
-
Previous Article
Effects of take-back legislation on pricing and coordination in a closed-loop supply chain
- JIMO Home
- This Issue
-
Next Article
Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort
A polyhedral conic functions based classification method for noisy data
Department of Industrial Engineering, Faculty of Engineering, Eskisehir Technical University Eskisehir, 26555, Turkey |
This paper presents a robust binary classification method, which is an extended version of the Modified Polyhedral Conic Functions (M-PCF) algorithm, earlier developed by Gasimov and Ozturk. The new version presented in this paper, has new features in comparison to the original algorithm. The mathematical model used in the new version, is relaxed by allowing some inaccuracies in an optimal way. By this way, it is aimed to reduce the overfitting and improve the generalization property. In the original version, the sublevel set of a separating function generated at every iteration, does not contain any element of the other set. This is changed in the new version, where the sublevel sets of separating functions generated by the new algorithm, are allowed to contain some elements from other set. On the other hand, the new algorithm uses a tolerance parameter which prevents generating "less productive separating functions". In the original version, the algorithm continues till all points of the "first" set are separated from the second one, where a separating function is generated if there still exist unseparated elements regardless the number of such elements. In the new version, the tolerance parameter is used to terminate iterations if there are only a few unseparated elements. By this way, it is aimed to improve the generalization property of the algorithm, and therefore the new version is called Parameterized Polyhedral Conic Functions (P-PCF) method. The performance and efficiency of the proposed algorithm is demonstrated on well-known datasets from the literature and on noisy data.
References:
[1] |
A. Astorino and M. Gaudioso,
Polyhedral separability through successive LP, Journal of Optimization Theory and Applications, 112 (2002), 265-293.
doi: 10.1023/A:1013649822153. |
[2] |
K. Bache and M. Lichman, UCI Machine Learning Repository. University of California, School of Information and Computer Science, (2013)., http://archive.ics.uci.edu/ml Google Scholar |
[3] |
A. M. Bagirov,
Max–min separability, Optimization Methods and Software, 20 (2005), 277-296.
doi: 10.1080/10556780512331318263. |
[4] |
A. M. Bagirov, G. Ozturk and R. Kasimbeyli,
A sharp augmented Lagrangian-based method in constrained non-convex optimization, Optimization Methods and Software, 34 (2019), 462-488.
doi: 10.1080/10556788.2018.1496431. |
[5] |
A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and and R. Kasimbeyli,
A novel piecewise linear classifier based on polyhedral conic and max–min separabilities, TOP, 21 (2013), 3-24.
doi: 10.1007/s11750-011-0241-5. |
[6] |
K. P. Bennett and O. L. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optimization Methods and Software, 1 (1992), 23-34. Google Scholar |
[7] |
C. E. Brodley and M. A. Friedl, Identifying mislabeled training data, Journal of Artificial Intelligence Research, 11 (1999), 131-167. Google Scholar |
[8] |
E. Cimen and G. Ozturk, O-PCF algorithm for one-class classification, Optimization Methods and Software, (2019), 1–15. Google Scholar |
[9] |
W. W. Cohen, Fast effective rule induction, Proceedings of the Twelfth International Conference on Machine Learning, ML95, San Francisco, CA, 115–123. Google Scholar |
[10] |
C. Cortes and V. Vapnik,
Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018. |
[11] |
R. N. Gasimov and G. Ozturk,
Separation via polyhedral conic functions, Optimization Methods and Software, 21 (2006), 527-540.
doi: 10.1080/10556780600723252. |
[12] |
R. N. Gasimov and O. Ustun,
Solving the quadratic assignment problem using F-MSG algorithm, Journal of Industrial and Management Optimization, 3 (2007), 173-191.
doi: 10.3934/jimo.2007.3.173. |
[13] |
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The WEKA data mining software: An update, SIGKDD Explorations, 11 (2003), 10-18. Google Scholar |
[14] |
N. Kasimbeyli and R. Kasimbeyli,
A representation theorem for Bishop-Phelps cones, Pacific Journal of Optimization, 13 (2017), 55-74.
|
[15] |
R. Kasimbeyli,
A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM Journal on Optimization, 20 (2010), 1591-1619.
doi: 10.1137/070694089. |
[16] |
R. Kasimbeyli,
Radial epiderivatives and set-valued optimization, Optimization, 58 (2009), 521-534.
doi: 10.1080/02331930902928310. |
[17] |
R. Kasimbeyli and M. Karimi,
Separation theorems for nonconvex sets and application in optimization, Operations Research Letters, 47 (2019), 569-573.
