[1]
|
E. H. L. Aarts, J. H. M. Korst and P. J. M. van Laarhoren, Simulated annealing, in Local Search in Combinatorial Optimization, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Intersci. Publ., Wiley, Chichester, 1997, 91–121.
|
[2]
|
E. Akdenïz Duran, W. K. Härdle and M. Osipenko, Difference based ridge and Liu type estimators in semiparametric regression models, J. Multivariate Anal., 105 (2012), 164-175.
doi: 10.1016/j.jmva.2011.08.018.
|
[3]
|
F. Akdenïz and M. Roozbeh, Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models, Statist. Papers, 60 (2019), 1717-1739.
doi: 10.1007/s00362-017-0893-9.
|
[4]
|
M. Amini and M. Roozbeh, Optimal partial ridge estimation in restricted semiparametric regression models, J. Multivariate Anal., 136 (2015), 26-40.
doi: 10.1016/j.jmva.2015.01.005.
|
[5]
|
M. Arashi and T. Valizadeh, Performance of Kibria's methods in partial linear ridge regression model, Statist. Pap., 56 (2015), 231-246.
doi: 10.1007/s00362-014-0578-6.
|
[6]
|
M. Awad and R. Khanna, Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, Apress, Berkeley, CA, 2015.
doi: 10.1007/978-1-4302-5990-9.
|
[7]
|
S. Babaie–Kafaki, R. Ghanbari and N. Mahdavi–Amiri, An efficient and practically robust hybrid metaheuristic algorithm for solving fuzzy bus terminal location problems, Asia–Pac. J. Oper. Res., 29 (2012), 1-25.
doi: 10.1142/S0217595912500091.
|
[8]
|
S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Hybridizations of genetic algorithms and neighborhood search metaheuristics for fuzzy bus terminal location problems, Appl. Soft Comput., 46 (2016), 220-229.
doi: 10.1016/j.asoc.2016.03.005.
|
[9]
|
S. Roozbeh and M. Babaie-Kafakiand, A revised Cholesky decomposition to combat multicollinearity in multiple regression models, J. Stat. Comput. Simul., 87 (2017), 2298-2308.
doi: 10.1080/00949655.2017.1328599.
|
[10]
|
M. R. Baye and D. F. Parker, Combining ridge and principal component regression: A money demand illustration, Comm. Statist. A—Theory Methods, 13 (1984), 197-205.
doi: 10.1080/03610928408828675.
|
[11]
|
E. R. Berndt, The Practice of Econometrics, New York, Addison-Wesley, 1991.
|
[12]
|
D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, Massachusetts, 1997.
|
[13]
|
P. Bühlmann, M. Kalisch and L. Meier, High–dimensional statistics with a view towards applications in biology, Ann. Rev. Stat. Appl., 1 (2014), 255-278.
|
[14]
|
R. H. Byrd and J. Nocedal, A tool for the analysis of quasi–Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.
doi: 10.1137/0726042.
|
[15]
|
M. Hassanzadeh Bashtian, M. Arashi and S. M. M. Tabatabaey, Using improved estimation strategies to combat multicollinearity, J. Stat. Comput. Simul., 81 (2011), 1773-1797.
doi: 10.1080/00949655.2010.505925.
|
[16]
|
S. Hawkins, H. He, G. Williams and R. Baxter, Outlier detection using replicator neural networks, in International Conference on Data Warehousing and Knowledge Discovery, Springer, Berlin, Heidelberg, (2002), 170–180.
doi: 10.1007/3-540-46145-0_17.
|
[17]
|
D. Henderson, S. H. Jacobson and A. W. Johnson, The theory and practice of simulated annealing, in Handbook of Metaheuristics, Kluwer Academic Publishers, Boston, MA, (2003), 287–319.
doi: 10.1007/0-306-48056-5_10.
|
[18]
|
A. E. Hoerl and R. W. Kennard, Ridge regression: Biased estimation for non–orthogonal problems, Technometrics, 12 (1970), 55-67.
