
-
Previous Article
The $ F $-objective function method for differentiable interval-valued vector optimization problems
- JIMO Home
- This Issue
-
Next Article
The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex
Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models
Faculty of Mathematics, Statistics and Computer Science, Semnan University, P.O. Box 35195–363, Semnan, Iran |
In classical regression analysis, the ordinary least–squares estimation is the best strategy when the essential assumptions such as normality and independency to the error terms as well as ignorable multicollinearity in the covariates are met. However, if one of these assumptions is violated, then the results may be misleading. Especially, outliers violate the assumption of normally distributed residuals in the least–squares regression. In this situation, robust estimators are widely used because of their lack of sensitivity to outlying data points. Multicollinearity is another common problem in multiple regression models with inappropriate effects on the least–squares estimators. So, it is of great importance to use the estimation methods provided to tackle the mentioned problems. As known, robust regressions are among the popular methods for analyzing the data that are contaminated with outliers. In this guideline, here we suggest two mixed–integer nonlinear optimization models which their solutions can be considered as appropriate estimators when the outliers and multicollinearity simultaneously appear in the data set. Capable to be effectively solved by metaheuristic algorithms, the models are designed based on penalization schemes with the ability of down–weighting or ignoring unusual data and multicollinearity effects. We establish that our models are computationally advantageous in the perspective of the flop count. We also deal with a robust ridge methodology. Finally, three real data sets are analyzed to examine performance of the proposed methods.
References:
[1] |
E. H. L. Aarts, J. H. M. Korst and P. J. M. van Laarhoren, Simulated annealing, in Local Search in Combinatorial Optimization, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Intersci. Publ., Wiley, Chichester, 1997, 91–121. |
[2] |
E. Akdenïz Duran, W. K. Härdle and M. Osipenko,
Difference based ridge and Liu type estimators in semiparametric regression models, J. Multivariate Anal., 105 (2012), 164-175.
doi: 10.1016/j.jmva.2011.08.018. |
[3] |
F. Akdenïz and M. Roozbeh,
Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models, Statist. Papers, 60 (2019), 1717-1739.
doi: 10.1007/s00362-017-0893-9. |
[4] |
M. Amini and M. Roozbeh,
Optimal partial ridge estimation in restricted semiparametric regression models, J. Multivariate Anal., 136 (2015), 26-40.
doi: 10.1016/j.jmva.2015.01.005. |
[5] |
M. Arashi and T. Valizadeh,
Performance of Kibria's methods in partial linear ridge regression model, Statist. Pap., 56 (2015), 231-246.
doi: 10.1007/s00362-014-0578-6. |
[6] |
M. Awad and R. Khanna, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, Apress, Berkeley, CA, 2015.
doi: 10.1007/978-1-4302-5990-9. |
[7] |
S. Babaie–Kafaki, R. Ghanbari and N. Mahdavi–Amiri,
An efficient and practically robust hybrid metaheuristic algorithm for solving fuzzy bus terminal location problems, Asia–Pac. J. Oper. Res., 29 (2012), 1-25.
doi: 10.1142/S0217595912500091. |
[8] |
S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri,
Hybridizations of genetic algorithms and neighborhood search metaheuristics for fuzzy bus terminal location problems, Appl. Soft Comput., 46 (2016), 220-229.
doi: 10.1016/j.asoc.2016.03.005. |
[9] |
S. Roozbeh and M. Babaie-Kafakiand,
A revised Cholesky decomposition to combat multicollinearity in multiple regression models, J. Stat. Comput. Simul., 87 (2017), 2298-2308.
doi: 10.1080/00949655.2017.1328599. |
[10] |
M. R. Baye and D. F. Parker,
Combining ridge and principal component regression: A money demand illustration, Comm. Statist. A—Theory Methods, 13 (1984), 197-205.
doi: 10.1080/03610928408828675. |
[11] |
E. R. Berndt, The Practice of Econometrics, New York, Addison-Wesley, 1991. Google Scholar |
[12] |
D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Massachusetts, 1997. Google Scholar |
[13] |
P. Bühlmann, M. Kalisch and L. Meier, High–dimensional statistics with a view towards applications in biology, Ann. Rev. Stat. Appl., 1 (2014), 255-278. Google Scholar |
[14] |
R. H. Byrd and J. Nocedal,
A tool for the analysis of quasi–Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.
