November  2021, 17(6): 3373-3391. doi: 10.3934/jimo.2020124

On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system

1. 

School of Mathematical Science, Changsha Normal University, Changsha 410100, Hunan, China

2. 

School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, China

* Corresponding author: Jinbiao Wu

Received  December 2019 Revised  April 2020 Published  November 2021 Early access  June 2020

Fund Project: The first author is supported by Provincial Natural Science Foundation of Hunan under Grant 2019JJ50677 and the Program of Hehua Excellent Young Talents of Changsha Normal University. The second author is supported by Provincial Natural Science Foundation of Hunan under Grant 2020JJ4760

In this paper, we consider the BMAP/PH/c retrial queue with two types of customers where the rate of individual repeated attempts from the orbit is modulated according to a Markov Modulated Poisson Process. Using the theory of multi-dimensional asymptotically quasi-Toeplitz Markov chain, we obtain the algorithm for calculating the stationary distribution of the system. Main performance measures are presented. Furthermore, we investigate some optimization problems. The algorithm for determining the optimal number of guard servers and total servers is elaborated. Finally, this queueing system is applied to the cellular wireless network. Numerical results to illustrate the optimization problems and the impact of retrial on performance measures are provided. We find that the performance measures are mainly affected by the two types of customers' arrivals and service patterns, but the retrial rate plays a less crucial role.

Citation: Yi Peng, Jinbiao Wu. On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3373-3391. doi: 10.3934/jimo.2020124
References:
[1]

J. R. Artalejo, Accessible bibliography on retrial queues, Mathematical and Computer Modelling, 30 (1999), 1-6. 

[2]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211.  doi: 10.1007/BF02564721.

[3]

L. BreuerA. Dudin and V. Klimenok, A retrial $BMAP/PH/N$ system, Queueing Systems, 40 (2002), 433-457.  doi: 10.1023/A:1015041602946.

[4]

S. R. Chakravarthy, The batch Markovian arrival process: A review and future work, Advances in Probability Theory and Stochastic Processes, (1999), 21–49.

[5]

A. Dudin and V. Klimenok, A retrial BMAP/PH/N queueing system with Markov modulated retrials, 2012 2nd Baltic Congress on Future Internet Communications, IEEE, (2012), 246–251. doi: 10.1109/BCFIC.2012.6217953.

[6]

A. N. Dudin, G. V. Tsarenkov and V. I. Klimenok, Software "SIRIUS++" for performance evaluation of modern communication networks, Modelling and Simulation 2002. 16th European Simulation Multi-conference, Darmstadt, (2002), 489–493.

[7]

G. Falin, A survey of retrial queues, Queueing Systems Theory Appl., 7 (1990), 127-167.  doi: 10.1007/BF01158472.

[8]

A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd., Chichester, Halsted Press [John Wiley & Sons, Inc.], New York, 1981,130 pp.

[9]

R. Guerin, Queueing-blocking system with two arrival streams and guard channels, IEEE Transations in Communications, 36 (1988), 153-163.  doi: 10.1109/26.2745.

[10]

D. Hong and S.S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures, IEEE Transactions on Vehicular Technology, 35 (1996), 77-99. 

[11]

C. S. KimV. I. Klimenok and D. S. Orlovsky, The BMAP/PH/N retrial queue with Markovian flow of breakdowns, European Journal of Operational Research, 189 (2008), 1057-1072.  doi: 10.1016/j.ejor.2007.02.053.

[12]

C. S. KimV. KlimenokV. Mushko and A. Dudin, The BMAP/PH/N retrial queueing system operating in {M}arkovian random environment, Comput. Oper. Res., 37 (2010), 1228-1237.  doi: 10.1016/j.cor.2009.09.008.

[13]

C. S. KimV. I. Klimenok and A. N. Dudin, Analysis and optimization of guard channel policy in cellular mobile networks with account of retrials, Comput. Oper. Res., 43 (2014), 181-190.  doi: 10.1016/j.cor.2013.09.005.

