• Previous Article
    Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities
  • JIMO Home
  • This Issue
  • Next Article
    Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort
November  2021, 17(6): 3417-3444. doi: 10.3934/jimo.2020126

Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning

1. 

School of Management, Qufu Normal University, Rizhao, Shandong, 276826, China

2. 

Department of Health Services and Outcomes Research, National Healthcare Group, Singapore 138543

3. 

School of Management, Wuhan Textile University, Wuhan, Hubei, 430200, China

* Corresponding author: Fanwen Meng

Received  January 2020 Revised  March 2020 Published  November 2021 Early access  June 2020

Fund Project: The research is partly supported by the National Natural Science Foundation of China under grants 71771138, 71702087 and 71701154, Humanities and Social Sciences Youth Foundation of Ministry of Education of China under grant 17YJC630004, Special Foundation for Taishan Scholars of Shandong Province, China under Grant tsqn201812061, and Science and Technology Research Program for Higher Education of Shandong Province, China under Grant 2019KJI006

This paper incorporates carbon emission regulation and cost learning effects to examine a manufacturer-retailer supply chain for deteriorating items over a multi-period planning horizon. We investigate their impacts on supply chain coordination under the assumption that the product demand is affected by the selling price, promotional effort and inventory level. We first propose two algorithms for determining optimal solutions of the centralized and decentralized models. We show that the decentralized system can be coordinated perfectly with a two-part tariff contract. Further, we study necessary conditions under which members of the supply chain can accept this contract. At last, we conduct numerical experiment to illustrate the obtained theoretical results in impact analysis and the robustness of the coordinated model.

Citation: Qingguo Bai, Jianteng Xu, Fanwen Meng, Niu Yu. Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3417-3444. doi: 10.3934/jimo.2020126
References:
[1]

Q. G. BaiM. Y. Chen and L. Xu, Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items, Int. J. Prod. Econ., 187 (2017), 85-101. 

[2]

Q. G. BaiY. M. GongM. Z. Jin and X. H. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory, Int. J. Prod. Econ., 208 (2019), 83-99.  doi: 10.1016/j.ijpe.2018.11.008.

[3]

Q. G. BaiX. H. XuJ. T. Xu and D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent demand over a finite planning horizon, Appl. Math. Model., 40 (2016), 9342-9361.  doi: 10.1016/j.apm.2016.06.021.

[4]

K. Biel and C. H. Glock, Governing the dynamics of multi-stage production systems subjects to learning and forgetting effects: A simulation study, Int. J. Prod. Res., 56 (2018), 3439-3461.  doi: 10.1080/00207543.2017.1338780.

[5]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Manage. Sci., 51 (2015), 566-580.  doi: 10.1287/mnsc.1040.0342.

[6]

L. T. Chen and C. C. Wei, Multi-period channel coordination in vendor-managed inventory for deteriorating goods, Int. J. Prod. Res., 50 (2012), 4396-4413.  doi: 10.1080/00207543.2011.592159.

[7]

T. H. Chen and Y. C. Tsao, Optimal lot-sizing integration policy under learning and rework effects in a manufacturer-retailer chain, Int. J. Prod. Econ., 155 (2014), 239-248.  doi: 10.1016/j.ijpe.2014.02.011.

[8]

S. H. Chung and C. Kwon, Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals, Int. J. Prod. Econ., 179 (2016), 117-129.  doi: 10.1016/j.ijpe.2016.05.021.

[9]

S. F. DuL. Hu and M. L. Song, Production optimization considering environmental performance and preference in the cap-and-trade system, J. Clean. Prod., 112 (2016), 1600-1607.  doi: 10.1016/j.jclepro.2014.08.086.

[10]

C.-Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stcok effect, Eur. J. Oper. Res., 283 (2020), 576-587.  doi: 10.1016/j.ejor.2019.11.008.

[11]

European Commission, (2013), https://ec.europa.eu/clima/policies/ets_en.

[12]

L. Feng and Y.-L. Chan, Joint pricing and producdtion decisions for new products with learning curve effects under upstream and downstream trade credits., Eur. J. Oper. Res., 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.