doi: 10.1137/0726042. |
[15] |
M. Hassanzadeh Bashtian, M. Arashi and S. M. M. Tabatabaey,
Using improved estimation strategies to combat multicollinearity, J. Stat. Comput. Simul., 81 (2011), 1773-1797.
doi: 10.1080/00949655.2010.505925. |
[16] |
S. Hawkins, H. He, G. Williams and R. Baxter, Outlier detection using replicator neural networks, in International Conference on Data Warehousing and Knowledge Discovery, Springer, Berlin, Heidelberg, (2002), 170–180.
doi: 10.1007/3-540-46145-0_17. |
[17] |
D. Henderson, S. H. Jacobson and A. W. Johnson, The theory and practice of simulated annealing, in Handbook of Metaheuristics, Kluwer Academic Publishers, Boston, MA, (2003), 287–319.
doi: 10.1007/0-306-48056-5_10. |
[18] |
A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation for non–orthogonal problems, Technometrics, 12 (1970), 55-67. Google Scholar |
[19] |
P. W. Holland and R. E. Welsch, Robust regression using iteratively reweighted least–squares, Comm. Statist. Theo. Meth., 6 (1977), 813-827. Google Scholar |
[20] |
G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning, Springer, New York, 2013.
doi: 10.1007/978-1-4614-7138-7. |
[21] |
S. Kaçiranlar and S. Sakallioǧlu,
Combining the Liu estimator and the principal component regression estimator, Comm. Statist. Theory Methods, 30 (2001), 2699-2705.
doi: 10.1081/STA-100108454. |
[22] |
A. Karatzoglou, D. Meyer and K. Hornik, Support Vector Machines in R, J. Stat. Softw., 15 (2006), 1-28. Google Scholar |
[23] |
K. J. Liu,
A new class of biased estimate in linear regression, Comm. Statist. Theory Methods, 22 (1993), 393-402.
doi: 10.1080/03610929308831027. |
[24] |
A. Mohammad Nezhad, R. Aliakbari Shandiz and A. H. Eshraghniaye Jahromi,
A particle swarm–BFGS algorithm for nonlinear programming problems, Comput. Oper. Res., 40 (2013), 963-972.
doi: 10.1016/j.cor.2012.11.008. |
[25] |
G. Piazza and T. Politi,
An upper bound for the condition number of a matrix in spectral norm, J. Comput. Appl. Math., 143 (2002), 141-144.
doi: 10.1016/S0377-0427(02)00396-5. |
[26] |
W. M. Pride and O. C. Ferrel, Marketing, 15th edition, South-Western, Cengage Learning, International Edition, 2010. Google Scholar |
[27] |
C. R. Reeves, Modern heuristic techniques, in Modern Heuristic Search Methods, John Wiley and Sons, Chichester, (1996), 1–24. Google Scholar |
[28] |
M. Roozbeh,
Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion, Computational Statistics & Data Analysis, 117 (2018), 45-61.
doi: 10.1016/j.csda.2017.08.002. |
[29] |
M. Roozbeh, S. Babaie-Kafaki and M. Arashi,
A class of biased estimators based on QR decomposition, Linear Algebra Appl., 508 (2016), 190-205.
doi: 10.1016/j.laa.2016.07.009. |
[30] |
M. Roozbeh, S. Babaie-Kafaki and A. Naeimi Sadigh,
A heuristic approach to combat multicollinearity in least trimmed squares regression analysis, Appl. Math. Model, 57 (2018), 105-120.
doi: 10.1016/j.apm.2017.11.011. |
[31] |
M. Roozbeh,
Robust ridge estimator in restricted semiparametric regression models, J. Multivariate Anal., 147 (2016), 127-144.
doi: 10.1016/j.jmva.2016.01.005. |
[32] |
P. J. Rousseeuw,
Least median of squares regression, J. Amer. Statist. Assoc., 79 (1984), 871-880.
