• Previous Article
    Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models
  • JIMO Home
  • This Issue
  • Next Article
    An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts
January  2021, 17(1): 485-500. doi: 10.3934/jimo.2020117

Some properties of nonconvex oriented distance function and applications to vector optimization problems

1. 

School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

3. 

College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

* Corresponding author: Liping Tang

Received  August 2019 Revised  January 2020 Published  June 2020

In this paper, we study some interesting properties of nonconvex oriented distance function. In particular, we present complete characterizations of monotonicity properties of oriented distance function. Moreover, the Clark subdifferentials of nonconvex oriented distance function are explored in the solid case. As applications, fuzzy necessary optimality conditions for approximate solutions to vector optimization problems are provided.

Citation: Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117
References:
[1]

Q. H. AnsariE. Köbis and P. K. Sharma, Characterizations of multiobjective robustness via oriented distance function and image space analysis, J. Optim. Theory Appl., 181 (2019), 817-839.  doi: 10.1007/s10957-019-01505-y.  Google Scholar

[2]

Y. Araya, Four types of nonlinear scalarizations and some applications in set optimization, Nonlinear Anal., 75 (2012), 3821-3835.  doi: 10.1016/j.na.2012.02.004.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, A general approach for studying duality in multiobjective optimization, Math. Methods Oper. Res., 65 (2007), 417-444.  doi: 10.1007/s00186-006-0125-x.  Google Scholar

[4]

J. V. BurkeM. C. Ferris and M. Qian, On the Clarke subdifferential of the distance function of a closed set, J. Math. Anal. Appl., 166 (1992), 199-213.  doi: 10.1016/0022-247X(92)90336-C.  Google Scholar

[5]

G.-Y. Chen, X. Huang and X. Yang, Vector Optimization. Set-Valued and Variational Analysis, Lecture Notes in Economics and Mathematical Systems, 541, Springer-Verlag, Berlin, 2005. doi: 10.1007/3-540-28445-1.  Google Scholar

[6]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, London, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[7]

M.-O. Czarnecki and L. Thibault, Sublevel representations of epi-Lipschitz sets and other properties, Math. Program., 168 (2018), 555-569.  doi: 10.1007/s10107-016-1070-y.  Google Scholar

[8]

M. C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions, J. Funct. Anal., 123 (1994), 129-201.  doi: 10.1006/jfan.1994.1086.  Google Scholar

[9]

M. DureaJ. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces, J. Optim. Theory Appl., 145 (2010), 196-211.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[10]

M. DureaR. Strugariu and C. Tammer, Scalarization in geometric and functional vector optimization revisited, J. Optim. Theory Appl., 159 (2013), 635-655.  doi: 10.1007/s10957-013-0360-2.  Google Scholar

[11]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces, Math. Methods Oper. Res., 64 (2006), 521-540.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[12]

Y. Gao and X.-M. Yang, Properties of the nonlinear scalar functional and its applications to vector optimization problems, J. Global Optim., 73 (2019), 869-889.  doi: 10.1007/s10898-018-0725-z.  Google Scholar

[13]

Y. GaoX. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems, J. Ind. Manag. Optim., 7 (2011), 483-496.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[14]

C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[15]

C. GutiérrezB. JiménezE. Miglierina and E. Molho, Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2015), 525-552.  doi: 10.1007/s10898-014-0179-x.  Google Scholar

[16]

C. GutiérrezB. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM J. Optim., 17 (2006), 688-710.  doi: 10.1137/05062648X.  Google Scholar

[17]

C. GutiérrezB. Jiménez and V. Novo, Improvement sets and vector optimization, European J. Oper. Res., 223 (2012), 304-311.  doi: 10.1016/j.ejor.2012.05.050.  Google Scholar

[18]

C. Gutiérrez, B. Jiménez and V. Novo, Nonlinear scalarizations of set optimization problems with set orderings, in Set Optimization and Applications - The State of the Art, Springer Proc. Math. Stat., 151, Springer, Heidelberg, 2015, 43–63. doi: 10.1007/978-3-662-48670-2_2.  Google Scholar