[14]

A. KlemmC. Lindemann and M. Lohmann, Modeling IP traffic using the batch Markovian arrival process, Performance Evaluation, 54 (2003), 149-173.  doi: 10.1007/3-540-46029-2_6.

[15]

V. I. KlimenokD. S. Orlovsky and A. N. Dudin, A $BMAP/PH/N$ system with impatient repeated Calls, Asia-Pacific Journal of Operational Research, 24 (2007), 293-312.  doi: 10.1142/S0217595907001310.

[16]

V. I. Klimenok and A. N. Dudin, Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems, 54 (2006), 245-259.  doi: 10.1007/s11134-006-0300-z.

[17]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, American Statistical Association, Alexandria, VA, 1999. doi: 10.1137/1.9780898719734.

[18]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Stochastic Models, 7 (1991), 1-46.  doi: 10.1080/15326349108807174.

[19]

M. Martin and J. R. Artalejo, Analysis of an $M/G/1$ queue with two types of impatient units, Advances in Applied Probability, 27 (1995), 840-861.  doi: 10.2307/1428136.

[20]

E. Morozov, A. Rumyantsev, S. Dey and T. G. Deepak, Performance analysis and stability of multiclass orbit queue with constant retrial rates and balking, Performance Evaluation, 134 (2019), 102005. doi: 10.1016/j.peva.2019.102005.

[21]

M. F. Neuts, A versatile Markovian point process, Journal of Applied Probability, 16 (1979), 764-779.  doi: 10.2307/3213143.

[22]

M. F. Neuts, Structured Stochastic Matrices of M/G/1-type and their Applications, Probability: Pure and Applied, 5. Marcel Dekker, Inc., New York, 1989.

[23]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, Johns Hopkins Series in the Mathematical Sciences, 2. Johns Hopkins University Press, Baltimore, Md., 1981.

[24]

P. I. PanagouliasI. D. MoscholiosP. G. Sarigiannidis and M. D. Logothetis, Congestion probabilities in OFDM wireless networks with compound Poisson arrivals, IET Communications, 14 (2020), 674-681.  doi: 10.1049/iet-com.2019.0845.

[25]

K. S. TrivediS. Dharmaraja and X. M. Ma, Analytic modeling of handoffs in wireless cellular networks, Information Sciences, 148 (2000), 155-166.  doi: 10.1016/S0020-0255(02)00292-X.

[26]

T. M. Walingo and F. Takawira, Performance analysis of a connection admission scheme for future networks, IEEE Transactions on Wireless Communications, 14 (2015), 1994-2006.  doi: 10.1109/TWC.2014.2378777.

[27]

Y. L. WuG. Y. Min and L. T. Yang, Performance analysis of hybrid wireless networks under bursty and correlated traffic, IEEE Transactions on Vehicular Technology, 62 (2013), 449-454.  doi: 10.1109/TVT.2012.2219890.

[28]

J. B. WuZ. M. Lian and G. Yang, Analysis of the finite source MAP/PH/N retrial G-queue operating in a random environment, Applied Mathematical Modelling, 35 (2011), 1184-1193.  doi: 10.1016/j.apm.2010.08.006.

[29]

J. B. Wu and Z. T. Lian, Analysis of $M_1, M_2/G/1$ G-queueing system with retrial customers, Nonlinear Analysis: Real World Applications, 14 (2013), 365-382.  doi: 10.1016/j.nonrwa.2012.06.009.

show all references

References:
[1]

J. R. Artalejo, Accessible bibliography on retrial queues, Mathematical and Computer Modelling, 30 (1999), 1-6. 

[2]

J. R. Artalejo, A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211.  doi: 10.1007/BF02564721.

[3]

L. BreuerA. Dudin and V. Klimenok, A retrial $BMAP/PH/N$ system, Queueing Systems, 40 (2002), 433-457.  doi: 10.1023/A:1015041602946.