|
[19]
|
P. W. Holland and R. E. Welsch, Robust regression using iteratively reweighted least–squares, Comm. Statist. Theo. Meth., 6 (1977), 813-827.
|
[20]
|
G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning, Springer, New York, 2013.
doi: 10.1007/978-1-4614-7138-7.
|
[21]
|
S. Kaçiranlar and S. Sakallioǧlu, Combining the Liu estimator and the principal component regression estimator, Comm. Statist. Theory Methods, 30 (2001), 2699-2705.
doi: 10.1081/STA-100108454.
|
[22]
|
A. Karatzoglou, D. Meyer and K. Hornik, Support Vector Machines in R, J. Stat. Softw., 15 (2006), 1-28.
|
[23]
|
K. J. Liu, A new class of biased estimate in linear regression, Comm. Statist. Theory Methods, 22 (1993), 393-402.
doi: 10.1080/03610929308831027.
|
[24]
|
A. Mohammad Nezhad, R. Aliakbari Shandiz and A. H. Eshraghniaye Jahromi, A particle swarm–BFGS algorithm for nonlinear programming problems, Comput. Oper. Res., 40 (2013), 963-972.
doi: 10.1016/j.cor.2012.11.008.
|
[25]
|
G. Piazza and T. Politi, An upper bound for the condition number of a matrix in spectral norm, J. Comput. Appl. Math., 143 (2002), 141-144.
doi: 10.1016/S0377-0427(02)00396-5.
|
[26]
|
W. M. Pride and O. C. Ferrel, Marketing, 15th edition, South-Western, Cengage Learning, International Edition, 2010.
|
[27]
|
C. R. Reeves, Modern heuristic techniques, in Modern Heuristic Search Methods, John Wiley and Sons, Chichester, (1996), 1–24.
|
[28]
|
M. Roozbeh, Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion, Computational Statistics & Data Analysis, 117 (2018), 45-61.
doi: 10.1016/j.csda.2017.08.002.
|
[29]
|
M. Roozbeh, S. Babaie-Kafaki and M. Arashi, A class of biased estimators based on QR decomposition, Linear Algebra Appl., 508 (2016), 190-205.
doi: 10.1016/j.laa.2016.07.009.
|
[30]
|
M. Roozbeh, S. Babaie-Kafaki and A. Naeimi Sadigh, A heuristic approach to combat multicollinearity in least trimmed squares regression analysis, Appl. Math. Model, 57 (2018), 105-120.
doi: 10.1016/j.apm.2017.11.011.
|
[31]
|
M. Roozbeh, Robust ridge estimator in restricted semiparametric regression models, J. Multivariate Anal., 147 (2016), 127-144.
doi: 10.1016/j.jmva.2016.01.005.
|
[32]
|
P. J. Rousseeuw, Least median of squares regression, J. Amer. Statist. Assoc., 79 (1984), 871-880.
doi: 10.1080/01621459.1984.10477105.
|
[33]
|
P. J. Rousseeuw, and A. M. Leroy, Robust Regression and Outlier Detection, John Wiley and Sons, New York, 1987.
doi: 10.1002/0471725382.
|
[34]
|
S. J. Sheather, A Modern Approach to Regression with R, Springer, New York, 2009.
doi: 10.1007/978-0-387-09608-7.
|
[35]
|
W. Sun and Y. X. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006.
|
[36]
|
P. Tryfos, Methods for Business Analysis and Forecasting: Text & Cases, John Wiley and Sons, New York, 1998.
|
[37]
|
D. S. Watkins, Fundamentals of Matrix Computations, 2nd edition, John Wiley and Sons, New York, 2002.
doi: 10.1002/0471249718.
|
[38]
|
X. S. Yang, Nature–Inspired Optimization Algorithms, Elsevier, Amsterdam, 2014.
|