[13]

Q. Feng and L. X. Lu, Supply chain contracting under competition: Bilateral bargaining vs. stackelberg, Prod. Oper. Manag., 22 (2013), 661-675. 

[14]

B. C. Giri and S. Bardhan, Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract, Int. T. Oper. Res., 19 (2012), 753-768.  doi: 10.1111/j.1475-3995.2011.00833.x.

[15]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, Int. J. Prod. Res., 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.

[16]

C. H. Glock and M. Y. Jaber, A multi-stage production-inventory model with learning and forgetting effects, rework and scrap, Comput. Ind. Eng., 64 (2013), 708-720.  doi: 10.1016/j.cie.2012.08.018.

[17]

H. Gurnani and M. Erkoc, Supply contracts in manufacturer-retailer interactions with manufacturer-quality and retailer effort-induced demand, Nav. Res. Log., 55 (2008), 200-217.  doi: 10.1002/nav.20277.

[18]

T.-W. Hung and P.-T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, J. Ind. Manag. Optim., 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.

[19]

M. Y. Jaber and A. L. Guiffrida, Learning curves for imperfect production processes with reworks and process restoration interruptions, Eur. J. Oper. Res., 189 (2008), 93-104.  doi: 10.1016/j.ejor.2007.05.024.

[20]

M. Y. Jaber and A. M. A. EI Saadany, An economic production and remanufacturing model with learning effects, Int. J. Prod. Econ., 131 (2011), 115-127. 

[21]

N. KazemiE. U. OluguS. H. Abdul-Rashid and R. A. R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study, Comput. Ind. Eng., 96 (2016), 140-148.  doi: 10.1016/j.cie.2016.03.004.

[22]

N. KazemiE. ShekarianL. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy EOQ inventory model with backorders, Comput. Ind. Eng., 87 (2015), 540-542.  doi: 10.1016/j.cie.2015.05.014.

[23]

M. KhanM. Hussain and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Learning and screening errors in an EPQ inventory model for supply chains with stochatic lead time demands, Int. J. Prod. Res., 55 (2017), 4816-4832. 

[24]

M. KhanM. Y. Jaber and A. R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production, Omega, 42 (2014), 16-24.  doi: 10.1016/j.omega.2013.02.002.

[25]

K. KoganF. EI Ouardighi and A. Herbon, Production with learing and forgetting in a competitive environment, Int. J. Prod. Econ., 189 (2017), 52-62. 

[26]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Prod. Oper. Manag., 24 (2015), 857-882.  doi: 10.1111/poms.12320.

[27]

C. Lin and Y. Lin, A cooperative inventory policy with deteriorating items for a two-echelon model, Eur. J. Oper. Res., 178 (2007), 92-111.  doi: 10.1016/j.ejor.2006.01.012.

[28]

J. R. Luo and X. Chen, Coordination of random yield supply chains with improved revenue sharing contracts, Eur. J. Ind. Eng., 10 (2016), 81-102.  doi: 10.1504/EJIE.2016.075105.

[29]

Z. LuoX. Chen and X. J. Wang, The role of co-opetition in low carbon manufacturing, Eur. J. Oper. Res., 253 (2016), 392-403.  doi: 10.1016/j.ejor.2016.02.030.

[30]

B. Lus and A. Muriel, Measuring the impact of increased product substitution on pricing and capacity decisions under linear demand models, Prod. Oper. Manag., 18 (2009), 95-113.  doi: 10.1111/j.1937-5956.2009.01001.x.

[31]

L. Moussawi-HaidarM. Salameh and W. Nasr, Production lot sizing with qualtiy screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.  doi: 10.1016/j.apm.2015.09.095.

[32]

E. L. Plambeck, Reducing greenhouse gas emissions through operations and supply chain management, Energ. Econ., 34 (2012), s64–s74. doi: 10.1016/j.eneco.2012.08.031.