doi: 10.1016/j.orl.2019.09.011. |
[18] |
R. Kasimbeyli and M. Mammadov,
Optimality conditions in nonconvex optimization via weak subdifferentials, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 2534-2547.
doi: 10.1016/j.na.2010.12.008. |
[19] |
R. Kasimbeyli, O. Ustun and A. Rubinov,
The modified subgradient algorithm based on feasible values, Optimization, 58 (2009), 535-560.
doi: 10.1080/02331930902928419. |
[20] |
D. T. Larose and C. D. Larose, Discovering knowledge in data: An introduction to data mining, John Wiley & Sons, Hoboken, NJ, 2005. |
[21] |
C. J. Mantas and J. Abell'an, Credal-C4.5 decision tree based on imprecise probabilities to classify noisy data. Expert Systems with Applications, 41(10) (2014), 4625-4637. Google Scholar |
[22] |
G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons, Inc., New York, 1992.
doi: 10.1002/0471725293. |
[23] |
G. Ozturk, A. M. Bagirov and R. Kasimbeyli,
An incremental piecewise linear classifier based on polyhedral conic separation, Machine Learning, 101 (2015), 397-413.
doi: 10.1007/s10994-014-5449-9. |
[24] |
G. Ozturk and M. T. Ciftci,
Clustering based polyhedral conic functions algorithm in classification, Journal of Industrial and Management Optimization, 11 (3) (2015), 921-932.
doi: 10.3934/jimo.2015.11.921. |
[25] |
J. R. Quinlan, The effect of noise on concept learning, Machine Learning, (1986), 149–166. Google Scholar |
[26] |
A. M. Rubinov and R. N. Gasimov,
Strictly increasing positively homogeneous functions with applications to exact penalization, Optimization, 52 (2003), 1-28.
doi: 10.1080/0233193021000058931. |
[27] |
J. A. Sáez, M. Galar, J. Luengo and F. Herrera, Tackling the problem of classification with noisy data using multiple classifier systems: Analysis of the performance and robustness, Information Sciences, 247 (2013), 1-20. Google Scholar |
[28] |
X. Zhu and X. Wu, Class noise vs. attribute noise: A quantitative study, Artificial Intelligence Review, 22 (2004), 177-210. Google Scholar |
show all references
References:
[1] |
A. Astorino and M. Gaudioso,
Polyhedral separability through successive LP, Journal of Optimization Theory and Applications, 112 (2002), 265-293.
doi: 10.1023/A:1013649822153. |
[2] |
K. Bache and M. Lichman, UCI Machine Learning Repository. University of California, School of Information and Computer Science, (2013)., http://archive.ics.uci.edu/ml Google Scholar |
[3] |
A. M. Bagirov,
Max–min separability, Optimization Methods and Software, 20 (2005), 277-296.
doi: 10.1080/10556780512331318263. |
[4] |
A. M. Bagirov, G. Ozturk and R. Kasimbeyli,
A sharp augmented Lagrangian-based method in constrained non-convex optimization, Optimization Methods and Software, 34 (2019), 462-488.
doi: 10.1080/10556788.2018.1496431. |
[5] |
A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and and R. Kasimbeyli,
A novel piecewise linear classifier based on polyhedral conic and max–min separabilities, TOP, 21 (2013), 3-24.
doi: 10.1007/s11750-011-0241-5. |
[6] |
K. P. Bennett and O. L. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optimization Methods and Software, 1 (1992), 23-34. Google Scholar |
[7] |
C. E. Brodley and M. A. Friedl, Identifying mislabeled training data, Journal of Artificial Intelligence Research, 11 (1999), 131-167. Google Scholar |
[8] |
E. Cimen and G. Ozturk, O-PCF algorithm for one-class classification, Optimization Methods and Software, (2019), 1–15. Google Scholar |
[9] |
W. W. Cohen, Fast effective rule induction, Proceedings of the Twelfth International Conference on Machine Learning, ML95, San Francisco, CA, 115–123. Google Scholar |
[10] |
C. Cortes and V. Vapnik,
Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018. |
[11] |
R. N. Gasimov and G. Ozturk,
Separation via polyhedral conic functions, Optimization Methods and Software, 21 (2006), 527-540.
doi: 10.1080/10556780600723252. |
[12] |
R. N. Gasimov and O. Ustun,
Solving the quadratic assignment problem using F-MSG algorithm, Journal of Industrial and Management Optimization, 3 (2007), 173-191.
doi: 10.3934/jimo.2007.3.173. |
[13] |
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The WEKA data mining software: An update, SIGKDD Explorations, 11 (2003), 10-18. Google Scholar |
[14] |
N. Kasimbeyli and R. Kasimbeyli,
A representation theorem for Bishop-Phelps cones, Pacific Journal of Optimization, 13 (2017), 55-74.
