
-
Previous Article
Two-period pricing and ordering decisions of perishable products with a learning period for demand disruption
- JIMO Home
- This Issue
-
Next Article
Stochastic-Lazier-Greedy Algorithm for monotone non-submodular maximization
Fuzzy event-triggered disturbance rejection control of nonlinear systems
1. | Key laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China |
2. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, 6102, Australia |
3. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987, Perth, WA6845, Australia |
The problem of fuzzy based event-triggered disturbance rejection control for nonlinear systems is addressed in this paper. A new fuzzy event based anti rejection controller is designed and a fuzzy reduced disturbance observer is constructed. Sufficient conditions for the closed loop system to be asymptotically stable under an $ H_\infty $ performance index are derived. Based on these conditions, the design of a fuzzy event-triggered state feedback controller is formulated and solved. Numerical results are presented to demonstrate the correctness and effectiveness of our theoretical findings.
References:
[1] |
A. Benzaouia and A. E. Hajjaji, Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay, International Journal of Innovative Computing, Information and Control, 7 (2011), 1533-1548. Google Scholar |
[2] |
Y.-Y. Cao, Z. L. Lin and Y. Shamash,
Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation, Systems and Control Letters, 46 (2002), 137-151.
doi: 10.1016/S0167-6911(02)00128-7. |
[3] |
X. Chang and G. Yang, Relaxed results on stabilization and state feedback $H_\infty$ control conditions for T-S fuzzy systems, International Journal of Innovative Computing, Information and Control, 7 (2011), 1753-1764. Google Scholar |
[4] |
M. Chen and W. Chen, Disturbance observer based robust control for time delay uncertain systems, International Journal of Control, Automation and Systems, 8 (2010), 445-453. Google Scholar |
[5] |
T. M. Guerra and L. Vermeiren,
LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, Automatica J. IFAC, 40 (2004), 823-829.
doi: 10.1016/j.automatica.2003.12.014. |
[6] |
L. Guo and W.-H. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, International Journal of Robust and Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[7] |
L. Guo and S. Y. Cao, Anti-Disturbance Control for Systems with Multiple Disturbances, USA: CRC Press, Boca Raton, FL, 2014.
doi: 10.1201/b15528.![]() |
[8] |
L. Guo and S. Y. Cao,
Anti-disturbance control theory for systems with multiple disturbances: A survey, ISA Transactions, 53 (2014), 846-849.
doi: 10.1016/j.isatra.2013.10.005. |
[9] |
T. Iwasaki, G. Meinsma and M. Y. Fu,
Generalized S-procedure and finite frequency KYP lemma, Mathematical Problems in Engineering, 6 (2000), 305-320.
doi: 10.1155/S1024123X00001368. |
[10] |
L. L. Lv, S. Y. Tang and L. Zhang,
Parametric solutions to generalized periodic Sylvester bimatrix equations, Journal of the Franklin Institute, 357 (2020), 3601-3621.
doi: 10.1016/j.jfranklin.2019.12.031. |
[11] |
L. L. Lv and Z. Zhang,
Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.
doi: 10.1016/j.jfranklin.2017.01.004. |
[12] |
L. L. Lv, Z. Zhang, L. Zhang and X. X. Liu,
Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations, Journal of the Franklin Institute, 355 (2018), 7691-7705.
doi: 10.1016/j.jfranklin.2018.07.045. |
[13] |
X. J. Su, P. Shi, L. Q. Wu and Y.-D. Song,
A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, IEEE Trans on Fuzzy Systems, 21 (2013), 655-671.
doi: 10.1109/TFUZZ.2012.2226941. |
[14] |
C. Sun, Y. Wang and C. Chang, Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robots, International Journal of Innovative Computing, Information and Control, 8 (2012), 3015-3028. Google Scholar |
[15] |
T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans on Syst. Man Cybern, 15 (1985), 116-132. Google Scholar |
[16] |
K. Tanaka, T. Hori and H. O. Wang,
A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Trans on Fuzzy Syst., 11 (2003), 582-589.
doi: 10.1109/TFUZZ.2003.814861. |
[17] |
L. Wu, X. Su, P. Shi and J. Qiu, Model approximation for discrete-time state-delay systems in the T-S fuzzy framework, IEEE Trans on Fuzzy Systems, 19 (2011), 366-378. Google Scholar |
[18] |
X. M. Yao and L. Guo,
Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica J. IFAC, 49 (2013), 2538-2545.
doi: 10.1016/j.automatica.2013.05.002. |
[19] |
Y. Y. Yin, X. Chen and F. Liu, Disturbance rejection control for Markov jump systems with nonhomogeneous processes, The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, (2015), 15340479.
doi: 10.1109/CCDC.2015.7162007. |
[20] |
Y. Y. Yin, Z. L. Lin, Y. Q. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, International Journal of Robust and Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[21] |
Y. Y. Yin, Y. Q. Liu, K. L. Teo and S. Wang,
Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153.
doi: 10.1002/rnc.3858. |
[22] |
Y. Y. Yin, L. J. Zhu, F. Liu, K. L. Teo and S. Wang, Asynchronous $H_\infty$ control for nonhomogeneous higher-level Markov jump systems, Journal of the Franklin Institute, 357 (2020), 4697–4708.
doi: 10.1016/j.jfranklin.2020.02.010. |
[23] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[24] |
H. B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data-based dissipative control of T-S fuzzy systems, Applied Mathematical Modelling, 65 (2019), 415-427.