[19]

C. GutiérrezE. MiglierinaE. Molho and V. Novo, Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.  doi: 10.1016/j.na.2011.09.028.  Google Scholar

[20]

C. GutiérrezV. NovoJ. L. Ródenas-Pedregosa and T. Tanaka, Nonconvex separation functional in linear spaces with applications to vector equilibria, SIAM J. Optim., 26 (2016), 2677-2695.  doi: 10.1137/16M1063575.  Google Scholar

[21]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 4 (1979), 79-97.  doi: 10.1287/moor.4.1.79.  Google Scholar

[22]

J.-B. Hiriart-Urruty, New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France Mém., (1979), 57–85.  Google Scholar

[23]

B. JiménezV. Novo and A. Vílchez, A set scalarization function based on the oriented distance and relations with other set scalarizations, Optimization, 67 (2018), 2091-2116.  doi: 10.1080/02331934.2018.1533554.  Google Scholar

[24]

B. JiménezV. Novo and A. Vílchez, Characterization of set relations through extensions of the oriented distance, Math. Methods Oper. Res., 91 (2020), 89-115.  doi: 10.1007/s00186-019-00661-1.  Google Scholar

[25]

A. A. Khan, C. Tammer and C. Zălinescu, Set-Valued Optimization. An Introduction with Applications, Vector Optimization, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[26]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, J. Optim. Theory Appl., 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[27]

G. H. LiS. J. Li and M. X. You, Relationships between the oriented distance functional and a nonlinear separation functional, J. Math. Anal. Appl., 466 (2018), 1109-1117.  doi: 10.1016/j.jmaa.2018.06.046.  Google Scholar

[28]

C. G. LiuK. F. Ng and W. H. Yang, Merit functions in vector optimization, Math. Program., 119 (2009), 215-237.  doi: 10.1007/s10107-008-0208-y.  Google Scholar

[29]

H. LuoX. Wang and B. Lukens, Variational analysis on the signed distance functions, J. Optim. Theory Appl., 180 (2019), 751-774.  doi: 10.1007/s10957-018-1414-2.  Google Scholar

[30]

E. MiglierinaE. Molho and M. Rocca, Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl., 126 (2005), 391-409.  doi: 10.1007/s10957-005-4723-1.  Google Scholar

[31]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[32]

D. Ralph, A chain rule for nonsmooth composite functions via minimisation, Bull. Austral. Math. Soc., 49 (1994), 129-137.  doi: 10.1017/S0004972700016178.  Google Scholar

[33]

R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math., 32 (1980), 257-280.  doi: 10.4153/CJM-1980-020-7.  Google Scholar

[34]

L. Thibault, On compactly Lipschitzian mappings, in Recent Advances in Optimization, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997,356–364. doi: 10.1007/978-3-642-59073-3_25.  Google Scholar

[35]

H.-Z. WeiC.-R. Chen and S.-J. Li, Characterizations for optimality conditions of general robust optimization problems, J. Optim. Theory Appl., 177 (2018), 835-856.  doi: 10.1007/s10957-018-1256-y.  Google Scholar

[36]

L. Zadeh, Optimality and non-scalar-valued performance criteria, IEEE Trans. Automatic Control, 8 (1963), 59-60.  doi: 10.1109/TAC.1963.1105511.  Google Scholar

[37]

A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 42 (2003), 1071-1086.  doi: 10.1137/S0363012902411532.  Google Scholar

[38]

C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. doi: 10.1142/9789812777096.  Google Scholar

[39]

K. Q. Zhao and X. M. Yang, $E-$Benson proper efficiency in vector optimization, Optimization, 64 (2015), 739-752.  doi: 10.1080/02331934.2013.798321.  Google Scholar

[40]

K.-Q. ZhaoX.-M. Yang and J.-W. Peng, Weak $E$-optimal solution in vector optimization, Taiwanese J. Math., 17 (2013), 1287-1302.  doi: 10.11650/tjm.17.2013.2721.  Google Scholar

show all references

References:
[1]

