The problem of fuzzy based event-triggered disturbance rejection control for nonlinear systems is addressed in this paper. A new fuzzy event based anti rejection controller is designed and a fuzzy reduced disturbance observer is constructed. Sufficient conditions for the closed loop system to be asymptotically stable under an $ H_\infty $ performance index are derived. Based on these conditions, the design of a fuzzy event-triggered state feedback controller is formulated and solved. Numerical results are presented to demonstrate the correctness and effectiveness of our theoretical findings.
Citation: |
[1] | A. Benzaouia and A. E. Hajjaji, Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay, International Journal of Innovative Computing, Information and Control, 7 (2011), 1533-1548. |
[2] | Y.-Y. Cao, Z. L. Lin and Y. Shamash, Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation, Systems and Control Letters, 46 (2002), 137-151. doi: 10.1016/S0167-6911(02)00128-7. |
[3] | X. Chang and G. Yang, Relaxed results on stabilization and state feedback $H_\infty$ control conditions for T-S fuzzy systems, International Journal of Innovative Computing, Information and Control, 7 (2011), 1753-1764. |
[4] | M. Chen and W. Chen, Disturbance observer based robust control for time delay uncertain systems, International Journal of Control, Automation and Systems, 8 (2010), 445-453. |
[5] | T. M. Guerra and L. Vermeiren, LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, Automatica J. IFAC, 40 (2004), 823-829. doi: 10.1016/j.automatica.2003.12.014. |
[6] | L. Guo and W.-H. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, International Journal of Robust and Nonlinear Control, 15 (2005), 109-125. doi: 10.1002/rnc.978. |
[7] | L. Guo and S. Y. Cao, Anti-Disturbance Control for Systems with Multiple Disturbances, USA: CRC Press, Boca Raton, FL, 2014. doi: 10.1201/b15528. |
[8] | L. Guo and S. Y. Cao, Anti-disturbance control theory for systems with multiple disturbances: A survey, ISA Transactions, 53 (2014), 846-849. doi: 10.1016/j.isatra.2013.10.005. |
[9] | T. Iwasaki, G. Meinsma and M. Y. Fu, Generalized S-procedure and finite frequency KYP lemma, Mathematical Problems in Engineering, 6 (2000), 305-320. doi: 10.1155/S1024123X00001368. |
[10] | L. L. Lv, S. Y. Tang and L. Zhang, Parametric solutions to generalized periodic Sylvester bimatrix equations, Journal of the Franklin Institute, 357 (2020), 3601-3621. doi: 10.1016/j.jfranklin.2019.12.031. |
[11] | L. L. Lv and Z. Zhang, Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370. doi: 10.1016/j.jfranklin.2017.01.004. |
[12] | L. L. Lv, Z. Zhang, L. Zhang and X. X. Liu, Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations, Journal of the Franklin Institute, 355 (2018), 7691-7705. doi: 10.1016/j.jfranklin.2018.07.045. |
[13] | X. J. Su, P. Shi, L. Q. Wu and Y.-D. Song, A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, IEEE Trans on Fuzzy Systems, 21 (2013), 655-671. doi: 10.1109/TFUZZ.2012.2226941. |
[14] | C. Sun, Y. Wang and C. Chang, Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robots, International Journal of Innovative Computing, Information and Control, 8 (2012), 3015-3028. |
[15] | T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans on Syst. Man Cybern, 15 (1985), 116-132. |
[16] | K. Tanaka, T. Hori and H. O. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Trans on Fuzzy Syst., 11 (2003), 582-589. doi: 10.1109/TFUZZ.2003.814861. |
[17] | L. Wu, X. Su, P. Shi and J. Qiu, Model approximation for discrete-time state-delay systems in the T-S fuzzy framework, IEEE Trans on Fuzzy Systems, 19 (2011), 366-378. |
[18] | X. M. Yao and L. Guo, Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica J. IFAC, 49 (2013), 2538-2545. doi: 10.1016/j.automatica.2013.05.002. |
[19] | Y. Y. Yin, X. Chen and F. Liu, Disturbance rejection control for Markov jump systems with nonhomogeneous processes, The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, (2015), 15340479. doi: 10.1109/CCDC.2015.7162007. |
[20] | Y. Y. Yin, Z. L. Lin, Y. Q. Liu and K. L. Teo, Event-triggered constrained control of positive systems with input saturation, International Journal of Robust and Nonlinear Control, 28 (2018), 3532-3542. doi: 10.1002/rnc.4097. |
[21] | Y. Y. Yin, Y. Q. Liu, K. L. Teo and S. Wang, Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153. doi: 10.1002/rnc.3858. |
[22] | Y. Y. Yin, L. J. Zhu, F. Liu, K. L. Teo and S. Wang, Asynchronous $H_\infty$ control for nonhomogeneous higher-level Markov jump systems, Journal of the Franklin Institute, 357 (2020), 4697–4708. doi: 10.1016/j.jfranklin.2020.02.010. |
[23] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X. |
[24] | H. B. Zeng, K. L. Teo, Y. He and W. Wang, Sampled-data-based dissipative control of T-S fuzzy systems, Applied Mathematical Modelling, 65 (2019), 415-427. doi: 10.1016/j.apm.2018.08.012. |
[25] | H.-B. Zeng, K. L. Teo, Y. He and W. Wang, Sampled-data stabilization of chaotic systems based on a T-S fuzzy model, Information Sciences, 483 (2019), 262-272. doi: 10.1016/j.ins.2019.01.046. |