteriorating items under different types of lead-time distributions, in Intelligent Techniques in Engineering Management, Intelligent Systems Reference Library, 87, Springer, Cham, 2015,247–274. doi: 10.1007/978-3-319-17906-3_11.  Google Scholar

[14]

V. D. R. GuideR. H. Teunter and L. N. Van Wassenhove, Matching demand and supply to maximize profits from remanufacturing, Manufac. Service Oper. Manag., 5 (2003), 303-316.  doi: 10.1287/msom.5.4.303.24883.  Google Scholar

[15]

X. HongZ. Wang and H. Zhang, Decision models of closed-loop supply chain with remanufacturing under hybrid dual-channel collection, Internat. J. Advanced Manufac. Tech., 68 (2013), 1851-1865.  doi: 10.1007/s00170-013-4982-1.  Google Scholar

[16]

M. HuangM. SongL. H. Lee and W. K. Ching, Analysis for strategy of closed-loop supply chain with dual recycling channel, Internat. J. Prod. Econ., 144 (2013), 510-520.  doi: 10.1016/j.ijpe.2013.04.002.  Google Scholar

[17]

A. P. Jeuland and S. M. Shugan, Managing channel profits, Marketing Science, 2 (1983), 239-272.  doi: 10.1287/mksc.2.3.239.  Google Scholar

[18]

I. KarakayaliH. Emir-Farinas and E. Akcal, An analysis of decentralized collection and processing of end-of-life products, J. Oper. Manag., 25 (2007), 1161-1183.  doi: 10.1016/j.jom.2007.01.017.  Google Scholar

[19]

Y. LiangS. Pokharel and G. H. Lim, Pricing used products for remanufacturing, European J. Oper. Res., 193 (2009), 390-395.  doi: 10.1016/j.ejor.2007.11.029.  Google Scholar

[20]

H. LiuM. LeiH. DengG. K. Leong and T. Huang, A dual channel, quality-based price competition model for the WEEE recycling market with government subsidy, Omega, 59 (2016), 290-302.  doi: 10.1016/j.omega.2015.07.002.  Google Scholar

[21]

P. Majumder and A. Srinivasan, Leadership and competition in network supply chains, Manag. Science, 54 (2008), 1189-1204.  doi: 10.1287/mnsc.1070.0752.  Google Scholar

[22]

T. W. McGuire and R. Staelin, An industry equilibrium analysis of downstream vertical integration, Marketing Science, 2 (1983), 161-190.  doi: 10.1287/mksc.2.2.161.  Google Scholar

[23]

P. R. Messinger and C. Narasimhan, Has power shifted in the grocery channel?, Marketing Science, 14 (1995), 189-223.   Google Scholar

[24]

S. Mitra, Revenue management for remanufactured products, Omega, 35 (2007), 553-562.  doi: 10.1016/j.omega.2005.10.003.  Google Scholar

[25]

S. K. MukhopadhyayD.-Q. Yao and X. Yue, Information sharing of value-adding retailer in a mixed channel hi-tech supply chain, J. Business Res., 61 (2008), 950-958.  doi: 10.1016/j.jbusres.2006.10.027.  Google Scholar

[26]

I. E. NielsenS. MajumderS. S. Sana and S. Saha, Comparative analysis of government incentives and game structures on single and two-period green supply chain, J. Cleaner Prod., 235 (2019), 1371-1398.  doi: 10.1016/j.jclepro.2019.06.168.  Google Scholar

[27]

A. ÖrsdemirE. Kemahlioğlu-Ziya and A. K. Parlaktürk, Competitive quality choice and remanufacturing, Prod. and Oper. Manag., 23 (2014), 48-64.  doi: 10.1111/poms.12040.  Google Scholar

[28]

S. SahaN. M. ModakS. Panda and S. S. Sana, Managing a retailer's dual-channel supply chain under price- and delivery time-sensitive demand, J. Modelling Manag., 13 (2018), 351-374.  doi: 10.1108/JM2-10-2016-0089.  Google Scholar