|
[15] |
R. Kasimbeyli,
A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM Journal on Optimization, 20 (2010), 1591-1619.
doi: 10.1137/070694089. |
[16] |
R. Kasimbeyli,
Radial epiderivatives and set-valued optimization, Optimization, 58 (2009), 521-534.
doi: 10.1080/02331930902928310. |
[17] |
R. Kasimbeyli and M. Karimi,
Separation theorems for nonconvex sets and application in optimization, Operations Research Letters, 47 (2019), 569-573.
doi: 10.1016/j.orl.2019.09.011. |
[18] |
R. Kasimbeyli and M. Mammadov,
Optimality conditions in nonconvex optimization via weak subdifferentials, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 2534-2547.
doi: 10.1016/j.na.2010.12.008. |
[19] |
R. Kasimbeyli, O. Ustun and A. Rubinov,
The modified subgradient algorithm based on feasible values, Optimization, 58 (2009), 535-560.
doi: 10.1080/02331930902928419. |
[20] |
D. T. Larose and C. D. Larose, Discovering knowledge in data: An introduction to data mining, John Wiley & Sons, Hoboken, NJ, 2005. |
[21] |
C. J. Mantas and J. Abell'an, Credal-C4.5 decision tree based on imprecise probabilities to classify noisy data. Expert Systems with Applications, 41(10) (2014), 4625-4637. Google Scholar |
[22] |
G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons, Inc., New York, 1992.
doi: 10.1002/0471725293. |
[23] |
G. Ozturk, A. M. Bagirov and R. Kasimbeyli,
An incremental piecewise linear classifier based on polyhedral conic separation, Machine Learning, 101 (2015), 397-413.
doi: 10.1007/s10994-014-5449-9. |
[24] |
G. Ozturk and M. T. Ciftci,
Clustering based polyhedral conic functions algorithm in classification, Journal of Industrial and Management Optimization, 11 (3) (2015), 921-932.
doi: 10.3934/jimo.2015.11.921. |
[25] |
J. R. Quinlan, The effect of noise on concept learning, Machine Learning, (1986), 149–166. Google Scholar |
[26] |
A. M. Rubinov and R. N. Gasimov,
Strictly increasing positively homogeneous functions with applications to exact penalization, Optimization, 52 (2003), 1-28.
doi: 10.1080/0233193021000058931. |
[27] |
J. A. Sáez, M. Galar, J. Luengo and F. Herrera, Tackling the problem of classification with noisy data using multiple classifier systems: Analysis of the performance and robustness, Information Sciences, 247 (2013), 1-20. Google Scholar |
[28] |
X. Zhu and X. Wu, Class noise vs. attribute noise: A quantitative study, Artificial Intelligence Review, 22 (2004), 177-210. Google Scholar |




No. | Attribute 1 | Attribute 2 | Class | Status |
1 | 0.26 | small | A | |
2 | 0.25 | small | A | |
3 | 0.29 | small | B | class noise |
4 | 1.02 | large | B | |
5 | 1.05 | large | B | |
6 | 0.30 | large | B | attribute noise |
No. | Attribute 1 | Attribute 2 | Class | Status |
1 | 0.26 | small | A | |
2 | 0.25 | small | A | |
3 | 0.29 | small | B | class noise |
4 | 1.02 | large | B | |
5 | 1.05 | large | B | |
6 | 0.30 | large | B | attribute noise |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(2, 4) | (3, 5) | (4, 19) | (5, 20) |
(2, 6) | (3, 7) | (6, 19) | (7, 20) |
(2, 8) | (3, 9) | (8, 19) | (11, 20) |
(2, 10) | (3, 11) | (10, 19) | (13, 20) |
(2, 12) | (3, 13) | (12, 19) | (15, 20) |
(2, 14) | (5, 5) | (14, 19) | (17, 20) |
