• Previous Article
    A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet
  • JIMO Home
  • This Issue
  • Next Article
    A two-stage solution approach for plastic injection machines scheduling problem
doi: 10.3934/jimo.2020122

C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices

1. 

School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

* Corresponding author: Xifu Liu

Received  December 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author is supported by the National Natural Science Foundation of China (Grant No. 11661036), the Top-notch talent Foundation of Chongqing Normal University (Grant No. 0071), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant Nos. KJQN201800506, KJZD-M201800501), the Natural Science Foundation of Chongqing (Grant No. cstc2018jcyjAX0794), and the Program of Chongqing Innovation Research Group Project in University (Grant No. CXQT19018). The third author is supported by the National Natural Science Foundation of China (Grant No. 11671060) and the Natural Science Foundation Project of Chongqing (Grant No. cstc2019jcyj-msxmX0267)

C-eigenvalues of piezoelectric-type tensors play an crucial role in piezoelectric effect and converse piezoelectric effect. In this paper, by the partial symmetry property of piezoelectric-type tensors, we present three intervals to locate all C-eigenvalues of a given piezoelectric-type tensor. Numerical examples show that our results are better than the existing ones.

Citation: Xifu Liu, Shuheng Yin, Hanyu Li. C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020122
References:
[1]

H. T. CheH. B. Chen and Y. J. Wang, C-eigenvalue inclusion theorems for piezoelectric-type tensors, Applied Mathematics Letters, 89 (2019), 41-49.  doi: 10.1016/j.aml.2018.09.014.  Google Scholar

[2]

Y. Chen, A. Jákli and L. Qi, Spectral analysis of piezoelectric tensors, preprint, arXiv: 1703.07937v1. Google Scholar

[3]

Y. N. Chen, L. Q. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20 pp. doi: 10.1088/1751-8121/aa98a8.  Google Scholar

[4]

J. Curie and P. Curie, Développement, par compression de l'éctricité polaire dans les cristaux hémièdres à faces inclinées, Bulletin de Minéralogie, 3, 4 (1880), 90-93.  doi: 10.3406/bulmi.1880.1564.  Google Scholar

[5]

M. De Jong, W. Chen, H. Geerlings, M. Asta and K. A. Persson, A database to enable discovery and design of piezoelectric materials, Scientific Data, 2 (2015), 150053. doi: 10.1038/sdata.2015.53.  Google Scholar

[6]

S. Haussl, Physical Properties of Crystals: An Introduction, Wiley-VCH Verlag, Weinheim, 2007. doi: 10.1002/9783527621156.  Google Scholar

[7]

A. Kholkin, N. Pertsev and A. Goltsev, Piezolelectricity and Crystal Symmetry, Piezoelectric and Acoustic Materials, Springer, New York, 2008. Google Scholar

[8]

C. Q. LiY. J. Liu and Y. T. Li, C-eigenvalues intervals for piezoelectric-type tensors, Applied Mathematics and Computation, 358 (2019), 244-250.  doi: 10.1016/j.amc.2019.04.036.  Google Scholar

[9]

D. Lovett, Tensor Properties of Crystals, 2$^{nd}$ edition, Institute of Physics Publishing, Bristol, 1989. Google Scholar

[10]

J. F. Nye, Physical properties of crystals: Their representation by tensors and matrices, Physics Today, 10 (1957), 26 pp. doi: 10.1063/1.3060200.  Google Scholar

[11]

L. Qi, Transposes, L-eigenvalues and invariants of third order tensors, preprint, (2017), arXiv: 1704.01327. Google Scholar

[12]

L. Q. Qi and Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[13]

W. J. Wang, H. B. Chen and Y. J. Wang, A new C-eigenvalue interval for piezoelectric-type tensors, Applied Mathematics Letters, 100 (2020), 106035, 6 pp. doi: 10.1016/j.aml.2019.106035.  Google Scholar

[14]

W.-N. Zou, C.-X. Tang and E. Pan, Symmetry types of the piezoelectric tensor and their identification, Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 469 (2013), 20120755. doi: 10.1098/rspa.2012.0755.  Google Scholar

show all references

References:
[1]

H. T. CheH. B. Chen and Y. J. Wang, C-eigenvalue inclusion theorems for piezoelectric-type tensors, Applied Mathematics Letters, 89 (2019), 41-49.  doi: 10.1016/j.aml.2018.09.014.  Google Scholar

[2]

Y. Chen, A. Jákli and L. Qi, Spectral analysis of piezoelectric tensors, preprint, arXiv: 1703.07937v1. Google Scholar

[3]

Y. N. Chen, L. Q. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20 pp. doi: 10.1088/1751-8121/aa98a8.  Google Scholar

[4]