[29]

S. SahaN. M. ModakS. Panda and S. S. Sana, Promotional coordination mechanisms with demand dependent on price and sales efforts, J. Industrial Prod. Engrg., 36 (2019), 13-31.  doi: 10.1080/21681015.2019.1565451.  Google Scholar

[30]

S. S. SanaJ. Ferro-CorreaA. Quintero and R. Amaya, A system dynamics model of financial flow in supply chains: A case study, RAIRO Oper. Res., 52 (2018), 187-204.  doi: 10.1051/ro/2017025.  Google Scholar

[31]

R. C. SavaskanS. Bhattacharya and L. N. Van Wassenhove, Closed-loop supply chain models with product remanufacturing, Manag. Science, 50 (2004), 239-252.  doi: 10.1287/mnsc.1030.0186.  Google Scholar

[32]

R. C. Savaskan and L. N. Van Wassenhove, Reverse channel design: The case of competing retailers, Manag. Science, 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.  Google Scholar

[33]

J. ShiG. Zhang and J. Sha, Optimal production and pricing policy for a closed loop system, Resources Conservation Recycling, 55 (2011), 639-647.  doi: 10.1016/j.resconrec.2010.05.016.  Google Scholar

[34]

S. TiwariC. K. Jaggi and S. S. Sana, Integrated supply chain of supplier and retailer for stochastic demand, Math. Model. Anal., 23 (2018), 582-595.  doi: 10.3846/mma.2018.035.  Google Scholar

[35]

A. A. TaleizadehM. S. Moshtagh and I. Moon, Pricing, product quality, and collection optimization in a decentralized closed-loop supply chain with different channel structures: Game theoretical approach, J. Cleaner Prod., 189 (2018), 406-431.  doi: 10.1016/j.jclepro.2018.02.209.  Google Scholar

[36]

R. H. Teunter, Determining optimal disassembly and recovery strategies, Omega, 34 (2006), 533-537.  doi: 10.1016/j.omega.2005.01.014.  Google Scholar

[37]

M. ThierryM. Salomon and N. L. V. Wassenhove, Strategies issues in product recovery management, California Manag. Review, 37 (1995), 114-135.  doi: 10.2307/41165792.  Google Scholar

[38]

A. A. Tsay and N. Agrawal, Channel dynamics under price and service competition, Manufacturing and Service Oper. Manag., 2 (2000), 93-110.  doi: 10.1287/msom.2.4.372.12342.  Google Scholar

[39]

J. Vorasayan and S. M. Ryan, Optimal price and quantity of refurbished products, Prod. Oper. Manag., 15 (2006), 369-383.  doi: 10.1111/j.1937-5956.2006.tb00251.x.  Google Scholar

[40]

Z. WangB. ZhangJ. Yin and X. Zhang, Willingness and behavior towards e-waste recycling for residents in Beijing city, China, J. Cleaner Prod., 19 (2011), 977-984.  doi: 10.1016/j.jclepro.2010.09.016.  Google Scholar

[41]

W. WangY. ZhangK. ZhangT. Bai and J. Shang, Reward-penalty mechanism for closed-loop supply chains under responsibility-sharing and different power structures, Internat. J. Prod. Econ., 170 (2015), 178-190.  doi: 10.1016/j.ijpe.2015.09.003.  Google Scholar

[42]

D.-Q. Yao and J. J. Liu, Competitive pricing of mixed retail and e-tail distribution channels, OMEGA, 33 (2005), 235-247.  doi: 10.1016/j.omega.2004.04.007.  Google Scholar

