doi: 10.3934/jimo.2020126

Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning

1. 

School of Management, Qufu Normal University, Rizhao, Shandong, 276826, China

2. 

Department of Health Services and Outcomes Research, National Healthcare Group, Singapore 138543

3. 

School of Management, Wuhan Textile University, Wuhan, Hubei, 430200, China

* Corresponding author: Fanwen Meng

Received  January 2020 Revised  March 2020 Published  June 2020

Fund Project: The research is partly supported by the National Natural Science Foundation of China under grants 71771138, 71702087 and 71701154, Humanities and Social Sciences Youth Foundation of Ministry of Education of China under grant 17YJC630004, Special Foundation for Taishan Scholars of Shandong Province, China under Grant tsqn201812061, and Science and Technology Research Program for Higher Education of Shandong Province, China under Grant 2019KJI006

This paper incorporates carbon emission regulation and cost learning effects to examine a manufacturer-retailer supply chain for deteriorating items over a multi-period planning horizon. We investigate their impacts on supply chain coordination under the assumption that the product demand is affected by the selling price, promotional effort and inventory level. We first propose two algorithms for determining optimal solutions of the centralized and decentralized models. We show that the decentralized system can be coordinated perfectly with a two-part tariff contract. Further, we study necessary conditions under which members of the supply chain can accept this contract. At last, we conduct numerical experiment to illustrate the obtained theoretical results in impact analysis and the robustness of the coordinated model.

Citation: Qingguo Bai, Jianteng Xu, Fanwen Meng, Niu Yu. Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020126
References:
[1]

Q. G. BaiM. Y. Chen and L. Xu, Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items, Int. J. Prod. Econ., 187 (2017), 85-101.   Google Scholar

[2]

Q. G. BaiY. M. GongM. Z. Jin and X. H. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory, Int. J. Prod. Econ., 208 (2019), 83-99.  doi: 10.1016/j.ijpe.2018.11.008.  Google Scholar

[3]

Q. G. BaiX. H. XuJ. T. Xu and D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent demand over a finite planning horizon, Appl. Math. Model., 40 (2016), 9342-9361.  doi: 10.1016/j.apm.2016.06.021.  Google Scholar

[4]

K. Biel and C. H. Glock, Governing the dynamics of multi-stage production systems subjects to learning and forgetting effects: A simulation study, Int. J. Prod. Res., 56 (2018), 3439-3461.  doi: 10.1080/00207543.2017.1338780.  Google Scholar

[5]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Manage. Sci., 51 (2015), 566-580.  doi: 10.1287/mnsc.1040.0342.  Google Scholar

[6]

L. T. Chen and C. C. Wei, Multi-period channel coordination in vendor-managed inventory for deteriorating goods, Int. J. Prod. Res., 50 (2012), 4396-4413.  doi: 10.1080/00207543.2011.592159.  Google Scholar

[7]

T. H. Chen and Y. C. Tsao, Optimal lot-sizing integration policy under learning and rework effects in a manufacturer-retailer chain, Int. J. Prod. Econ., 155 (2014), 239-248.  doi: 10.1016/j.ijpe.2014.02.011.  Google Scholar

[8]

S. H. Chung and C. Kwon, Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals, Int. J. Prod. Econ., 179 (2016), 117-129.  doi: 10.1016/j.ijpe.2016.05.021.  Google Scholar

[9]

S. F. DuL. Hu and M. L. Song, Production optimization considering environmental performance and preference in the cap-and-trade system, J. Clean. Prod., 112 (2016), 1600-1607.  doi: 10.1016/j.jclepro.2014.08.086.  Google Scholar

[10]

C.-Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stcok effect, Eur. J. Oper. Res., 283 (2020), 576-587.  doi: 10.1016/j.ejor.2019.11.008.  Google Scholar

[11]

European Commission, (2013), https://ec.europa.eu/clima/policies/ets_en. Google Scholar

[12]

L. Feng and Y.-L. Chan, Joint pricing and producdtion decisions for new products with learning curve effects under upstream and downstream trade credits., Eur. J. Oper. Res., 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.  Google Scholar

[13]