doi: 10.1016/j.apm.2018.08.012. |
[25] |
H.-B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data stabilization of chaotic systems based on a T-S fuzzy model, Information Sciences, 483 (2019), 262-272.
doi: 10.1016/j.ins.2019.01.046. |
show all references
References:
[1] |
A. Benzaouia and A. E. Hajjaji, Delay-dependent stabilization conditions of controlled positive T-S fuzzy systems with time varying delay, International Journal of Innovative Computing, Information and Control, 7 (2011), 1533-1548. Google Scholar |
[2] |
Y.-Y. Cao, Z. L. Lin and Y. Shamash,
Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation, Systems and Control Letters, 46 (2002), 137-151.
doi: 10.1016/S0167-6911(02)00128-7. |
[3] |
X. Chang and G. Yang, Relaxed results on stabilization and state feedback $H_\infty$ control conditions for T-S fuzzy systems, International Journal of Innovative Computing, Information and Control, 7 (2011), 1753-1764. Google Scholar |
[4] |
M. Chen and W. Chen, Disturbance observer based robust control for time delay uncertain systems, International Journal of Control, Automation and Systems, 8 (2010), 445-453. Google Scholar |
[5] |
T. M. Guerra and L. Vermeiren,
LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form, Automatica J. IFAC, 40 (2004), 823-829.
doi: 10.1016/j.automatica.2003.12.014. |
[6] |
L. Guo and W.-H. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, International Journal of Robust and Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[7] |
L. Guo and S. Y. Cao, Anti-Disturbance Control for Systems with Multiple Disturbances, USA: CRC Press, Boca Raton, FL, 2014.
doi: 10.1201/b15528.![]() |
[8] |
L. Guo and S. Y. Cao,
Anti-disturbance control theory for systems with multiple disturbances: A survey, ISA Transactions, 53 (2014), 846-849.
doi: 10.1016/j.isatra.2013.10.005. |
[9] |
T. Iwasaki, G. Meinsma and M. Y. Fu,
Generalized S-procedure and finite frequency KYP lemma, Mathematical Problems in Engineering, 6 (2000), 305-320.
doi: 10.1155/S1024123X00001368. |
[10] |
L. L. Lv, S. Y. Tang and L. Zhang,
Parametric solutions to generalized periodic Sylvester bimatrix equations, Journal of the Franklin Institute, 357 (2020), 3601-3621.
doi: 10.1016/j.jfranklin.2019.12.031. |
[11] |
L. L. Lv and Z. Zhang,
Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.
doi: 10.1016/j.jfranklin.2017.01.004. |
[12] |
L. L. Lv, Z. Zhang, L. Zhang and X. X. Liu,
Gradient based approach for generalized discrete-time periodic coupled Sylvester matrix equations, Journal of the Franklin Institute, 355 (2018), 7691-7705.
doi: 10.1016/j.jfranklin.2018.07.045. |
[13] |
X. J. Su, P. Shi, L. Q. Wu and Y.-D. Song,
A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays, IEEE Trans on Fuzzy Systems, 21 (2013), 655-671.
doi: 10.1109/TFUZZ.2012.2226941. |
[14] |
C. Sun, Y. Wang and C. Chang, Switching T-S fuzzy model-based guaranteed cost control for two-wheeled mobile robots, International Journal of Innovative Computing, Information and Control, 8 (2012), 3015-3028. Google Scholar |
[15] |
T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans on Syst. Man Cybern, 15 (1985), 116-132. Google Scholar |
[16] |
K. Tanaka, T. Hori and H. O. Wang,
A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Trans on Fuzzy Syst., 11 (2003), 582-589.
doi: 10.1109/TFUZZ.2003.814861. |
[17] |
L. Wu, X. Su, P. Shi and J. Qiu, Model approximation for discrete-time state-delay systems in the T-S fuzzy framework, IEEE Trans on Fuzzy Systems, 19 (2011), 366-378. Google Scholar |
[18] |
X. M. Yao and L. Guo,
Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica J. IFAC, 49 (2013), 2538-2545.
doi: 10.1016/j.automatica.2013.05.002. |
[19] |
Y. Y. Yin, X. Chen and F. Liu, Disturbance rejection control for Markov jump systems with nonhomogeneous processes, The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, (2015), 15340479.
doi: 10.1109/CCDC.2015.7162007. |
[20] |
Y. Y. Yin, Z. L. Lin, Y. Q. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, International Journal of Robust and Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[21] |
Y. Y. Yin, Y. Q. Liu, K. L. Teo and S. Wang,
Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153.
doi: 10.1002/rnc.3858. |
[22] |
Y. Y. Yin, L. J. Zhu, F. Liu, K. L. Teo and S. Wang, Asynchronous $H_\infty$ control for nonhomogeneous higher-level Markov jump systems, Journal of the Franklin Institute, 357 (2020), 4697–4708.
doi: 10.1016/j.jfranklin.2020.02.010. |
[23] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
[24] |
H. B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data-based dissipative control of T-S fuzzy systems, Applied Mathematical Modelling, 65 (2019), 415-427.
doi: 10.1016/j.apm.2018.08.012. |
[25] |
H.-B. Zeng, K. L. Teo, Y. He and W. Wang,
Sampled-data stabilization of chaotic systems based on a T-S fuzzy model, Information Sciences, 483 (2019), 262-272.
doi: 10.1016/j.ins.2019.01.046. |


[1] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[2] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[3] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[4] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[5] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[6] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[7] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[8] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[9] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[10] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[11] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[12] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[13] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[14] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[15] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[16] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[17] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[18] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[19] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[20] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]