[4]

S. R. Chakravarthy, The batch Markovian arrival process: A review and future work, Advances in Probability Theory and Stochastic Processes, (1999), 21–49.

[5]

A. Dudin and V. Klimenok, A retrial BMAP/PH/N queueing system with Markov modulated retrials, 2012 2nd Baltic Congress on Future Internet Communications, IEEE, (2012), 246–251. doi: 10.1109/BCFIC.2012.6217953.

[6]

A. N. Dudin, G. V. Tsarenkov and V. I. Klimenok, Software "SIRIUS++" for performance evaluation of modern communication networks, Modelling and Simulation 2002. 16th European Simulation Multi-conference, Darmstadt, (2002), 489–493.

[7]

G. Falin, A survey of retrial queues, Queueing Systems Theory Appl., 7 (1990), 127-167.  doi: 10.1007/BF01158472.

[8]

A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd., Chichester, Halsted Press [John Wiley & Sons, Inc.], New York, 1981,130 pp.

[9]

R. Guerin, Queueing-blocking system with two arrival streams and guard channels, IEEE Transations in Communications, 36 (1988), 153-163.  doi: 10.1109/26.2745.

[10]

D. Hong and S.S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures, IEEE Transactions on Vehicular Technology, 35 (1996), 77-99. 

[11]

C. S. KimV. I. Klimenok and D. S. Orlovsky, The BMAP/PH/N retrial queue with Markovian flow of breakdowns, European Journal of Operational Research, 189 (2008), 1057-1072.  doi: 10.1016/j.ejor.2007.02.053.

[12]

C. S. KimV. KlimenokV. Mushko and A. Dudin, The BMAP/PH/N retrial queueing system operating in {M}arkovian random environment, Comput. Oper. Res., 37 (2010), 1228-1237.  doi: 10.1016/j.cor.2009.09.008.

[13]

C. S. KimV. I. Klimenok and A. N. Dudin, Analysis and optimization of guard channel policy in cellular mobile networks with account of retrials, Comput. Oper. Res., 43 (2014), 181-190.  doi: 10.1016/j.cor.2013.09.005.

[14]

A. KlemmC. Lindemann and M. Lohmann, Modeling IP traffic using the batch Markovian arrival process, Performance Evaluation, 54 (2003), 149-173.  doi: 10.1007/3-540-46029-2_6.

[15]

V. I. KlimenokD. S. Orlovsky and A. N. Dudin, A $BMAP/PH/N$ system with impatient repeated Calls, Asia-Pacific Journal of Operational Research, 24 (2007), 293-312.  doi: 10.1142/S0217595907001310.

[16]

V. I. Klimenok and A. N. Dudin, Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems, 54 (2006), 245-259.  doi: 10.1007/s11134-006-0300-z.

[17]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, American Statistical Association, Alexandria, VA, 1999. doi: 10.1137/1.9780898719734.

[18]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Stochastic Models, 7 (1991), 1-46.  doi: 10.1080/15326349108807174.

[19]

M. Martin and J. R. Artalejo, Analysis of an $M/G/1$ queue with two types of impatient units, Advances in Applied Probability, 27 (1995), 840-861.  doi: 10.2307/1428136.

[20]

E. Morozov, A. Rumyantsev, S. Dey and T. G. Deepak, Performance analysis and stability of multiclass orbit queue with constant retrial rates and balking, Performance Evaluation, 134 (2019), 102005. doi: 10.1016/j.peva.2019.102005.

[21]

M. F. Neuts, A versatile Markovian point process, Journal of Applied Probability, 16 (1979), 764-779.  doi: 10.2307/3213143.

[22]

M. F. Neuts, Structured Stochastic Matrices of M/G/1-type and their Applications, Probability: Pure and Applied, 5. Marcel Dekker, Inc., New York, 1989.

[23]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, Johns Hopkins Series in the Mathematical Sciences, 2. Johns Hopkins University Press, Baltimore, Md., 1981.