Q. Feng and L. X. Lu, Supply chain contracting under competition: Bilateral bargaining vs. stackelberg, Prod. Oper. Manag., 22 (2013), 661-675.   Google Scholar

[14]

B. C. Giri and S. Bardhan, Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract, Int. T. Oper. Res., 19 (2012), 753-768.  doi: 10.1111/j.1475-3995.2011.00833.x.  Google Scholar

[15]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, Int. J. Prod. Res., 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.  Google Scholar

[16]

C. H. Glock and M. Y. Jaber, A multi-stage production-inventory model with learning and forgetting effects, rework and scrap, Comput. Ind. Eng., 64 (2013), 708-720.  doi: 10.1016/j.cie.2012.08.018.  Google Scholar

[17]

H. Gurnani and M. Erkoc, Supply contracts in manufacturer-retailer interactions with manufacturer-quality and retailer effort-induced demand, Nav. Res. Log., 55 (2008), 200-217.  doi: 10.1002/nav.20277.  Google Scholar

[18]

T.-W. Hung and P.-T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, J. Ind. Manag. Optim., 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.  Google Scholar

[19]

M. Y. Jaber and A. L. Guiffrida, Learning curves for imperfect production processes with reworks and process restoration interruptions, Eur. J. Oper. Res., 189 (2008), 93-104.  doi: 10.1016/j.ejor.2007.05.024.  Google Scholar

[20]

M. Y. Jaber and A. M. A. EI Saadany, An economic production and remanufacturing model with learning effects, Int. J. Prod. Econ., 131 (2011), 115-127.   Google Scholar

[21]

N. KazemiE. U. OluguS. H. Abdul-Rashid and R. A. R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study, Comput. Ind. Eng., 96 (2016), 140-148.  doi: 10.1016/j.cie.2016.03.004.  Google Scholar

[22]

N. KazemiE. ShekarianL. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy EOQ inventory model with backorders, Comput. Ind. Eng., 87 (2015), 540-542.  doi: 10.1016/j.cie.2015.05.014.  Google Scholar

[23]

M. KhanM. Hussain and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Learning and screening errors in an EPQ inventory model for supply chains with stochatic lead time demands, Int. J. Prod. Res., 55 (2017), 4816-4832.   Google Scholar

[24]

M. KhanM. Y. Jaber and A. R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production, Omega, 42 (2014), 16-24.  doi: 10.1016/j.omega.2013.02.002.  Google Scholar

[25]

K. KoganF. EI Ouardighi and A. Herbon, Production with learing and forgetting in a competitive environment, Int. J. Prod. Econ., 189 (2017), 52-62.   Google Scholar

[26]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Prod. Oper. Manag., 24 (2015), 857-882.  doi: 10.1111/poms.12320.  Google Scholar

[27]

C. Lin and Y. Lin, A cooperative inventory policy with deteriorating items for a two-echelon model, Eur. J. Oper. Res., 178 (2007), 92-111.  doi: 10.1016/j.ejor.2006.01.012.  Google Scholar

[28]

J. R. Luo and X. Chen, Coordination of random yield supply chains with improved revenue sharing contracts, Eur. J. Ind. Eng., 10 (2016), 81-102.  doi: 10.1504/EJIE.2016.075105.  Google Scholar

[29]

Z. LuoX. Chen and X. J. Wang, The role of co-opetition in low carbon manufacturing, Eur. J. Oper. Res., 253 (2016), 392-403.  doi: 10.1016/j.ejor.2016.02.030.  Google Scholar

[30]

B. Lus and A. Muriel, Measuring the impact of increased product substitution on pricing and capacity decisions under linear demand models, Prod. Oper. Manag., 18 (2009), 95-113.  doi: 10.1111/j.1937-5956.2009.01001.x.  Google Scholar

[31]

L. Moussawi-HaidarM. Salameh and W. Nasr, Production lot sizing with qualtiy screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.  doi: 10.1016/j.apm.2015.09.095.  Google Scholar

[32]

E. L. Plambeck, Reducing greenhouse gas emissions through operations and supply chain management, Energ. Econ., 34 (2012), s64–s74. doi: 10.1016/j.eneco.2012.08.031.  Google Scholar

[33]