doi: 10.1080/01621459.1984.10477105. |
[33] |
P. J. Rousseeuw, and A. M. Leroy, Robust Regression and Outlier Detection, John Wiley and Sons, New York, 1987.
doi: 10.1002/0471725382. |
[34] |
S. J. Sheather, A Modern Approach to Regression with R, Springer, New York, 2009.
doi: 10.1007/978-0-387-09608-7. |
[35] |
W. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006. |
[36] |
P. Tryfos, Methods for Business Analysis and Forecasting: Text & Cases, John Wiley and Sons, New York, 1998. Google Scholar |
[37] |
D. S. Watkins, Fundamentals of Matrix Computations, 2nd edition, John Wiley and Sons, New York, 2002.
doi: 10.1002/0471249718. |
[38] |
X. S. Yang, Nature–Inspired Optimization Algorithms, Elsevier, Amsterdam, 2014. |
show all references
References:
[1] |
E. H. L. Aarts, J. H. M. Korst and P. J. M. van Laarhoren, Simulated annealing, in Local Search in Combinatorial Optimization, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Intersci. Publ., Wiley, Chichester, 1997, 91–121. |
[2] |
E. Akdenïz Duran, W. K. Härdle and M. Osipenko,
Difference based ridge and Liu type estimators in semiparametric regression models, J. Multivariate Anal., 105 (2012), 164-175.
doi: 10.1016/j.jmva.2011.08.018. |
[3] |
F. Akdenïz and M. Roozbeh,
Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models, Statist. Papers, 60 (2019), 1717-1739.
doi: 10.1007/s00362-017-0893-9. |
[4] |
M. Amini and M. Roozbeh,
Optimal partial ridge estimation in restricted semiparametric regression models, J. Multivariate Anal., 136 (2015), 26-40.
doi: 10.1016/j.jmva.2015.01.005. |
[5] |
M. Arashi and T. Valizadeh,
Performance of Kibria's methods in partial linear ridge regression model, Statist. Pap., 56 (2015), 231-246.
doi: 10.1007/s00362-014-0578-6. |
[6] |
M. Awad and R. Khanna, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, Apress, Berkeley, CA, 2015.
doi: 10.1007/978-1-4302-5990-9. |
[7] |
S. Babaie–Kafaki, R. Ghanbari and N. Mahdavi–Amiri,
An efficient and practically robust hybrid metaheuristic algorithm for solving fuzzy bus terminal location problems, Asia–Pac. J. Oper. Res., 29 (2012), 1-25.
doi: 10.1142/S0217595912500091. |
[8] |
S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri,
Hybridizations of genetic algorithms and neighborhood search metaheuristics for fuzzy bus terminal location problems, Appl. Soft Comput., 46 (2016), 220-229.
doi: 10.1016/j.asoc.2016.03.005. |
[9] |
S. Roozbeh and M. Babaie-Kafakiand,
A revised Cholesky decomposition to combat multicollinearity in multiple regression models, J. Stat. Comput. Simul., 87 (2017), 2298-2308.
doi: 10.1080/00949655.2017.1328599. |
[10] |
M. R. Baye and D. F. Parker,
Combining ridge and principal component regression: A money demand illustration, Comm. Statist. A—Theory Methods, 13 (1984), 197-205.
doi: 10.1080/03610928408828675. |
[11] |
E. R. Berndt, The Practice of Econometrics, New York, Addison-Wesley, 1991. Google Scholar |
[12] |
D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Massachusetts, 1997. Google Scholar |
[13] |
P. Bühlmann, M. Kalisch and L. Meier, High–dimensional statistics with a view towards applications in biology, Ann. Rev. Stat. Appl., 1 (2014), 255-278. Google Scholar |
[14] |
R. H. Byrd and J. Nocedal,
A tool for the analysis of quasi–Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.
doi: 10.1137/0726042. |
[15] |
M. Hassanzadeh Bashtian, M. Arashi and S. M. M. Tabatabaey,
Using improved estimation strategies to combat multicollinearity, J. Stat. Comput. Simul., 81 (2011), 1773-1797.
doi: 10.1080/00949655.2010.505925. |
[16] |
S. Hawkins, H. He, G. Williams and R. Baxter, Outlier detection using replicator neural networks, in International Conference on Data Warehousing and Knowledge Discovery, Springer, Berlin, Heidelberg, (2002), 170–180.
doi: 10.1007/3-540-46145-0_17. |
[17] |
D. Henderson, S. H. Jacobson and A. W. Johnson, The theory and practice of simulated annealing, in Handbook of Metaheuristics, Kluwer Academic Publishers, Boston, MA, (2003), 287–319.
doi: 10.1007/0-306-48056-5_10. |
[18] |
A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation for non–orthogonal problems, Technometrics, 12 (1970), 55-67. Google Scholar |
[19] |
P. W. Holland and R. E. Welsch, Robust regression using iteratively reweighted least–squares, Comm. Statist. Theo. Meth., 6 (1977), 813-827. Google Scholar |
[20] |
G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning, Springer, New York, 2013.
