
-
Previous Article
Strategic joining in a single-server retrial queue with batch service
- JIMO Home
- This Issue
-
Next Article
Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison
Fuzzy event-triggered disturbance rejection control of nonlinear systems
1. | Key laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China |
2. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, 6102, Australia |
3. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987, Perth, WA6845, Australia |
The problem of fuzzy based event-triggered disturbance rejection control for nonlinear systems is addressed in this paper. A new fuzzy event based anti rejection controller is designed and a fuzzy reduced disturbance observer is constructed. Sufficient conditions for the closed loop system to be asymptotically stable under an $ H_\infty $ performance index are derived. Based on these conditions, the design of a fuzzy event-triggered state feedback controller is formulated and solved. Numerical results are presented to demonstrate the correctness and effectiveness of our theoretical findings.
References:
[1] |
A. Benzaouia and A. E. Hajjaji,
Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay, International Journal of Innovative Computing, Information and Control, 7 (2011), 1533-1548.
|
[2] |
Y.-Y. Cao, Z. L. Lin and Y. Shamash,
Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation, Systems and Control Letters, 46 (2002), 137-151.
doi: 10.1016/S0167-6911(02)00128-7. |
[3] |
X. Chang and G. Yang,
Relaxed results on stabilization and state feedback $H_\infty$ control conditions for T-S fuzzy systems, International Journal of Innovative Computing, Information and Control, 7 (2011), 1753-1764.
|
[4] |
M. Chen and W. Chen,
Disturbance observer based robust control for time delay uncertain systems, International Journal of Control, Automation and Systems, 8 (2010), 445-453.
|
[5] |
T. M. Guerra and L. Vermeiren,
LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, Automatica J. IFAC, 40 (2004), 823-829.
doi: 10.1016/j.automatica.2003.12.014. |
[6] |
L. Guo and W.-H. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, International Journal of Robust and Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[7] |
L. Guo and S. Y. Cao, Anti-Disturbance Control for Systems with Multiple Disturbances, USA: CRC Press, Boca Raton, FL, 2014.
doi: 10.1201/b15528.![]() ![]() |
[8] |
L. Guo and S. Y. Cao,
Anti-disturbance control theory for systems with multiple disturbances: A survey, ISA Transactions, 53 (2014), 846-849.
doi: 10.1016/j.isatra.2013.10.005. |
[9] |
T. Iwasaki, G. Meinsma and M. Y. Fu,
Generalized S-procedure and finite frequency KYP lemma, Mathematical Problems in Engineering, 6 (2000), 305-320.
doi: 10.1155/S1024123X00001368. |
[10] |
L. L. Lv, S. Y. Tang and L. Zhang,
Parametric solutions to generalized periodic Sylvester bimatrix equations, Journal of the Franklin Institute, 357 (2020), 3601-3621.
doi: 10.1016/j.jfranklin.2019.12.031. |
[11] |
L. L. Lv and Z. Zhang,
Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.
doi: 10.1016/j.jfranklin.2017.01.004. |
[12] |
L. L. Lv, Z. Zhang, L. Zhang and X. X. Liu,
Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations, Journal of the Franklin Institute, 355 (2018), 7691-7705.
doi: 10.1016/j.jfranklin.2018.07.045. |
[13] |
X. J. Su, P. Shi, L. Q. Wu and Y.-D. Song,
A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, IEEE Trans on Fuzzy Systems, 21 (2013), 655-671.
doi: 10.1109/TFUZZ.2012.2226941. |
[14] |
C. Sun, Y. Wang and C. Chang,
Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robots, International Journal of Innovative Computing, Information and Control, 8 (2012), 3015-3028.
|
[15] |
T. Takagi and M. Sugeno,
Fuzzy identification of systems and its applications to modeling and control, IEEE Trans on Syst. Man Cybern, 15 (1985), 116-132.
|
[16] |
K. Tanaka, T. Hori and H. O. Wang,
A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Trans on Fuzzy Syst., 11 (2003), 582-589.
doi: 10.1109/TFUZZ.2003.814861. |
[17] |
L. Wu, X. Su, P. Shi and J. Qiu,
Model approximation for discrete-time state-delay systems in the T-S fuzzy framework, IEEE Trans on Fuzzy Systems, 19 (2011), 366-378.
|
[18] |
X. M. Yao and L. Guo,
Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica J. IFAC, 49 (2013), 2538-2545.