[33]

B. R. Sarker and B. Wu, Optimal models for a single-producer multi-buyer integrated system of deteriorating items with raw materials storage costs, Int. J. Adv. Manu. Tech., 82 (2016), 49-63.  doi: 10.1007/s00170-015-7340-7.

[34]

G. Taguchi, Tables of orthogonal arrays and linear graphs, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 7 (1960), 1-52. 

[35]

G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, 1987.

[36]

J.-T. TengK.-R. Lou and L. Wang, Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs, Int. J. Prod. Econ., 155 (2014), 318-323.  doi: 10.1016/j.ijpe.2013.10.012.

[37]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination, Comput. Oper. Res., 39 (2012), 1872-1878.  doi: 10.1016/j.cor.2011.07.009.

[38]

M. WangL. D. Zhao and M. Herty, Joint replenishement and carbon trading in fresh food supply chains, Eur. J. Oper. Res., 277 (2019), 561-573.  doi: 10.1016/j.ejor.2019.03.004.

[39]

T. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci., 3 (1936), 122-128.  doi: 10.2514/8.155.

[40]

C. F. Wu and Q. H. Zhao, An uncoorperative ordering policy with time-varying price and learning curve for time-varying demand under trade credit, Eur. J. Ind. Eng., 11 (2017), 380-402. 

[41]

J. C. P. Yu, A collaborative strategy for deteriorating inventory system with imperfect items and supplier credits, Int. J. Prod. Econ., 143 (2013), 403-409. 

[42]

S. ZanoniM. Y. Jaber and L. E. Zavanella, Vendor managed inventory (VMI) with consignment considering learning and forgetting effects, Int. J. Prod. Econ., 140 (2012), 721-730.  doi: 10.1016/j.ijpe.2011.08.018.

[43]

J. ZhangJ. LiL. Lu and R. Dai, Supply chain performance for deteriorating items with cooperative advertising, J. Syst. Sci. Syst. Eng., 26 (2017), 23-49.  doi: 10.1007/s11518-015-5279-8.

[44]

J. X. ZhangG. W. LiuQ. Zhang and Z. Y. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.

[45]

S. Zhang and J. Zhang, Contract preference with stochastic cost leanring in a two-period supply chain under asymmetric information, Int. J. Prod. Econ., 196 (2018), 226-247. 

show all references

References:
[1]

Q. G. BaiM. Y. Chen and L. Xu, Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items, Int. J. Prod. Econ., 187 (2017), 85-101. 

[2]

Q. G. BaiY. M. GongM. Z. Jin and X. H. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory, Int. J. Prod. Econ., 208 (2019), 83-99.  doi: 10.1016/j.ijpe.2018.11.008.

[3]

Q. G. BaiX. H. XuJ. T. Xu and D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent demand over a finite planning horizon, Appl. Math. Model., 40 (2016), 9342-9361.  doi: 10.1016/j.apm.2016.06.021.

[4]

K. Biel and C. H. Glock, Governing the dynamics of multi-stage production systems subjects to learning and forgetting effects: A simulation study, Int. J. Prod. Res., 56 (2018), 3439-3461.  doi: 10.1080/00207543.2017.1338780.

[5]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Manage. Sci., 51 (2015), 566-580.  doi: 10.1287/mnsc.1040.0342.

[6]

L. T. Chen and C. C. Wei, Multi-period channel coordination in vendor-managed inventory for deteriorating goods, Int. J. Prod. Res., 50 (2012), 4396-4413.  doi: 10.1080/00207543.2011.592159.

[7]

T. H. Chen and Y. C. Tsao, Optimal lot-sizing integration policy under learning and rework effects in a manufacturer-retailer chain, Int. J. Prod. Econ., 155 (2014), 239-248.  doi: 10.1016/j.ijpe.2014.02.011.

[8]

S. H. Chung and C. Kwon, Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals, Int. J. Prod. Econ., 179 (2016), 117-129.  doi: 10.1016/j.ijpe.2016.05.021.

[9]

S. F. DuL. Hu and M. L. Song, Production optimization considering environmental performance and preference in the cap-and-trade system, J. Clean. Prod., 112 (2016), 1600-1607.  doi: 10.1016/j.jclepro.2014.08.086.