Figure 1.  The manufacturer's tradeoff between the channel leadership and the recycling channel
Figure 2.  The retailer's tradeoff between the channel leadership and the recycling channel
Table 1.  Notations
Symbol Description
Parameters
$c_{m}$ Unit producing cost from original materials
$c_{0}$ Unit producing cost from returns
$\delta$ Unit saving cost by recovery, $\delta=c_{m}-c_{0}$
$A$ The size of the market
$\alpha$ Sensitivity of the consumers for the retail price, $\alpha>0$
$k$ The basic recovery quantity, which represents the level of
environmental awareness of consumers
$h$ Sensitivity of the customers for the recycling price, $h>0$
Decision variables
$p$ The unit retail price
$w$ The unit wholesale price
$b$ The unit recycling price in centralized decision system
$b_{j}$ The unit recycling price of the recycling party $j$, subscript
$j=t, r, m$ denotes the recycling by the third-party, the
retailer and the manufacturer, respectively
$b_{mj}$ The unit transfer price, $j=r, t$, denotes R-channel and
T-channel, respectively
Derived function
$D(p)$ The demand of the products
$R(b_{j})$ The amount of the recycling products
$\pi_{m}$ The profits of the manufacturer
$\pi_{r}$ The profits of the retailer
$\pi_{t}$ The profits of the third-party
$\Pi$ The profits of the system
Symbol Description
Parameters
$c_{m}$ Unit producing cost from original materials
$c_{0}$ Unit producing cost from returns
$\delta$ Unit saving cost by recovery, $\delta=c_{m}-c_{0}$
$A$ The size of the market
$\alpha$ Sensitivity of the consumers for the retail price, $\alpha>0$
$k$ The basic recovery quantity, which represents the level of
environmental awareness of consumers
$h$ Sensitivity of the customers for the recycling price, $h>0$
Decision variables
$p$ The unit retail price
$w$ The unit wholesale price
$b$ The unit recycling price in centralized decision system
$b_{j}$ The unit recycling price of the recycling party $j$, subscript
$j=t, r, m$ denotes the recycling by the third-party, the
retailer and the manufacturer, respectively
$b_{mj}$ The unit transfer price, $j=r, t$, denotes R-channel and
T-channel, respectively
Derived function
$D(p)$ The demand of the products
$R(b_{j})$ The amount of the recycling products
$\pi_{m}$ The profits of the manufacturer
$\pi_{r}$ The profits of the retailer
$\pi_{t}$ The profits of the third-party
$\Pi$ The profits of the system
Table 2.  Main results of the M-led models
Model MM Model MR Model MT
$p^*$ $p^{MM*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{MR*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{MT*}=\frac{3A+\alpha c_m}{4\alpha}$
$b^*_i$ $b^{MM*}_m=\frac{h\delta -k}{2h}$ $b^{MR*}_r=\frac{h\delta -3k}{4h}$ $b^{MT*}_t=\frac{h\delta -3k}{4h}$
$w^*$ $w^{MM*}=\frac{A+\alpha c_m}{2\alpha}$ $w^{MR*}=\frac{A+\alpha c_m}{2\alpha}$ $w^{MT*}=\frac{A+\alpha c_m}{2\alpha}$
$b^*_{mj}$ N/A $b^{MR*}_{mr}=\frac{h\delta -k}{2h}$ $b^{MT*}_{mt}=\frac{h\delta -k}{2h}$