doi: 10.1007/978-1-4614-7138-7. |
[21] |
S. Kaçiranlar and S. Sakallioǧlu,
Combining the Liu estimator and the principal component regression estimator, Comm. Statist. Theory Methods, 30 (2001), 2699-2705.
doi: 10.1081/STA-100108454. |
[22] |
A. Karatzoglou, D. Meyer and K. Hornik, Support Vector Machines in R, J. Stat. Softw., 15 (2006), 1-28. Google Scholar |
[23] |
K. J. Liu,
A new class of biased estimate in linear regression, Comm. Statist. Theory Methods, 22 (1993), 393-402.
doi: 10.1080/03610929308831027. |
[24] |
A. Mohammad Nezhad, R. Aliakbari Shandiz and A. H. Eshraghniaye Jahromi,
A particle swarm–BFGS algorithm for nonlinear programming problems, Comput. Oper. Res., 40 (2013), 963-972.
doi: 10.1016/j.cor.2012.11.008. |
[25] |
G. Piazza and T. Politi,
An upper bound for the condition number of a matrix in spectral norm, J. Comput. Appl. Math., 143 (2002), 141-144.
doi: 10.1016/S0377-0427(02)00396-5. |
[26] |
W. M. Pride and O. C. Ferrel, Marketing, 15th edition, South-Western, Cengage Learning, International Edition, 2010. Google Scholar |
[27] |
C. R. Reeves, Modern heuristic techniques, in Modern Heuristic Search Methods, John Wiley and Sons, Chichester, (1996), 1–24. Google Scholar |
[28] |
M. Roozbeh,
Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion, Computational Statistics & Data Analysis, 117 (2018), 45-61.
doi: 10.1016/j.csda.2017.08.002. |
[29] |
M. Roozbeh, S. Babaie-Kafaki and M. Arashi,
A class of biased estimators based on QR decomposition, Linear Algebra Appl., 508 (2016), 190-205.
doi: 10.1016/j.laa.2016.07.009. |
[30] |
M. Roozbeh, S. Babaie-Kafaki and A. Naeimi Sadigh,
A heuristic approach to combat multicollinearity in least trimmed squares regression analysis, Appl. Math. Model, 57 (2018), 105-120.
doi: 10.1016/j.apm.2017.11.011. |
[31] |
M. Roozbeh,
Robust ridge estimator in restricted semiparametric regression models, J. Multivariate Anal., 147 (2016), 127-144.
doi: 10.1016/j.jmva.2016.01.005. |
[32] |
P. J. Rousseeuw,
Least median of squares regression, J. Amer. Statist. Assoc., 79 (1984), 871-880.
doi: 10.1080/01621459.1984.10477105. |
[33] |
P. J. Rousseeuw, and A. M. Leroy, Robust Regression and Outlier Detection, John Wiley and Sons, New York, 1987.
doi: 10.1002/0471725382. |
[34] |
S. J. Sheather, A Modern Approach to Regression with R, Springer, New York, 2009.
doi: 10.1007/978-0-387-09608-7. |
[35] |
W. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006. |
[36] |
P. Tryfos, Methods for Business Analysis and Forecasting: Text & Cases, John Wiley and Sons, New York, 1998. Google Scholar |