Q. H. AnsariE. Köbis and P. K. Sharma, Characterizations of multiobjective robustness via oriented distance function and image space analysis, J. Optim. Theory Appl., 181 (2019), 817-839.  doi: 10.1007/s10957-019-01505-y.  Google Scholar

[2]

Y. Araya, Four types of nonlinear scalarizations and some applications in set optimization, Nonlinear Anal., 75 (2012), 3821-3835.  doi: 10.1016/j.na.2012.02.004.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, A general approach for studying duality in multiobjective optimization, Math. Methods Oper. Res., 65 (2007), 417-444.  doi: 10.1007/s00186-006-0125-x.  Google Scholar

[4]

J. V. BurkeM. C. Ferris and M. Qian, On the Clarke subdifferential of the distance function of a closed set, J. Math. Anal. Appl., 166 (1992), 199-213.  doi: 10.1016/0022-247X(92)90336-C.  Google Scholar

[5]

G.-Y. Chen, X. Huang and X. Yang, Vector Optimization. Set-Valued and Variational Analysis, Lecture Notes in Economics and Mathematical Systems, 541, Springer-Verlag, Berlin, 2005. doi: 10.1007/3-540-28445-1.  Google Scholar

[6]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, London, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[7]

M.-O. Czarnecki and L. Thibault, Sublevel representations of epi-Lipschitz sets and other properties, Math. Program., 168 (2018), 555-569.  doi: 10.1007/s10107-016-1070-y.  Google Scholar

[8]

M. C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions, J. Funct. Anal., 123 (1994), 129-201.  doi: 10.1006/jfan.1994.1086.  Google Scholar

[9]

M. DureaJ. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces, J. Optim. Theory Appl., 145 (2010), 196-211.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[10]

M. DureaR. Strugariu and C. Tammer, Scalarization in geometric and functional vector optimization revisited, J. Optim. Theory Appl., 159 (2013), 635-655.  doi: 10.1007/s10957-013-0360-2.  Google Scholar

[11]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces, Math. Methods Oper. Res., 64 (2006), 521-540.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[12]

Y. Gao and X.-M. Yang, Properties of the nonlinear scalar functional and its applications to vector optimization problems, J. Global Optim., 73 (2019), 869-889.  doi: 10.1007/s10898-018-0725-z.  Google Scholar

[13]

Y. GaoX. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems, J. Ind. Manag. Optim., 7 (2011), 483-496.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[14]

C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[15]

C. GutiérrezB. JiménezE. Miglierina and E. Molho, Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2015), 525-552.  doi: 10.1007/s10898-014-0179-x.  Google Scholar

[16]

C. GutiérrezB. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM J. Optim., 17 (2006), 688-710.  doi: 10.1137/05062648X.  Google Scholar

[17]

C. GutiérrezB. Jiménez and V. Novo, Improvement sets and vector optimization, European J. Oper. Res., 223 (2012), 304-311.  doi: 10.1016/j.ejor.2012.05.050.  Google Scholar

[18]

C. Gutiérrez, B. Jiménez and V. Novo, Nonlinear scalarizations of set optimization problems with set orderings, in Set Optimization and Applications - The State of the Art, Springer Proc. Math. Stat., 151, Springer, Heidelberg, 2015, 43–63. doi: 10.1007/978-3-662-48670-2_2.  Google Scholar

[19]

C. GutiérrezE. MiglierinaE. Molho and V. Novo, Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.  doi: 10.1016/j.na.2011.09.028.  Google Scholar

[20]

C. GutiérrezV. NovoJ. L. Ródenas-Pedregosa and T. Tanaka, Nonconvex separation functional in linear spaces with applications to vector equilibria, SIAM J. Optim., 26 (2016), 2677-2695.  doi: 10.1137/16M1063575.  Google Scholar