$\pi^*_m$ $\pi^{MM*}_m=\frac{P_f}{2}+P_r$ $\pi^{MR*}_m=\frac{P_f+P_r}{2}$ $\pi^{MT*}_m=\frac{P_f}{2}+\frac{P_r}{2}$
$\pi^*_r$ $\pi^{MM*}_r=\frac{P_f}{4}$ $\pi^{MR*}_r=\frac{P_f+P_r}{4}$ $\pi^{MT*}_r=\frac{P_f}{4}$
$\pi^*_t$ N/A N/A $\pi^{MT*}_t=\frac{P_r}{4}$
$\Pi^*$ $\Pi^{MM*}=\frac{3P_f}{4}+P_r$ $\Pi^{MR*}=\frac{3(P_f+P_r)}{4}$ $\Pi^{MT*}=\frac{3(P_f+P_r)}{4}$
Model MM Model MR Model MT
$p^*$ $p^{MM*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{MR*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{MT*}=\frac{3A+\alpha c_m}{4\alpha}$
$b^*_i$ $b^{MM*}_m=\frac{h\delta -k}{2h}$ $b^{MR*}_r=\frac{h\delta -3k}{4h}$ $b^{MT*}_t=\frac{h\delta -3k}{4h}$
$w^*$ $w^{MM*}=\frac{A+\alpha c_m}{2\alpha}$ $w^{MR*}=\frac{A+\alpha c_m}{2\alpha}$ $w^{MT*}=\frac{A+\alpha c_m}{2\alpha}$
$b^*_{mj}$ N/A $b^{MR*}_{mr}=\frac{h\delta -k}{2h}$ $b^{MT*}_{mt}=\frac{h\delta -k}{2h}$
$\pi^*_m$ $\pi^{MM*}_m=\frac{P_f}{2}+P_r$ $\pi^{MR*}_m=\frac{P_f+P_r}{2}$ $\pi^{MT*}_m=\frac{P_f}{2}+\frac{P_r}{2}$
$\pi^*_r$ $\pi^{MM*}_r=\frac{P_f}{4}$ $\pi^{MR*}_r=\frac{P_f+P_r}{4}$ $\pi^{MT*}_r=\frac{P_f}{4}$
$\pi^*_t$ N/A N/A $\pi^{MT*}_t=\frac{P_r}{4}$
$\Pi^*$ $\Pi^{MM*}=\frac{3P_f}{4}+P_r$ $\Pi^{MR*}=\frac{3(P_f+P_r)}{4}$ $\Pi^{MT*}=\frac{3(P_f+P_r)}{4}$
Table 3.  Main results of the R-led models
Model RM Model RR Model RT
$p^*$ $p^{RM*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{RR*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{RT*}=\frac{3A+\alpha c_m}{4\alpha}$
$b^*_i$ $b^{RM*}_m=\frac{h\delta -k}{2h}$ $b^{RR*}_r=\frac{h\delta -3k}{4h}$ $b^{RT*}_t=\frac{h\delta -3k}{4h}$
$w^*$ $w^{RM*}=\frac{A+3\alpha c_m}{4\alpha}$ $w^{RR*}=\frac{A+3\alpha c_m}{4\alpha}$ $w^{RT*}=\frac{A+3\alpha c_m}{4\alpha}$
$b^*_{mj}$ N/A $b^{RR*}_{mr}=\frac{3h\delta -k}{4h}$ $b^{RT*}_{mt}=\frac{h\delta -k}{2h}$
$\pi^*_m$ $\pi^{RM*}_m=\frac{P_f}{4}+P_r$ $\pi^{RR*}_m=\frac{P_f+P_r}{4}$ $\pi^{RT*}_m=\frac{P_f}{4}+\frac{P_r}{2}$
$\pi^*_r$ $\pi^{RM*}_r=\frac{P_f}{2}$ $\pi^{RR*}_r=\frac{P_f+P_r}{2}$ $\pi^{RT*}_r=\frac{P_f}{2}$
$\pi^*_t$ N/A N/A $\pi^{RT*}_t=\frac{P_r}{4}$
$\Pi^*$ $\Pi^{RM*}=\frac{3P_f}{4}+P_r$ $\Pi^{RR*}=\frac{3(P_f+P_r)}{4}$ $\Pi^{RT*}=\frac{3(P_f+P_r)}{4}$
Model RM Model RR Model RT
$p^*$ $p^{RM*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{RR*}=\frac{3A+\alpha c_m}{4\alpha}$ $p^{RT*}=\frac{3A+\alpha c_m}{4\alpha}$
$b^*_i$ $b^{RM*}_m=\frac{h\delta -k}{2h}$ $b^{RR*}_r=\frac{h\delta -3k}{4h}$ $b^{RT*}_t=\frac{h\delta -3k}{4h}$
$w^*$ $w^{RM*}=\frac{A+3\alpha c_m}{4\alpha}$ $w^{RR*}=\frac{A+3\alpha c_m}{4\alpha}$ $w^{RT*}=\frac{A+3\alpha c_m}{4\alpha}$
$b^*_{mj}$ N/A $b^{RR*}_{mr}=\frac{3h\delta -k}{4h}$ $b^{RT*}_{mt}=\frac{h\delta -k}{2h}$
$\pi^*_m$ $\pi^{RM*}_m=\frac{P_f}{4}+P_r$ $\pi^{RR*}_m=\frac{P_f+P_r}{4}$ $\pi^{RT*}_m=\frac{P_f}{4}+\frac{P_r}{2}$
$\pi^*_r$ $\pi^{RM*}_r=\frac{P_f}{2}$ $\pi^{RR*}_r=\frac{P_f+P_r}{2}$ $\pi^{RT*}_r=\frac{P_f}{2}$
$\pi^*_t$ N/A N/A $\pi^{RT*}_t=\frac{P_r}{4}$
$\Pi^*$ $\Pi^{RM*}=\frac{3P_f}{4}+P_r$ $\Pi^{RR*}=\frac{3(P_f+P_r)}{4}$ $\Pi^{RT*}=\frac{3(P_f+P_r)}{4}$
[1]