J. Curie and P. Curie, Développement, par compression de l'éctricité polaire dans les cristaux hémièdres à faces inclinées, Bulletin de Minéralogie, 3, 4 (1880), 90-93.  doi: 10.3406/bulmi.1880.1564.  Google Scholar

[5]

M. De Jong, W. Chen, H. Geerlings, M. Asta and K. A. Persson, A database to enable discovery and design of piezoelectric materials, Scientific Data, 2 (2015), 150053. doi: 10.1038/sdata.2015.53.  Google Scholar

[6]

S. Haussl, Physical Properties of Crystals: An Introduction, Wiley-VCH Verlag, Weinheim, 2007. doi: 10.1002/9783527621156.  Google Scholar

[7]

A. Kholkin, N. Pertsev and A. Goltsev, Piezolelectricity and Crystal Symmetry, Piezoelectric and Acoustic Materials, Springer, New York, 2008. Google Scholar

[8]

C. Q. LiY. J. Liu and Y. T. Li, C-eigenvalues intervals for piezoelectric-type tensors, Applied Mathematics and Computation, 358 (2019), 244-250.  doi: 10.1016/j.amc.2019.04.036.  Google Scholar

[9]

D. Lovett, Tensor Properties of Crystals, 2$^{nd}$ edition, Institute of Physics Publishing, Bristol, 1989. Google Scholar

[10]

J. F. Nye, Physical properties of crystals: Their representation by tensors and matrices, Physics Today, 10 (1957), 26 pp. doi: 10.1063/1.3060200.  Google Scholar

[11]

L. Qi, Transposes, L-eigenvalues and invariants of third order tensors, preprint, (2017), arXiv: 1704.01327. Google Scholar

[12]

L. Q. Qi and Z. Y. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[13]

W. J. Wang, H. B. Chen and Y. J. Wang, A new C-eigenvalue interval for piezoelectric-type tensors, Applied Mathematics Letters, 100 (2020), 106035, 6 pp. doi: 10.1016/j.aml.2019.106035.  Google Scholar

[14]

W.-N. Zou, C.-X. Tang and E. Pan, Symmetry types of the piezoelectric tensor and their identification, Proceedings of The Royal Society A: Mathematical Physical and Engineering Sciences, 469 (2013), 20120755. doi: 10.1098/rspa.2012.0755.  Google Scholar

Table 1.  Numerical comparison between our methods with the methods from [1,8,13]
$ \mathcal{A}_{\mathrm{VFeSb}} $ $ \mathcal{A}_{\mathrm{SiO_2}} $ $ \mathcal{A}_{\mathrm{Cr_2 AgBiO_8}} $ $ \mathcal{A}_{\mathrm{RbTaO_3}} $ $ \mathcal{A}_{\mathrm{NaBiS_2}} $ $ \mathcal{A}_{\mathrm{LiBiS_2 O_5}} $ $ \mathcal{A}_{\mathrm{KBi_2 F_7}} $ $ \mathcal{A}_{\mathrm{BaNiO_3}} $
$ \lambda^{*} $ 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628
$ \rho_{min} $ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$ \rho_{\Gamma} $ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$ \rho_{\mathcal{L}} $ 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
$ \rho_{\mathcal{M}} $ 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
$ \rho_{\gamma} $ 7.3636 0.2737 3.3543 21.9667 16.0233 9.4595 16.7483 27.5012
$ \tilde{\rho}_{min} $ 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
$ \rho_{\sigma} $ 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
$ \rho_{A} $ 5.2069 0.1938 3.7025 14.9344 11.9319 7.7523 13.5054 27.4629
$ \mathcal{A}_{\mathrm{VFeSb}} $ $ \mathcal{A}_{\mathrm{SiO_2}} $ $ \mathcal{A}_{\mathrm{Cr_2 AgBiO_8}} $ $ \mathcal{A}_{\mathrm{RbTaO_3}} $ $ \mathcal{A}_{\mathrm{NaBiS_2}} $ $ \mathcal{A}_{\mathrm{LiBiS_2 O_5}} $ $ \mathcal{A}_{\mathrm{KBi_2 F_7}} $ $ \mathcal{A}_{\mathrm{BaNiO_3}} $
$ \lambda^{*} $ 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628
$ \rho_{min} $ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$ \rho_{\Gamma} $ 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
$ \rho_{\mathcal{L}} $ 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
$ \rho_{\mathcal{M}} $ 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
$ \rho_{\gamma} $ 7.3636 0.2737 3.3543 21.9667 16.0233 9.4595 16.7483 27.5012
$ \tilde{\rho}_{min} $ 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
$ \rho_{\sigma} $ 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
$ \rho_{A} $ 5.2069 0.1938 3.7025 14.9344 11.9319 7.7523 13.5054 27.4629
[1]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[2]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[3]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[6]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[7]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[8]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

[11]

Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006

[12]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[13]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[14]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021002

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[19]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[20]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]