doi: 10.1016/j.automatica.2013.05.002. |
[19] |
Y. Y. Yin, X. Chen and F. Liu, Disturbance rejection control for Markov jump systems with nonhomogeneous processes, The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, (2015), 15340479.
doi: 10.1109/CCDC.2015.7162007. |
[20] |
Y. Y. Yin, Z. L. Lin, Y. Q. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, International Journal of Robust and Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[21] |
Y. Y. Yin, Y. Q. Liu, K. L. Teo and S. Wang,
Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153.
doi: 10.1002/rnc.3858. |
[22] |
Y. Y. Yin, L. J. Zhu, F. Liu, K. L. Teo and S. Wang, Asynchronous $H_\infty$ control for nonhomogeneous higher-level Markov jump systems, Journal of the Franklin Institute, 357 (2020), 4697–4708.
doi: 10.1016/j.jfranklin.2020.02.010. |
[23] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[24] |
H. B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data-based dissipative control of T-S fuzzy systems, Applied Mathematical Modelling, 65 (2019), 415-427.
doi: 10.1016/j.apm.2018.08.012. |
[25] |
H.-B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data stabilization of chaotic systems based on a T-S fuzzy model, Information Sciences, 483 (2019), 262-272.
doi: 10.1016/j.ins.2019.01.046. |
show all references
References:
[1] |
A. Benzaouia and A. E. Hajjaji,
Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay, International Journal of Innovative Computing, Information and Control, 7 (2011), 1533-1548.
|
[2] |
Y.-Y. Cao, Z. L. Lin and Y. Shamash,
Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation, Systems and Control Letters, 46 (2002), 137-151.
doi: 10.1016/S0167-6911(02)00128-7. |
[3] |
X. Chang and G. Yang,
Relaxed results on stabilization and state feedback $H_\infty$ control conditions for T-S fuzzy systems, International Journal of Innovative Computing, Information and Control, 7 (2011), 1753-1764.
|
[4] |
M. Chen and W. Chen,
Disturbance observer based robust control for time delay uncertain systems, International Journal of Control, Automation and Systems, 8 (2010), 445-453.
|
[5] |
T. M. Guerra and L. Vermeiren,
LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, Automatica J. IFAC, 40 (2004), 823-829.
doi: 10.1016/j.automatica.2003.12.014. |
[6] |
L. Guo and W.-H. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, International Journal of Robust and Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[7] |
L. Guo and S. Y. Cao, Anti-Disturbance Control for Systems with Multiple Disturbances, USA: CRC Press, Boca Raton, FL, 2014.
doi: 10.1201/b15528.![]() ![]() |
[8] |
L. Guo and S. Y. Cao,
Anti-disturbance control theory for systems with multiple disturbances: A survey, ISA Transactions, 53 (2014), 846-849.
doi: 10.1016/j.isatra.2013.10.005. |
[9] |
T. Iwasaki, G. Meinsma and M. Y. Fu,
Generalized S-procedure and finite frequency KYP lemma, Mathematical Problems in Engineering, 6 (2000), 305-320.
doi: 10.1155/S1024123X00001368. |
[10] |
L. L. Lv, S. Y. Tang and L. Zhang,
Parametric solutions to generalized periodic Sylvester bimatrix equations, Journal of the Franklin Institute, 357 (2020), 3601-3621.
doi: 10.1016/j.jfranklin.2019.12.031. |
[11] |
L. L. Lv and Z. Zhang,
Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.
doi: 10.1016/j.jfranklin.2017.01.004. |
[12] |
L. L. Lv, Z. Zhang, L. Zhang and X. X. Liu,
Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations, Journal of the Franklin Institute, 355 (2018), 7691-7705.
doi: 10.1016/j.jfranklin.2018.07.045. |
[13] |
X. J. Su, P. Shi, L. Q. Wu and Y.-D. Song,
A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, IEEE Trans on Fuzzy Systems, 21 (2013), 655-671.
doi: 10.1109/TFUZZ.2012.2226941. |
[14] |
C. Sun, Y. Wang and C. Chang,
Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robots, International Journal of Innovative Computing, Information and Control, 8 (2012), 3015-3028.
|
[15] |
T. Takagi and M. Sugeno,
Fuzzy identification of systems and its applications to modeling and control, IEEE Trans on Syst. Man Cybern, 15 (1985), 116-132.