Yi Jing, Wenchuan Li. Integrated recycling-integrated production - distribution planning for decentralized closed-loop supply chain. Journal of Industrial & Management Optimization, 2018, 14 (2) : 511-539. doi: 10.3934/jimo.2017058

[2]

Chong Zhang, Yaxian Wang, Ying Liu, Haiyan Wang. Coordination contracts for a dual-channel supply chain under capital constraints. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020031

[3]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial & Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[4]

Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial & Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039

[5]

Abdolhossein Sadrnia, Amirreza Payandeh Sani, Najme Roghani Langarudi. Sustainable closed-loop supply chain network optimization for construction machinery recovering. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020074

[6]

Xiaohong Chen, Kui Li, Fuqiang Wang, Xihua Li. Optimal production, pricing and government subsidy policies for a closed loop supply chain with uncertain returns. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1389-1414. doi: 10.3934/jimo.2019008

[7]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[8]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[9]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[10]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[11]

Lei Yang, Jingna Ji, Kebing Chen. Advertising games on national brand and store brand in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2018, 14 (1) : 105-134. doi: 10.3934/jimo.2017039

[12]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019125

[13]

Lianxia Zhao, Jianxin You, Shu-Cherng Fang. A dual-channel supply chain problem with resource-utilization penalty: Who can benefit from sales effort?. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020097

[14]

Justine Yasappan, Ángela Jiménez-Casas, Mario Castro. Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3267-3299. doi: 10.3934/dcdsb.2015.20.3267

[15]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[16]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[17]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[18]

Cheng Ma, Y. C. E. Lee, Chi Kin Chan, Yan Wei. Auction and contracting mechanisms for channel coordination with consideration of participants' risk attitudes. Journal of Industrial & Management Optimization, 2017, 13 (2) : 775-801. doi: 10.3934/jimo.2016046

[19]

Xiaochen Sun, Fei Hu, Yancong Zhou, Cheng-Chew Lim. Optimal acquisition, inventory and production decisions for a closed-loop manufacturing system with legislation constraint. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1355-1373. doi: 10.3934/jimo.2015.11.1355

[20]

Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi, Andrea De Gaetano. Robust closed-loop control of plasma glycemia: A discrete-delay model approach. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 455-468. doi: 10.3934/dcdsb.2009.12.455

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (2)
  • HTML views (18)
  • Cited by (0)

[Back to Top]