[10]

C.-Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stcok effect, Eur. J. Oper. Res., 283 (2020), 576-587.  doi: 10.1016/j.ejor.2019.11.008.

[11]

European Commission, (2013), https://ec.europa.eu/clima/policies/ets_en.

[12]

L. Feng and Y.-L. Chan, Joint pricing and producdtion decisions for new products with learning curve effects under upstream and downstream trade credits., Eur. J. Oper. Res., 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.

[13]

Q. Feng and L. X. Lu, Supply chain contracting under competition: Bilateral bargaining vs. stackelberg, Prod. Oper. Manag., 22 (2013), 661-675. 

[14]

B. C. Giri and S. Bardhan, Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract, Int. T. Oper. Res., 19 (2012), 753-768.  doi: 10.1111/j.1475-3995.2011.00833.x.

[15]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, Int. J. Prod. Res., 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.

[16]

C. H. Glock and M. Y. Jaber, A multi-stage production-inventory model with learning and forgetting effects, rework and scrap, Comput. Ind. Eng., 64 (2013), 708-720.  doi: 10.1016/j.cie.2012.08.018.

[17]

H. Gurnani and M. Erkoc, Supply contracts in manufacturer-retailer interactions with manufacturer-quality and retailer effort-induced demand, Nav. Res. Log., 55 (2008), 200-217.  doi: 10.1002/nav.20277.

[18]

T.-W. Hung and P.-T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, J. Ind. Manag. Optim., 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.

[19]

M. Y. Jaber and A. L. Guiffrida, Learning curves for imperfect production processes with reworks and process restoration interruptions, Eur. J. Oper. Res., 189 (2008), 93-104.  doi: 10.1016/j.ejor.2007.05.024.

[20]

M. Y. Jaber and A. M. A. EI Saadany, An economic production and remanufacturing model with learning effects, Int. J. Prod. Econ., 131 (2011), 115-127. 

[21]

N. KazemiE. U. OluguS. H. Abdul-Rashid and R. A. R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study, Comput. Ind. Eng., 96 (2016), 140-148.  doi: 10.1016/j.cie.2016.03.004.

[22]

N. KazemiE. ShekarianL. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy EOQ inventory model with backorders, Comput. Ind. Eng., 87 (2015), 540-542.  doi: 10.1016/j.cie.2015.05.014.

[23]

M. KhanM. Hussain and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Learning and screening errors in an EPQ inventory model for supply chains with stochatic lead time demands, Int. J. Prod. Res., 55 (2017), 4816-4832. 

[24]

M. KhanM. Y. Jaber and A. R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production, Omega, 42 (2014), 16-24.  doi: 10.1016/j.omega.2013.02.002.

[25]

K. KoganF. EI Ouardighi and A. Herbon, Production with learing and forgetting in a competitive environment, Int. J. Prod. Econ., 189 (2017), 52-62. 

[26]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Prod. Oper. Manag., 24 (2015), 857-882.  doi: 10.1111/poms.12320.

[27]

C. Lin and Y. Lin, A cooperative inventory policy with deteriorating items for a two-echelon model, Eur. J. Oper. Res., 178 (2007), 92-111.  doi: 10.1016/j.ejor.2006.01.012.

[28]

J. R. Luo and X. Chen, Coordination of random yield supply chains with improved revenue sharing contracts, Eur. J. Ind. Eng., 10 (2016), 81-102.  doi: 10.1504/EJIE.2016.075105.

[29]

Z. LuoX. Chen and X. J. Wang, The role of co-opetition in low carbon manufacturing, Eur. J. Oper. Res., 253 (2016), 392-403.  doi: 10.1016/j.ejor.2016.02.030.

[30]

B. Lus and A. Muriel, Measuring the impact of increased product substitution on pricing and capacity decisions under linear demand models, Prod. Oper. Manag., 18 (2009), 95-113.  doi: 10.1111/j.1937-5956.2009.01001.x.