[37] |
D. S. Watkins, Fundamentals of Matrix Computations, 2nd edition, John Wiley and Sons, New York, 2002.
doi: 10.1002/0471249718. |
[38] |
X. S. Yang, Nature–Inspired Optimization Algorithms, Elsevier, Amsterdam, 2014. |






Method Coefficients | OLS | RLTS | MLTSCM | UBDMLTSCM1 |
2.3317 | 1.91363 | 2.0304 | 1.8278 | |
0.1483 | 0.33718 | 0.3056 | 0.2923 | |
0.8356 | 0.58002 | 0.6210 | 0.7829 | |
0.1963 | 0.06662 | 0.0657 | 0.0241 | |
3.8692 | 1.9788 | 1.9778 | 1.0577 | |
0.7747 | 0.8579 | 0.8600 | 0.9147 | |
Method Coefficients | UBDMLTSCM2 | LSVR | NSVR | NNR |
1.9140 | -0.0125 | - | -7.8431 | |
0.2360 | 0.4152 | - | 0.4236 | |
0.8914 | 0.3933 | - | 2.8061 | |
0.0467 | 0.1176 | - | 0.5110 | |
1.1504 | 4.0131 | 2.7834 | 1.7108 | |
0.9020 | 0.7663 | 0.8379 | 0.9004 |
Method Coefficients | OLS | RLTS | MLTSCM | UBDMLTSCM1 |
2.3317 | 1.91363 | 2.0304 | 1.8278 | |
0.1483 | 0.33718 | 0.3056 | 0.2923 | |
0.8356 | 0.58002 | 0.6210 | 0.7829 | |
0.1963 | 0.06662 | 0.0657 | 0.0241 | |
3.8692 | 1.9788 | 1.9778 | 1.0577 | |
0.7747 | 0.8579 | 0.8600 | 0.9147 | |
Method Coefficients | UBDMLTSCM2 | LSVR | NSVR | NNR |
1.9140 | -0.0125 | - | -7.8431 | |
0.2360 | 0.4152 | - | 0.4236 | |
0.8914 | 0.3933 | - | 2.8061 | |
0.0467 | 0.1176 | - | 0.5110 | |
1.1504 | 4.0131 | 2.7834 | 1.7108 | |
0.9020 | 0.7663 | 0.8379 | 0.9004 |
Subset size | Predictor variables | AIC | |
1 | 0.5523 | -1067.814 | |
2 | 0.5781 | -1077.339 | |
3 | 0.5892 | -1081.063 | |
4 | 0.5891 | -1080.057 | |
5 | 0.5882 | -1078.709 | |
6 | 0.5875 | -1077.427 | |
7 | 0.5858 | -1075.734 | |
8 | 0.5837 | -1073.897 | |
9 | 0.5812 | -1071.907 | |
10 | 0.5789 | -1069.987 | |
11 | 0.5764 | -1067.997 | |
12 | 0.5740 | -1064.098 | |
13 | 0.5718 | -1064.281 | |
14 | 0.5709 | -1063.014 |
Subset size | Predictor variables | AIC | |
1 | 0.5523 | -1067.814 | |
2 | 0.5781 | -1077.339 | |
3 | 0.5892 | -1081.063 | |
4 | 0.5891 | -1080.057 | |
5 | 0.5882 | -1078.709 | |
6 | 0.5875 | -1077.427 | |
7 | 0.5858 | -1075.734 | |
8 | 0.5837 | -1073.897 | |
9 | 0.5812 | -1071.907 | |
10 | 0.5789 | -1069.987 | |
11 | 0.5764 | -1067.997 | |
12 | 0.5740 | -1064.098 | |
13 | 0.5718 | -1064.281 | |
14 | 0.5709 | -1063.014 |
Method Coefficients | OLS | RLTS | MLTSCM | UBDMLTSCM1 |
4.4069 | 5.1693 | 4.9881 | 5.2039 | |
0.1925 | 0.0989 | 0.1146 | 0.0956 | |
-0.0778 | -0.0939 | -0.1054 | -0.0956 | |
-0.0002 | -0.0002 | -0.0003 | -0.0003 | |
0.3765 | 0.2637 | 0.1982 | 0.1296 | |
0.5962 | 0.6742 | 0.7399 | 0.7559 | |
Method Coefficients | UBDMLTSCM2 | LSVR | NSVR | NNR |
4.0907 | 0.0881 | - | 2.6215 | |
0.2225 | 0.1545 | - | 1.2806 | |
-0.0940 | -0.1322 | - | -3.7418 | |
-0.0003 | -0.7508 | - | -0.8067 | |
0.1413 | 0.3881 | 0.2629 | 0.4240 | |
0.7468 | 0.5838 | 0.7181 | 0.5452 |
Method Coefficients | OLS | RLTS | MLTSCM | UBDMLTSCM1 |
4.4069 | 5.1693 | 4.9881 | 5.2039 | |
0.1925 | 0.0989 | 0.1146 | 0.0956 | |
-0.0778 | -0.0939 | -0.1054 | -0.0956 | |
-0.0002 | -0.0002 | -0.0003 | -0.0003 | |
0.3765 | 0.2637 | 0.1982 | 0.1296 | |
0.5962 | 0.6742 | 0.7399 | 0.7559 | |
Method Coefficients | UBDMLTSCM2 | LSVR | NSVR | NNR |
4.0907 | 0.0881 | - | 2.6215 | |
0.2225 | 0.1545 | - | 1.2806 | |
-0.0940 | -0.1322 | - | -3.7418 | |
-0.0003 | -0.7508 | - | -0.8067 | |
0.1413 | 0.3881 | 0.2629 | 0.4240 | |
0.7468 | 0.5838 | 0.7181 | 0.5452 |