B. R. Sarker and B. Wu, Optimal models for a single-producer multi-buyer integrated system of deteriorating items with raw materials storage costs, Int. J. Adv. Manu. Tech., 82 (2016), 49-63.  doi: 10.1007/s00170-015-7340-7.  Google Scholar

[34]

G. Taguchi, Tables of orthogonal arrays and linear graphs, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 7 (1960), 1-52.   Google Scholar

[35]

G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, 1987. Google Scholar

[36]

J.-T. TengK.-R. Lou and L. Wang, Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs, Int. J. Prod. Econ., 155 (2014), 318-323.  doi: 10.1016/j.ijpe.2013.10.012.  Google Scholar

[37]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination, Comput. Oper. Res., 39 (2012), 1872-1878.  doi: 10.1016/j.cor.2011.07.009.  Google Scholar

[38]

M. WangL. D. Zhao and M. Herty, Joint replenishement and carbon trading in fresh food supply chains, Eur. J. Oper. Res., 277 (2019), 561-573.  doi: 10.1016/j.ejor.2019.03.004.  Google Scholar

[39]

T. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci., 3 (1936), 122-128.  doi: 10.2514/8.155.  Google Scholar

[40]

C. F. Wu and Q. H. Zhao, An uncoorperative ordering policy with time-varying price and learning curve for time-varying demand under trade credit, Eur. J. Ind. Eng., 11 (2017), 380-402.   Google Scholar

[41]

J. C. P. Yu, A collaborative strategy for deteriorating inventory system with imperfect items and supplier credits, Int. J. Prod. Econ., 143 (2013), 403-409.   Google Scholar

[42]

S. ZanoniM. Y. Jaber and L. E. Zavanella, Vendor managed inventory (VMI) with consignment considering learning and forgetting effects, Int. J. Prod. Econ., 140 (2012), 721-730.  doi: 10.1016/j.ijpe.2011.08.018.  Google Scholar

[43]

J. ZhangJ. LiL. Lu and R. Dai, Supply chain performance for deteriorating items with cooperative advertising, J. Syst. Sci. Syst. Eng., 26 (2017), 23-49.  doi: 10.1007/s11518-015-5279-8.  Google Scholar

[44]

J. X. ZhangG. W. LiuQ. Zhang and Z. Y. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.  Google Scholar

[45]

S. Zhang and J. Zhang, Contract preference with stochastic cost leanring in a two-period supply chain under asymmetric information, Int. J. Prod. Econ., 196 (2018), 226-247.   Google Scholar

show all references

References:
[1]

Q. G. BaiM. Y. Chen and L. Xu, Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items, Int. J. Prod. Econ., 187 (2017), 85-101.   Google Scholar

[2]

Q. G. BaiY. M. GongM. Z. Jin and X. H. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory, Int. J. Prod. Econ., 208 (2019), 83-99.  doi: 10.1016/j.ijpe.2018.11.008.  Google Scholar

[3]

Q. G. BaiX. H. XuJ. T. Xu and D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent demand over a finite planning horizon, Appl. Math. Model., 40 (2016), 9342-9361.  doi: 10.1016/j.apm.2016.06.021.  Google Scholar

[4]

K. Biel and C. H. Glock, Governing the dynamics of multi-stage production systems subjects to learning and forgetting effects: A simulation study, Int. J. Prod. Res., 56 (2018), 3439-3461.  doi: 10.1080/00207543.2017.1338780.  Google Scholar

[5]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Manage. Sci., 51 (2015), 566-580.  doi: 10.1287/mnsc.1040.0342.  Google Scholar

[6]

L. T. Chen and C. C. Wei, Multi-period channel coordination in vendor-managed inventory for deteriorating goods, Int. J. Prod. Res., 50 (2012), 4396-4413.  doi: 10.1080/00207543.2011.592159.  Google Scholar

[7]

T. H. Chen and Y. C. Tsao, Optimal lot-sizing integration policy under learning and rework effects in a manufacturer-retailer chain, Int. J. Prod. Econ., 155 (2014), 239-248.  doi: 10.1016/j.ijpe.2014.02.011.  Google Scholar

[8]

S. H. Chung and C. Kwon, Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals, Int. J. Prod. Econ., 179 (2016), 117-129.  doi: 10.1016/j.ijpe.2016.05.021.  Google Scholar