[31]

L. Moussawi-HaidarM. Salameh and W. Nasr, Production lot sizing with qualtiy screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.  doi: 10.1016/j.apm.2015.09.095.

[32]

E. L. Plambeck, Reducing greenhouse gas emissions through operations and supply chain management, Energ. Econ., 34 (2012), s64–s74. doi: 10.1016/j.eneco.2012.08.031.

[33]

B. R. Sarker and B. Wu, Optimal models for a single-producer multi-buyer integrated system of deteriorating items with raw materials storage costs, Int. J. Adv. Manu. Tech., 82 (2016), 49-63.  doi: 10.1007/s00170-015-7340-7.

[34]

G. Taguchi, Tables of orthogonal arrays and linear graphs, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 7 (1960), 1-52. 

[35]

G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, 1987.

[36]

J.-T. TengK.-R. Lou and L. Wang, Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs, Int. J. Prod. Econ., 155 (2014), 318-323.  doi: 10.1016/j.ijpe.2013.10.012.

[37]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination, Comput. Oper. Res., 39 (2012), 1872-1878.  doi: 10.1016/j.cor.2011.07.009.

[38]

M. WangL. D. Zhao and M. Herty, Joint replenishement and carbon trading in fresh food supply chains, Eur. J. Oper. Res., 277 (2019), 561-573.  doi: 10.1016/j.ejor.2019.03.004.

[39]

T. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci., 3 (1936), 122-128.  doi: 10.2514/8.155.

[40]

C. F. Wu and Q. H. Zhao, An uncoorperative ordering policy with time-varying price and learning curve for time-varying demand under trade credit, Eur. J. Ind. Eng., 11 (2017), 380-402. 

[41]

J. C. P. Yu, A collaborative strategy for deteriorating inventory system with imperfect items and supplier credits, Int. J. Prod. Econ., 143 (2013), 403-409. 

[42]

S. ZanoniM. Y. Jaber and L. E. Zavanella, Vendor managed inventory (VMI) with consignment considering learning and forgetting effects, Int. J. Prod. Econ., 140 (2012), 721-730.  doi: 10.1016/j.ijpe.2011.08.018.

[43]

J. ZhangJ. LiL. Lu and R. Dai, Supply chain performance for deteriorating items with cooperative advertising, J. Syst. Sci. Syst. Eng., 26 (2017), 23-49.  doi: 10.1007/s11518-015-5279-8.

[44]

J. X. ZhangG. W. LiuQ. Zhang and Z. Y. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.

[45]

S. Zhang and J. Zhang, Contract preference with stochastic cost leanring in a two-period supply chain under asymmetric information, Int. J. Prod. Econ., 196 (2018), 226-247. 