[24]

P. I. PanagouliasI. D. MoscholiosP. G. Sarigiannidis and M. D. Logothetis, Congestion probabilities in OFDM wireless networks with compound Poisson arrivals, IET Communications, 14 (2020), 674-681.  doi: 10.1049/iet-com.2019.0845.

[25]

K. S. TrivediS. Dharmaraja and X. M. Ma, Analytic modeling of handoffs in wireless cellular networks, Information Sciences, 148 (2000), 155-166.  doi: 10.1016/S0020-0255(02)00292-X.

[26]

T. M. Walingo and F. Takawira, Performance analysis of a connection admission scheme for future networks, IEEE Transactions on Wireless Communications, 14 (2015), 1994-2006.  doi: 10.1109/TWC.2014.2378777.

[27]

Y. L. WuG. Y. Min and L. T. Yang, Performance analysis of hybrid wireless networks under bursty and correlated traffic, IEEE Transactions on Vehicular Technology, 62 (2013), 449-454.  doi: 10.1109/TVT.2012.2219890.

[28]

J. B. WuZ. M. Lian and G. Yang, Analysis of the finite source MAP/PH/N retrial G-queue operating in a random environment, Applied Mathematical Modelling, 35 (2011), 1184-1193.  doi: 10.1016/j.apm.2010.08.006.

[29]

J. B. Wu and Z. T. Lian, Analysis of $M_1, M_2/G/1$ G-queueing system with retrial customers, Nonlinear Analysis: Real World Applications, 14 (2013), 365-382.  doi: 10.1016/j.nonrwa.2012.06.009.