[9]

S. F. DuL. Hu and M. L. Song, Production optimization considering environmental performance and preference in the cap-and-trade system, J. Clean. Prod., 112 (2016), 1600-1607.  doi: 10.1016/j.jclepro.2014.08.086.  Google Scholar

[10]

C.-Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stcok effect, Eur. J. Oper. Res., 283 (2020), 576-587.  doi: 10.1016/j.ejor.2019.11.008.  Google Scholar

[11]

European Commission, (2013), https://ec.europa.eu/clima/policies/ets_en. Google Scholar

[12]

L. Feng and Y.-L. Chan, Joint pricing and producdtion decisions for new products with learning curve effects under upstream and downstream trade credits., Eur. J. Oper. Res., 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.  Google Scholar

[13]

Q. Feng and L. X. Lu, Supply chain contracting under competition: Bilateral bargaining vs. stackelberg, Prod. Oper. Manag., 22 (2013), 661-675.   Google Scholar

[14]

B. C. Giri and S. Bardhan, Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract, Int. T. Oper. Res., 19 (2012), 753-768.  doi: 10.1111/j.1475-3995.2011.00833.x.  Google Scholar

[15]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, Int. J. Prod. Res., 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.  Google Scholar

[16]

C. H. Glock and M. Y. Jaber, A multi-stage production-inventory model with learning and forgetting effects, rework and scrap, Comput. Ind. Eng., 64 (2013), 708-720.  doi: 10.1016/j.cie.2012.08.018.  Google Scholar

[17]

H. Gurnani and M. Erkoc, Supply contracts in manufacturer-retailer interactions with manufacturer-quality and retailer effort-induced demand, Nav. Res. Log., 55 (2008), 200-217.  doi: 10.1002/nav.20277.  Google Scholar

[18]

T.-W. Hung and P.-T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, J. Ind. Manag. Optim., 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.  Google Scholar

[19]

M. Y. Jaber and A. L. Guiffrida, Learning curves for imperfect production processes with reworks and process restoration interruptions, Eur. J. Oper. Res., 189 (2008), 93-104.  doi: 10.1016/j.ejor.2007.05.024.  Google Scholar

[20]

M. Y. Jaber and A. M. A. EI Saadany, An economic production and remanufacturing model with learning effects, Int. J. Prod. Econ., 131 (2011), 115-127.   Google Scholar

[21]

N. KazemiE. U. OluguS. H. Abdul-Rashid and R. A. R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study, Comput. Ind. Eng., 96 (2016), 140-148.  doi: 10.1016/j.cie.2016.03.004.  Google Scholar

[22]

N. KazemiE. ShekarianL. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy EOQ inventory model with backorders, Comput. Ind. Eng., 87 (2015), 540-542.  doi: 10.1016/j.cie.2015.05.014.  Google Scholar

[23]

M. KhanM. Hussain and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Learning and screening errors in an EPQ inventory model for supply chains with stochatic lead time demands, Int. J. Prod. Res., 55 (2017), 4816-4832.   Google Scholar

[24]

M. KhanM. Y. Jaber and A. R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production, Omega, 42 (2014), 16-24.  doi: 10.1016/j.omega.2013.02.002.  Google Scholar

[25]

K. KoganF. EI Ouardighi and A. Herbon, Production with learing and forgetting in a competitive environment, Int. J. Prod. Econ., 189 (2017), 52-62.   Google Scholar

[26]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Prod. Oper. Manag., 24 (2015), 857-882.  doi: 10.1111/poms.12320.  Google Scholar

[27]

C. Lin and Y. Lin, A cooperative inventory policy with deteriorating items for a two-echelon model, Eur. J. Oper. Res., 178 (2007), 92-111.  doi: 10.1016/j.ejor.2006.01.012.  Google Scholar

[28]

J. R. Luo and X. Chen, Coordination of random yield supply chains with improved revenue sharing contracts, Eur. J. Ind. Eng., 10 (2016), 81-102.  doi: 10.1504/EJIE.2016.075105.  Google Scholar

[29]