Figure 1.  Graphical representation of inventory level at the retailer
Figure 2.  Intervals of contract parameters to attain the win-win outcome
Figure 3.  Impacts of $ C $ on profit and total emissions amount
Figure 4.  Impacts of $ c_{p} $ on profit and total emissions amount
Figure 5.  Impacts of $ \phi $ on profit and total emissions amount
Figure 6.  Effects plot for the SN ratio of the coordination system
Table 1.  The optimal solution of the example
Model $ w $ $ s $ $ p $ $ n $ Retailer's Manufacturer's Total Total emissions
profit profit profit amount
Centralized - 12.15 213.75 3 - - 25589.00 285270
Decentralized 56.76 6.08 256.88 3 3622.10 17045.00 20667.10 142640
TT contract
$ F=9850 $ 50 12.15 213.75 3 8539.00 17050.00 25589.00 285270
$ F=12000 $ 50 12.15 213.75 3 6389.00 19200.00 25589.00 285270
$ F=14750 $ 50 12.15 213.75 3 3639.00 21950.00 25589.00 285270
Model $ w $ $ s $ $ p $ $ n $ Retailer's Manufacturer's Total Total emissions
profit profit profit amount
Centralized - 12.15 213.75 3 - - 25589.00 285270
Decentralized 56.76 6.08 256.88 3 3622.10 17045.00 20667.10 142640
TT contract
$ F=9850 $ 50 12.15 213.75 3 8539.00 17050.00 25589.00 285270
$ F=12000 $ 50 12.15 213.75 3 6389.00 19200.00 25589.00 285270
$ F=14750 $ 50 12.15 213.75 3 3639.00 21950.00 25589.00 285270
Table 2.  Calculation results of $ L_{8} $ orthogonal array experiment for the coordination model
No. A B C D E Total profit SN ratio of Total emissions SN ratio of total
$ h_{r} $ $ \theta $ $ \phi $ $ C $ $ c_{p} $ total profit amount emissions amount
1 1 1 1 1 1 43394 92.75 284600 -109.085
2 1 1 1 2 2 38191 91.64 309080 -109.801
3 1 2 2 1 1 15727 83.93 259150 -108.271
4 1 2 2 2 2 6371 76.08 280390 -108.955
5 2 1 2 1 2 39551 91.94 314060 -109.940
6 2 1 2 2 1 32531 90.25 289570 -109.235
7 2 2 1 1 2 15409 83.76 284830 -109.092
8 2 2 1 2 1 13943 82.89 263590 -108.419
No. A B C D E Total profit SN ratio of Total emissions SN ratio of total
$ h_{r} $ $ \theta $ $ \phi $ $ C $ $ c_{p} $ total profit amount emissions amount
1 1 1 1 1 1 43394 92.75 284600 -109.085
2 1 1 1 2 2 38191 91.64 309080 -109.801
3 1 2 2 1 1 15727 83.93 259150 -108.271
4 1 2 2 2 2 6371 76.08 280390 -108.955
5 2 1 2 1 2 39551 91.94 314060 -109.940
6 2 1 2 2 1 32531 90.25 289570 -109.235
7 2 2 1 1 2 15409 83.76 284830 -109.092
8 2 2 1 2 1 13943 82.89 263590 -108.419
Table 3.  Analysis of variance for the total profits and its SN ratio
(a) Analysis of variance for the total profits
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.0063 0.0063 0.11 0.776
B 1 13.0604 13.0604 217.25 0.005
C 1 0.3510 0.3510 5.84 0.137
D 1 0.6639 0.6639 11.04 0.080
E 1 0.0461 0.0461 0.77 0.474
Error 2 0.1202 0.0601 - -
Total 7 14.2480 - - -
(b) Analysis of variance for the SN ratio of the total profits
Source df SS MS F P
A 1 2.450 2.450 0.43 0.581
B 1 199.178 199.178 34.55 0.028
C 1 9.734 9.734 1.69 0.323
D 1 16.603 16.603 2.88 0.232
E 1 5.109 5.109 0.89 0.446
Error 2 11.529 5.765 - -
Total 7 244.604 - - -
(a) Analysis of variance for the total profits
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.0063 0.0063 0.11 0.776
B 1 13.0604 13.0604 217.25 0.005
C 1 0.3510 0.3510 5.84 0.137
D 1 0.6639 0.6639 11.04 0.080
E 1 0.0461 0.0461 0.77 0.474
Error 2 0.1202 0.0601 - -
Total 7 14.2480 - - -
(b) Analysis of variance for the SN ratio of the total profits
Source df SS MS F P
A 1 2.450 2.450 0.43 0.581
B 1 199.178 199.178 34.55 0.028
C 1 9.734 9.734 1.69 0.323
D 1 16.603 16.603 2.88 0.232
E 1 5.109 5.109 0.89 0.446
Error 2 11.529 5.765 - -
Total 7 244.604 - - -
Table 4.  Analysis of variance for the carbon emissions and its SN ratio
(a) Analysis of variance for the carbon emissions
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.4432 0.4432 16.84 0.055
B 1 14.9468 14.9468 567.78 0.002
C 1 0.0014 0.0014 0.05 0.837
D 1 0.0000 0.0000 0.00 0.998
E 1 10.4539 10.4539 397.11 0.003
Error 2 0.0527 0.0263 - -
Total 7 25.8979 - - -
(b) Analysis of variance for the SN ratio of the carbon emissions
Source df SS MS F P
A 1 0.0411 0.04107 157.77 0.006
B 1 1.3819 1.3819 5307.76 0.000
C 1 0.0000 0.0000 0.01 0.920
D 1 0.0001 0.0001 0.25 0.669
E 1 0.9655 0.9655 3708.69 0.000
Error 2 0.0005 0.0003 - -
Total 7 2.3891 - - -
(a) Analysis of variance for the carbon emissions
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.4432 0.4432 16.84 0.055
B 1 14.9468 14.9468 567.78 0.002
C 1 0.0014 0.0014 0.05 0.837
D 1 0.0000 0.0000 0.00 0.998
E 1 10.4539 10.4539 397.11 0.003
Error 2 0.0527 0.0263 - -
Total 7 25.8979 - - -
(b) Analysis of variance for the SN ratio of the carbon emissions
Source df SS MS F P
A 1 0.0411 0.04107 157.77 0.006
B 1 1.3819 1.3819 5307.76 0.000
C 1 0.0000 0.0000 0.01 0.920
D 1 0.0001 0.0001 0.25 0.669
E 1 0.9655 0.9655 3708.69 0.000
Error 2 0.0005 0.0003 - -
Total 7 2.3891 - - -
[1]