Method Coefficients | OLS | RLTS | MLTSCM | UBDMLTSCM1 |
1.0786 | 0.7498 | 1.1963 | 0.9257 | |
0.1794 | 0.1482 | 0.2576 | 0.2018 | |
-0.1024 | -0.1208 | -0.1109 | -0.1174 | |
-0.2220 | -0.2851 | -0.2776 | -0.2665 | |
0.0958 | 0.0613 | 0.1630 | 0.1090 | |
0.2005 | 0.1939 | 0.1987 | 0.1427 | |
-0.0854 | -0.0473 | -0.1510 | -0.0960 | |
0.0504 | 0.0674 | 0.0482 | 0.0749 | |
-0.0074 | -0.0122 | 0.0072 | -0.0126 | |
0.0915 | 0.0614 | 0.0411 | 0.0965 | |
0.0766 | 0.0590 | 0.1937 | 0.0924 | |
101.17 | 76.3827 | 50.5810 | 49.8101 | |
0.3185 | 0.4049 | 0.4146 | 0.4123 | |
Method Coefficients | UBDMLTSCM2 | LSVR | NSVR | NNR |
0.9038 | 0.0054 | - | -5.5913 | |
0.1974 | 0.4997 | - | 0.6978 | |
-0.0916 | -0.1141 | - | -0.4331 | |
-0.2416 | -0.2638 | - | -0.9731 | |
0.1011 | 0.2573 | - | 0.2991 | |
0.1791 | 0.1511 | - | 1.0483 | |
-0.0888 | 0.0420 | - | -0.2590 | |
0.0515 | 0.0930 | - | 0.2437 | |
-0.0140 | -0.0526 | - | 0.0004 | |
0.0810 | 0.0918 | - | 0.3258 | |
0.1216 | 0.0524 | - | 0.4156 | |
49.2827 | 102.5847 | 79.0911 | 84.2234 | |
0.4279 | 0.3089 | 0.4672 | 0.4326 |
Method Coefficients | OLS | RLTS | MLTSCM | UBDMLTSCM1 |
1.0786 | 0.7498 | 1.1963 | 0.9257 | |
0.1794 | 0.1482 | 0.2576 | 0.2018 | |
-0.1024 | -0.1208 | -0.1109 | -0.1174 | |
-0.2220 | -0.2851 | -0.2776 | -0.2665 | |
0.0958 | 0.0613 | 0.1630 | 0.1090 | |
0.2005 | 0.1939 | 0.1987 | 0.1427 | |
-0.0854 | -0.0473 | -0.1510 | -0.0960 | |
0.0504 | 0.0674 | 0.0482 | 0.0749 | |
-0.0074 | -0.0122 | 0.0072 | -0.0126 | |
0.0915 | 0.0614 | 0.0411 | 0.0965 | |
0.0766 | 0.0590 | 0.1937 | 0.0924 | |
101.17 | 76.3827 | 50.5810 | 49.8101 | |
0.3185 | 0.4049 | 0.4146 | 0.4123 | |
Method Coefficients | UBDMLTSCM2 | LSVR | NSVR | NNR |
0.9038 | 0.0054 | - | -5.5913 | |
0.1974 | 0.4997 | - | 0.6978 | |
-0.0916 | -0.1141 | - | -0.4331 | |
-0.2416 | -0.2638 | - | -0.9731 | |
0.1011 | 0.2573 | - | 0.2991 | |
0.1791 | 0.1511 | - | 1.0483 | |
-0.0888 | 0.0420 | - | -0.2590 | |
0.0515 | 0.0930 | - | 0.2437 | |
-0.0140 | -0.0526 | - | 0.0004 | |
0.0810 | 0.0918 | - | 0.3258 | |
0.1216 | 0.0524 | - | 0.4156 | |
49.2827 | 102.5847 | 79.0911 | 84.2234 | |
0.4279 | 0.3089 | 0.4672 | 0.4326 |
[1] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[2] |
Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047 |
[3] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[4] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[5] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[6] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[7] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[8] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[9] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[10] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[11] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[12] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[13] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[14] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[15] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[16] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[17] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
[18] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[19] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[20] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]