Z. LuoX. Chen and X. J. Wang, The role of co-opetition in low carbon manufacturing, Eur. J. Oper. Res., 253 (2016), 392-403.  doi: 10.1016/j.ejor.2016.02.030.  Google Scholar

[30]

B. Lus and A. Muriel, Measuring the impact of increased product substitution on pricing and capacity decisions under linear demand models, Prod. Oper. Manag., 18 (2009), 95-113.  doi: 10.1111/j.1937-5956.2009.01001.x.  Google Scholar

[31]

L. Moussawi-HaidarM. Salameh and W. Nasr, Production lot sizing with qualtiy screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.  doi: 10.1016/j.apm.2015.09.095.  Google Scholar

[32]

E. L. Plambeck, Reducing greenhouse gas emissions through operations and supply chain management, Energ. Econ., 34 (2012), s64–s74. doi: 10.1016/j.eneco.2012.08.031.  Google Scholar

[33]

B. R. Sarker and B. Wu, Optimal models for a single-producer multi-buyer integrated system of deteriorating items with raw materials storage costs, Int. J. Adv. Manu. Tech., 82 (2016), 49-63.  doi: 10.1007/s00170-015-7340-7.  Google Scholar

[34]

G. Taguchi, Tables of orthogonal arrays and linear graphs, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 7 (1960), 1-52.   Google Scholar

[35]

G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, 1987. Google Scholar

[36]

J.-T. TengK.-R. Lou and L. Wang, Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs, Int. J. Prod. Econ., 155 (2014), 318-323.  doi: 10.1016/j.ijpe.2013.10.012.  Google Scholar

[37]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination, Comput. Oper. Res., 39 (2012), 1872-1878.  doi: 10.1016/j.cor.2011.07.009.  Google Scholar

[38]

M. WangL. D. Zhao and M. Herty, Joint replenishement and carbon trading in fresh food supply chains, Eur. J. Oper. Res., 277 (2019), 561-573.  doi: 10.1016/j.ejor.2019.03.004.  Google Scholar

[39]

T. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci., 3 (1936), 122-128.  doi: 10.2514/8.155.  Google Scholar

[40]

C. F. Wu and Q. H. Zhao, An uncoorperative ordering policy with time-varying price and learning curve for time-varying demand under trade credit, Eur. J. Ind. Eng., 11 (2017), 380-402.   Google Scholar

[41]

J. C. P. Yu, A collaborative strategy for deteriorating inventory system with imperfect items and supplier credits, Int. J. Prod. Econ., 143 (2013), 403-409.   Google Scholar

[42]

S. ZanoniM. Y. Jaber and L. E. Zavanella, Vendor managed inventory (VMI) with consignment considering learning and forgetting effects, Int. J. Prod. Econ., 140 (2012), 721-730.  doi: 10.1016/j.ijpe.2011.08.018.  Google Scholar

[43]

J. ZhangJ. LiL. Lu and R. Dai, Supply chain performance for deteriorating items with cooperative advertising, J. Syst. Sci. Syst. Eng., 26 (2017), 23-49.  doi: 10.1007/s11518-015-5279-8.  Google Scholar

[44]

J. X. ZhangG. W. LiuQ. Zhang and Z. Y. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.  Google Scholar

[45]

S. Zhang and J. Zhang, Contract preference with stochastic cost leanring in a two-period supply chain under asymmetric information, Int. J. Prod. Econ., 196 (2018), 226-247.   Google Scholar