Yang Yang, Guanxin Yao. Fresh agricultural products supply chain coordination considering consumers' dual preferences under carbon cap-and-trade mechanism. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022032

[2]

Jing Feng, Yanfei Lan, Ruiqing Zhao. Impact of price cap regulation on supply chain contracting between two monopolists. Journal of Industrial and Management Optimization, 2017, 13 (1) : 349-373. doi: 10.3934/jimo.2016021

[3]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial and Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[4]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial and Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[5]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial and Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[6]

Man Yu, Erbao Cao. Trade credit and information leakage in a supply chain with competing retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022042

[7]

Kebing Chen, Tiaojun Xiao. Reordering policy and coordination of a supply chain with a loss-averse retailer. Journal of Industrial and Management Optimization, 2013, 9 (4) : 827-853. doi: 10.3934/jimo.2013.9.827

[8]

Chong Zhang, Yaxian Wang, Ying Liu, Haiyan Wang. Coordination contracts for a dual-channel supply chain under capital constraints. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1485-1504. doi: 10.3934/jimo.2020031

[9]

Wei Chen, Fuying Jing, Li Zhong. Coordination strategy for a dual-channel electricity supply chain with sustainability. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021139

[10]

Tinghai Ren, Kaifu Yuan, Dafei Wang, Nengmin Zeng. Effect of service quality on software sales and coordination mechanism in IT service supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021165

[11]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial and Management Optimization, 2022, 18 (1) : 487-510. doi: 10.3934/jimo.2020165

[12]

Xiaohui Ren, Daofang Chang, Jin Shen. Optimization of the product service supply chain under the influence of presale services. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021130

[13]

Hong Dingjun, Fu Hong, Fan Jianchang. Research on corporate social responsibility and product quality in an outsourcing supply chain. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022052

[14]

Maedeh Agahgolnezhad Gerdrodbari, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021107

[15]

Wenying Xie, Bin Chen, Fuyou Huang, Juan He. Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3393-3415. doi: 10.3934/jimo.2020125

[16]

Xiaoxi Zhu, Kai Liu, Miaomiao Wang, Rui Zhang, Minglun Ren. Product line extension with a green added product: Impacts of segmented consumer preference on supply chain improvement and consumer surplus. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022021

[17]

Pin-Shou Ting. The EPQ model with deteriorating items under two levels of trade credit in a supply chain system. Journal of Industrial and Management Optimization, 2015, 11 (2) : 479-492. doi: 10.3934/jimo.2015.11.479

[18]

Qiang Lin, Ying Peng, Ying Hu. Supplier financing service decisions for a capital-constrained supply chain: Trade credit vs. combined credit financing. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1731-1752. doi: 10.3934/jimo.2019026

[19]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

[20]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (335)
  • HTML views (787)
  • Cited by (0)

Other articles
by authors

[Back to Top]