|
[16] |
K. Tanaka, T. Hori and H. O. Wang,
A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Trans on Fuzzy Syst., 11 (2003), 582-589.
doi: 10.1109/TFUZZ.2003.814861. |
[17] |
L. Wu, X. Su, P. Shi and J. Qiu,
Model approximation for discrete-time state-delay systems in the T-S fuzzy framework, IEEE Trans on Fuzzy Systems, 19 (2011), 366-378.
|
[18] |
X. M. Yao and L. Guo,
Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica J. IFAC, 49 (2013), 2538-2545.
doi: 10.1016/j.automatica.2013.05.002. |
[19] |
Y. Y. Yin, X. Chen and F. Liu, Disturbance rejection control for Markov jump systems with nonhomogeneous processes, The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, (2015), 15340479.
doi: 10.1109/CCDC.2015.7162007. |
[20] |
Y. Y. Yin, Z. L. Lin, Y. Q. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, International Journal of Robust and Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[21] |
Y. Y. Yin, Y. Q. Liu, K. L. Teo and S. Wang,
Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153.
doi: 10.1002/rnc.3858. |
[22] |
Y. Y. Yin, L. J. Zhu, F. Liu, K. L. Teo and S. Wang, Asynchronous $H_\infty$ control for nonhomogeneous higher-level Markov jump systems, Journal of the Franklin Institute, 357 (2020), 4697–4708.
doi: 10.1016/j.jfranklin.2020.02.010. |
[23] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[24] |
H. B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data-based dissipative control of T-S fuzzy systems, Applied Mathematical Modelling, 65 (2019), 415-427.
doi: 10.1016/j.apm.2018.08.012. |
[25] |
H.-B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data stabilization of chaotic systems based on a T-S fuzzy model, Information Sciences, 483 (2019), 262-272.
doi: 10.1016/j.ins.2019.01.046. |


[1] |
Ruitong Wu, Yongming Li, Jun Hu, Wei Liu, Shaocheng Tong. Switching mechanism-based event-triggered fuzzy adaptive control with prescribed performance for MIMO nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1713-1731. doi: 10.3934/dcdss.2021168 |
[2] |
Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497 |
[3] |
Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1301-1328. doi: 10.3934/dcdss.2020412 |
[4] |
Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861 |
[5] |
Stefan Jerg, Oliver Junge, Marcus Post. Global optimal feedbacks for stochastic quantized nonlinear event systems. Journal of Computational Dynamics, 2014, 1 (1) : 163-176. doi: 10.3934/jcd.2014.1.163 |
[6] |
Ramalingam Sakthivel, Palanisamy Selvaraj, Yeong-Jae Kim, Dong-Hoon Lee, Oh-Min Kwon, Rathinasamy Sakthivel. Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022028 |
[7] |
Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021230 |
[8] |
M. W. Hirsch, Hal L. Smith. Asymptotically stable equilibria for monotone semiflows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 385-398. doi: 10.3934/dcds.2006.14.385 |
[9] |
Jin-Zi Yang, Yuan-Xin Li, Ming Wei. Fuzzy adaptive asymptotic tracking of fractional order nonlinear systems with uncertain disturbances. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1615-1631. doi: 10.3934/dcdss.2021144 |
[10] |
Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105 |
[11] |
Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148 |
[12] |
Mahdi Khajeh Salehani. Identification of generic stable dynamical systems taking a nonlinear differential approach. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4541-4555. doi: 10.3934/dcdsb.2018175 |
[13] |
Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619 |
[14] |
Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025 |
[15] |
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 |
[16] |
Peng Cheng, Feng Pan, Yanyan Yin, Song Wang. Probabilistic robust anti-disturbance control of uncertain systems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2441-2450. doi: 10.3934/jimo.2020076 |
[17] |
François Genoud. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evolution Equations and Control Theory, 2013, 2 (1) : 81-100. doi: 10.3934/eect.2013.2.81 |
[18] |
Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201 |
[19] |
Sang-Heon Lee. Development of concurrent structural decentralised discrete event system using bisimulation concept. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 305-317. doi: 10.3934/naco.2016013 |
[20] |
Qiying Hu, Wuyi Yue. Two new optimal models for controlling discrete event systems. Journal of Industrial and Management Optimization, 2005, 1 (1) : 65-80. doi: 10.3934/jimo.2005.1.65 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]