Figure 1.  Graphical representation of inventory level at the retailer
Figure 2.  Intervals of contract parameters to attain the win-win outcome
Figure 3.  Impacts of $ C $ on profit and total emissions amount
Figure 4.  Impacts of $ c_{p} $ on profit and total emissions amount
Figure 5.  Impacts of $ \phi $ on profit and total emissions amount
Figure 6.  Effects plot for the SN ratio of the coordination system
Table 1.  The optimal solution of the example
Model $ w $ $ s $ $ p $ $ n $ Retailer's Manufacturer's Total Total emissions
profit profit profit amount
Centralized - 12.15 213.75 3 - - 25589.00 285270
Decentralized 56.76 6.08 256.88 3 3622.10 17045.00 20667.10 142640
TT contract
$ F=9850 $ 50 12.15 213.75 3 8539.00 17050.00 25589.00 285270
$ F=12000 $ 50 12.15 213.75 3 6389.00 19200.00 25589.00 285270
$ F=14750 $ 50 12.15 213.75 3 3639.00 21950.00 25589.00 285270
Model $ w $ $ s $ $ p $ $ n $ Retailer's Manufacturer's Total Total emissions
profit profit profit amount
Centralized - 12.15 213.75 3 - - 25589.00 285270
Decentralized 56.76 6.08 256.88 3 3622.10 17045.00 20667.10 142640
TT contract
$ F=9850 $ 50 12.15 213.75 3 8539.00 17050.00 25589.00 285270
$ F=12000 $ 50 12.15 213.75 3 6389.00 19200.00 25589.00 285270
$ F=14750 $ 50 12.15 213.75 3 3639.00 21950.00 25589.00 285270
Table 2.  Calculation results of $ L_{8} $ orthogonal array experiment for the coordination model
No. A B C D E Total profit SN ratio of Total emissions SN ratio of total
$ h_{r} $ $ \theta $ $ \phi $ $ C $ $ c_{p} $ total profit amount emissions amount
1 1 1 1 1 1 43394 92.75 284600 -109.085
2 1 1 1 2 2 38191 91.64 309080 -109.801
3 1 2 2 1 1 15727 83.93 259150 -108.271
4 1 2 2 2 2 6371 76.08 280390 -108.955
5 2 1 2 1 2 39551 91.94 314060 -109.940
6 2 1 2 2 1 32531 90.25 289570 -109.235
7 2 2 1 1 2 15409 83.76 284830 -109.092
8 2 2 1 2 1 13943 82.89 263590 -108.419
No. A B C D E Total profit SN ratio of Total emissions SN ratio of total
$ h_{r} $ $ \theta $ $ \phi $ $ C $ $ c_{p} $ total profit amount emissions amount
1 1 1 1 1 1 43394 92.75 284600 -109.085
2 1 1 1 2 2 38191 91.64 309080 -109.801
3 1 2 2 1 1 15727 83.93 259150 -108.271
4 1 2 2 2 2 6371 76.08 280390 -108.955
5 2 1 2 1 2 39551 91.94 314060 -109.940
6 2 1 2 2 1 32531 90.25 289570 -109.235
7 2 2 1 1 2 15409 83.76 284830 -109.092
8 2 2 1 2 1 13943 82.89 263590 -108.419
Table 3.  Analysis of variance for the total profits and its SN ratio
(a) Analysis of variance for the total profits
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.0063 0.0063 0.11 0.776
B 1 13.0604 13.0604 217.25 0.005
C 1 0.3510 0.3510 5.84 0.137
D 1 0.6639 0.6639 11.04 0.080
E 1 0.0461 0.0461 0.77 0.474
Error 2 0.1202 0.0601 - -
Total 7 14.2480 - - -
(b) Analysis of variance for the SN ratio of the total profits
Source df SS MS F P
A 1 2.450 2.450 0.43 0.581
B 1 199.178 199.178 34.55 0.028
C 1 9.734 9.734 1.69 0.323
D 1 16.603 16.603 2.88 0.232
E 1 5.109 5.109 0.89 0.446
Error 2 11.529 5.765 - -
Total 7 244.604 - - -
(a) Analysis of variance for the total profits
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.0063 0.0063 0.11 0.776
B 1 13.0604 13.0604 217.25 0.005
C 1 0.3510 0.3510 5.84 0.137
D 1 0.6639 0.6639 11.04 0.080
E 1 0.0461 0.0461 0.77 0.474
Error 2 0.1202 0.0601 - -
Total 7 14.2480 - - -
(b) Analysis of variance for the SN ratio of the total profits
Source df SS MS F P
A 1 2.450 2.450 0.43 0.581
B 1 199.178 199.178 34.55 0.028
C 1 9.734 9.734 1.69 0.323
D 1 16.603 16.603 2.88 0.232
E 1 5.109 5.109 0.89 0.446
Error 2 11.529 5.765 - -
Total 7 244.604 - - -
Table 4.  Analysis of variance for the carbon emissions and its SN ratio
(a) Analysis of variance for the carbon emissions
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.4432 0.4432 16.84 0.055
B 1 14.9468 14.9468 567.78 0.002
C 1 0.0014 0.0014 0.05 0.837
D 1 0.0000 0.0000 0.00 0.998
E 1 10.4539 10.4539 397.11 0.003
Error 2 0.0527 0.0263 - -
Total 7 25.8979 - - -
(b) Analysis of variance for the SN ratio of the carbon emissions
Source df SS MS F P
A 1 0.0411 0.04107 157.77 0.006
B 1 1.3819 1.3819 5307.76 0.000
C 1 0.0000 0.0000 0.01 0.920
D 1 0.0001 0.0001 0.25 0.669
E 1 0.9655 0.9655 3708.69 0.000
Error 2 0.0005 0.0003 - -
Total 7 2.3891 - - -
(a) Analysis of variance for the carbon emissions
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.4432 0.4432 16.84 0.055
B 1 14.9468 14.9468 567.78 0.002
C 1 0.0014 0.0014 0.05 0.837
D 1 0.0000 0.0000 0.00 0.998
E 1 10.4539 10.4539 397.11 0.003
Error 2 0.0527 0.0263 - -
Total 7 25.8979 - - -
(b) Analysis of variance for the SN ratio of the carbon emissions
Source df SS MS F P
A 1 0.0411 0.04107 157.77 0.006
B 1 1.3819 1.3819 5307.76 0.000
C 1 0.0000 0.0000 0.01 0.920
D 1 0.0001 0.0001 0.25 0.669
E 1 0.9655 0.9655 3708.69 0.000
Error 2 0.0005 0.0003 - -
Total 7 2.3891 - - -
[1]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[2]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[3]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[4]