[21]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 4 (1979), 79-97.  doi: 10.1287/moor.4.1.79.  Google Scholar

[22]

J.-B. Hiriart-Urruty, New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France Mém., (1979), 57–85.  Google Scholar

[23]

B. JiménezV. Novo and A. Vílchez, A set scalarization function based on the oriented distance and relations with other set scalarizations, Optimization, 67 (2018), 2091-2116.  doi: 10.1080/02331934.2018.1533554.  Google Scholar

[24]

B. JiménezV. Novo and A. Vílchez, Characterization of set relations through extensions of the oriented distance, Math. Methods Oper. Res., 91 (2020), 89-115.  doi: 10.1007/s00186-019-00661-1.  Google Scholar

[25]

A. A. Khan, C. Tammer and C. Zălinescu, Set-Valued Optimization. An Introduction with Applications, Vector Optimization, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[26]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, J. Optim. Theory Appl., 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[27]

G. H. LiS. J. Li and M. X. You, Relationships between the oriented distance functional and a nonlinear separation functional, J. Math. Anal. Appl., 466 (2018), 1109-1117.  doi: 10.1016/j.jmaa.2018.06.046.  Google Scholar

[28]

C. G. LiuK. F. Ng and W. H. Yang, Merit functions in vector optimization, Math. Program., 119 (2009), 215-237.  doi: 10.1007/s10107-008-0208-y.  Google Scholar

[29]

H. LuoX. Wang and B. Lukens, Variational analysis on the signed distance functions, J. Optim. Theory Appl., 180 (2019), 751-774.  doi: 10.1007/s10957-018-1414-2.  Google Scholar

[30]

E. MiglierinaE. Molho and M. Rocca, Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl., 126 (2005), 391-409.  doi: 10.1007/s10957-005-4723-1.  Google Scholar

[31]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[32]

D. Ralph, A chain rule for nonsmooth composite functions via minimisation, Bull. Austral. Math. Soc., 49 (1994), 129-137.  doi: 10.1017/S0004972700016178.  Google Scholar

[33]

R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math., 32 (1980), 257-280.  doi: 10.4153/CJM-1980-020-7.  Google Scholar

[34]

L. Thibault, On compactly Lipschitzian mappings, in Recent Advances in Optimization, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997,356–364. doi: 10.1007/978-3-642-59073-3_25.  Google Scholar

[35]

H.-Z. WeiC.-R. Chen and S.-J. Li, Characterizations for optimality conditions of general robust optimization problems, J. Optim. Theory Appl., 177 (2018), 835-856.  doi: 10.1007/s10957-018-1256-y.  Google Scholar

[36]

L. Zadeh, Optimality and non-scalar-valued performance criteria, IEEE Trans. Automatic Control, 8 (1963), 59-60.  doi: 10.1109/TAC.1963.1105511.  Google Scholar

[37]

A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 42 (2003), 1071-1086.  doi: 10.1137/S0363012902411532.  Google Scholar

[38]

C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. doi: 10.1142/9789812777096.  Google Scholar

[39]

K. Q. Zhao and X. M. Yang, $E-$Benson proper efficiency in vector optimization, Optimization, 64 (2015), 739-752.  doi: 10.1080/02331934.2013.798321.  Google Scholar

[40]

K.-Q. ZhaoX.-M. Yang and J.-W. Peng, Weak $E$-optimal solution in vector optimization, Taiwanese J. Math., 17 (2013), 1287-1302.  doi: 10.11650/tjm.17.2013.2721.  Google Scholar

Figure 2.1.  $ \bar{y}\in bdA $ with $ \Delta_{A}(\bar{y}) = 0 $, $ \Delta_{cl A}(\bar{y}) = -2 $ and $ \Delta_{int A}(\bar{y}) = 1 $ in Example 2.1
[1]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[4]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[7]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[8]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[9]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[10]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[11]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[12]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[13]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[14]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[17]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[18]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[19]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[20]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (164)
  • HTML views (254)
  • Cited by (0)

Other articles
by authors

[Back to Top]