Figure 1.  $ L_{orb} $ as function of the parameter $ g $ with $ (c, \lambda_o, \lambda_h) = (10, 2, 2) $
Figure 2.  Dependence of the blocking probability for originating calls on the value $ g $ with $ (c, \lambda_o, \lambda_h) = (10, 2, 2) $
Figure 3.  Dependence of the blocking probability for handoff calls on the value $ g $ with $ (c, \lambda_o, \lambda_h) = (10, 2, 2) $
Table 1.  The stationary join distribution of the system with $(c, g, \lambda_o, \lambda_h, \lambda_r) = (8, 6, 2, 2, 2)$
$i$ $\backslash$ $b$ 0 1 2 3 4 5 6 7 8 $sum$
0 0.0467 0.1413 0.2136 0.2148 0.1604 0.0923 0.0376 0.0016 0.0001 0.9084
1 0.0001 0.0006 0.0020 0.0047 0.0091 0.0149 0.0208 0.0013 0.0001 0.0536
2 0.0000 0.0000 0.0002 0.0008 0.0023 0.0054 0.0109 0.0008 0.0000 0.0206
3 0.0000 0.0000 0.0000 0.0002 0.0007 0.0022 0.0055 0.0005 0.0000 0.0092
4 0.0000 0.0000 0.0000 0.0001 0.0002 0.0009 0.0028 0.0003 0.0000 0.0043
5 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0014 0.0001 0.0000 0.0020
1.0e-003 $\times$
6 0.0000 0.0001 0.0007 0.0055 0.0334 0.1661 0.6986 0.0667 0.0051 0.9761
1.0e-003 $\times$
7 0.0000 0.0000 0.0002 0.0019 0.0130 0.0731 0.3474 0.0337 0.0027 0.4721
1.0e-003$\times$
8 0.0000 0.0000 0.0001 0.0007 0.0052 0.0325 0.1724 0.0169 0.0014 0.2291
1.0e-004$\times$
9 0.0000 0.0000 0.0002 0.0025 0.0211 0.1460 0.8533 0.0846 0.0069 1.1145
1.0e-004$\times$
10 0.0000 0.0000 0.0001 0.0009 0.0087 0.0660 0.4217 0.0421 0.0035 0.5429
$sum$ 0.0468 0.1419 0.2158 0.2206 0.1728 0.1162 0.0800 0.0047 0.0002 0.999
$i$ $\backslash$ $b$ 0 1 2 3 4 5 6 7 8 $sum$
0 0.0467 0.1413 0.2136 0.2148 0.1604 0.0923 0.0376 0.0016 0.0001 0.9084
1 0.0001 0.0006 0.0020 0.0047 0.0091 0.0149 0.0208 0.0013 0.0001 0.0536
2 0.0000 0.0000 0.0002 0.0008 0.0023 0.0054 0.0109 0.0008 0.0000 0.0206
3 0.0000 0.0000 0.0000 0.0002 0.0007 0.0022 0.0055 0.0005 0.0000 0.0092
4 0.0000 0.0000 0.0000 0.0001 0.0002 0.0009 0.0028 0.0003 0.0000 0.0043
5 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0014 0.0001 0.0000 0.0020
1.0e-003 $\times$
6 0.0000 0.0001 0.0007 0.0055 0.0334 0.1661 0.6986 0.0667 0.0051 0.9761
1.0e-003 $\times$
7 0.0000 0.0000 0.0002 0.0019 0.0130 0.0731 0.3474 0.0337 0.0027 0.4721
1.0e-003$\times$
8 0.0000 0.0000 0.0001 0.0007 0.0052 0.0325 0.1724 0.0169 0.0014 0.2291
1.0e-004$\times$
9 0.0000 0.0000 0.0002 0.0025 0.0211 0.1460 0.8533 0.0846 0.0069 1.1145
1.0e-004$\times$
10 0.0000 0.0000 0.0001 0.0009 0.0087 0.0660 0.4217 0.0421 0.0035 0.5429
$sum$ 0.0468 0.1419 0.2158 0.2206 0.1728 0.1162 0.0800 0.0047 0.0002 0.999
Table 2.  The the optimal value $ g^* $ for the optimization problem (I) with $ (c, \lambda_o, p_0) = (20, 10, 0.0001) $
$ \lambda_r $ $ \backslash $ $ \lambda_h $ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20
1 18 18 18 17 17 17 16 16 16 16 15 15 15 14 14 13
10 18 18 18 17 17 17 16 16 16 16 15 15 15 14 14 13
20 18 18 18 17 17 17 16 16 16 16 15 15 15 14 14 13
$ \lambda_r $ $ \backslash $ $ \lambda_h $ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20
1 18 18 18 17 17 17 16 16 16 16 15 15 15 14 14 13
10 18 18 18 17 17 17 16 16 16 16 15 15 15 14 14 13
20 18 18 18 17 17 17 16 16 16 16 15 15 15 14 14 13
Table 3.  The optimal value $ c^* $ for the optimization problem (II) with $ (\lambda_r, p_1, p_2) = (10, 0.001, 0.0001) $
$ \lambda_h $ $ \backslash $ $ \lambda_o $ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20
1 8 11 14 16 18 20 22 24 26 28 29 31 33 35 37 45
5 10 13 15 17 19 21 23 25 27 29 30 32 34 36 38 46
10 13 15 17 19 21 23 25 27 29 31 32 34 36 37 39 47
$ \lambda_h $ $ \backslash $ $ \lambda_o $ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20
1 8 11 14 16 18 20 22 24 26 28 29 31 33 35 37 45
5 10 13 15 17 19 21 23 25 27 29 30 32 34 36 38 46
10 13 15 17 19 21 23 25 27 29 31 32 34 36 37 39 47
[1]

Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001

[2]

Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088

[3]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[4]

Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021208

[5]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[6]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177

[7]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[8]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[9]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[10]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[11]

Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021169

[12]

Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021179

[13]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051

[14]

Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055

[15]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[16]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[17]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[18]

A. M. Vershik. Polymorphisms, Markov processes, quasi-similarity. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1305-1324. doi: 10.3934/dcds.2005.13.1305

[19]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[20]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

2021 Impact Factor: 1.411

Article outline

Figures and Tables

[Back to Top]