Jing Feng, Yanfei Lan, Ruiqing Zhao. Impact of price cap regulation on supply chain contracting between two monopolists. Journal of Industrial & Management Optimization, 2017, 13 (1) : 349-373. doi: 10.3934/jimo.2016021

[5]

Kebing Chen, Tiaojun Xiao. Reordering policy and coordination of a supply chain with a loss-averse retailer. Journal of Industrial & Management Optimization, 2013, 9 (4) : 827-853. doi: 10.3934/jimo.2013.9.827

[6]

Chong Zhang, Yaxian Wang, Ying Liu, Haiyan Wang. Coordination contracts for a dual-channel supply chain under capital constraints. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020031

[7]

Wenying Xie, Bin Chen, Fuyou Huang, Juan He. Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020125

[8]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial & Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[9]

Huimin Liu, Hui Yu. Fairness and retailer-led supply chain coordination under two different degrees of trust. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1347-1364. doi: 10.3934/jimo.2016076

[10]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[11]

Bin Chen, Wenying Xie, Fuyou Huang, Juan He. Quality competition and coordination in a VMI supply chain with two risk-averse manufacturers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020100

[12]

Fuyou Huang, Juan He, Jian Wang. Coordination of VMI supply chain with a loss-averse manufacturer under quality-dependency and marketing-dependency. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1753-1772. doi: 10.3934/jimo.2018121

[13]

Qiang Lin, Ying Peng, Ying Hu. Supplier financing service decisions for a capital-constrained supply chain: Trade credit vs. combined credit financing. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1731-1752. doi: 10.3934/jimo.2019026

[14]

Pin-Shou Ting. The EPQ model with deteriorating items under two levels of trade credit in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (2) : 479-492. doi: 10.3934/jimo.2015.11.479

[15]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

[16]

Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175

[17]

Biswajit Sarkar, Arunava Majumder, Mitali Sarkar, Bikash Koli Dey, Gargi Roy. Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1085-1104. doi: 10.3934/jimo.2016063

[18]

Bin Dan, Huali Gao, Yang Zhang, Ru Liu, Songxuan Ma. Integrated order acceptance and scheduling decision making in product service supply chain with hard time windows constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 165-182. doi: 10.3934/jimo.2017041

[19]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020057

[20]

Mingzheng Wang, M. Montaz Ali, Guihua Lin. Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks. Journal of Industrial & Management Optimization, 2011, 7 (2) : 317-345. doi: 10.3934/jimo.2011.7.317

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]