(4, 4) | (5, 7) | (16, 19) | (17, 18) |
(4, 8) | (5, 9) | (18, 19) | (17, 16) |
(4, 10) | (5, 11) | (16, 17) | (17, 14) |
(4, 14) | (5, 13) | (18, 17) | (17, 12) |
(6, 4) | (7, 5) | (16, 15) | (17, 10) |
(6, 6) | (7, 7) | (18, 15) | - |
(6, 8) | (7, 9) | (16, 13) | - |
(6, 10) | (7, 11) | (18, 13) | - |
(6, 12) | (7, 13) | (16, 11) | - |
(6, 14) | (9, 5) | (16, 9) | - |
(8, 4) | (9, 7) | (18, 9) | - |
(8, 6) | (9, 9) | (17, 8) | - |
(8, 8) | (9, 11) | (17, 6) | - |
(8, 10) | (9, 13) | (17, 4) | - |
(8, 12) | (11, 5) | (14, 20.5) | - |
(8, 14) | (16, 7) | (4, 6) | - |
(10, 4) | (18, 7) | (10, 6) | - |
(10, 8) | (16, 5) | (4, 12) | - |
(10, 10) | (16, 3) | (10, 12) | - |
(10, 14) | (11, 7) | (6, 21) | - |
(12, 4) | (11, 9) | (10, 21) | - |
(12, 6) | (11, 11) | (12, 21) | - |
(12, 8) | (11, 13) | (16, 21) | - |
(12, 10) | - | (18, 21) | - |
(12, 12) | - | - | - |
(12, 14) | - | - | - |
(8, 21) | - | - | - |
(14, 21) | - | - | - |
(18, 11) | - | - | - |
(18, 5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(2, 4) | (3, 5) | (4, 19) | (5, 20) |
(2, 6) | (3, 7) | (6, 19) | (7, 20) |
(2, 8) | (3, 9) | (8, 19) | (11, 20) |
(2, 10) | (3, 11) | (10, 19) | (13, 20) |
(2, 12) | (3, 13) | (12, 19) | (15, 20) |
(2, 14) | (5, 5) | (14, 19) | (17, 20) |
(4, 4) | (5, 7) | (16, 19) | (17, 18) |
(4, 8) | (5, 9) | (18, 19) | (17, 16) |
(4, 10) | (5, 11) | (16, 17) | (17, 14) |
(4, 14) | (5, 13) | (18, 17) | (17, 12) |
(6, 4) | (7, 5) | (16, 15) | (17, 10) |
(6, 6) | (7, 7) | (18, 15) | - |
(6, 8) | (7, 9) | (16, 13) | - |
(6, 10) | (7, 11) | (18, 13) | - |
(6, 12) | (7, 13) | (16, 11) | - |
(6, 14) | (9, 5) | (16, 9) | - |
(8, 4) | (9, 7) | (18, 9) | - |
(8, 6) | (9, 9) | (17, 8) | - |
(8, 8) | (9, 11) | (17, 6) | - |
(8, 10) | (9, 13) | (17, 4) | - |
(8, 12) | (11, 5) | (14, 20.5) | - |
(8, 14) | (16, 7) | (4, 6) | - |
(10, 4) | (18, 7) | (10, 6) | - |
(10, 8) | (16, 5) | (4, 12) | - |
(10, 10) | (16, 3) | (10, 12) | - |
(10, 14) | (11, 7) | (6, 21) | - |
(12, 4) | (11, 9) | (10, 21) | - |
(12, 6) | (11, 11) | (12, 21) | - |
(12, 8) | (11, 13) | (16, 21) | - |
(12, 10) | - | (18, 21) | - |
(12, 12) | - | - | - |
(12, 14) | - | - | - |
(8, 21) | - | - | - |
(14, 21) | - | - | - |
(18, 11) | - | - | - |
(18, 5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(14.5, -2) | (-0.5, 2) | (1, 6) | (20, -6) |
(0.5, 2) | (14.5, 2) | (-6, -6) | (-6, -1) |
(2, -0.5) | (13.5, -2) | (8, -1) | (-1, -6) |
(-2, 2) | - | (15, -6) | (8, 6) |
(16, -0.5) | - | (-6, 6) | (8, 1) |
(16, 0.5) | - | (8, -6) | (15, 6) |
(12, -2) | - | (6, 6) | (-6, 1) |
(0.5, -2) | - | (6, 1) | (1, -6) |
(12, 0.5) | - | (20, 1) | (6, 1) |
(16, -2) | - | (20, -1) | - |
(2, 2) | - | (20, 6) | - |
(2, 0.5) | - | (13, 6) | - |
(-2, -2) | - | (-1, 6) | - |
(12, 2) | - | (6, -6) | - |
(13.5, 2) | - | (13, -6) | - |
(-0.5, -2) | - | - | - |
(2, -0.5) | - | - | - |
(16, 2) | - | - | - |
(-2, 0.5) | - | - | - |
(-2, -0.5) | - | - | - |
(12, -0.5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(14.5, -2) | (-0.5, 2) | (1, 6) | (20, -6) |
(0.5, 2) | (14.5, 2) | (-6, -6) | (-6, -1) |
(2, -0.5) | (13.5, -2) | (8, -1) | (-1, -6) |
(-2, 2) | - | (15, -6) | (8, 6) |
(16, -0.5) | - | (-6, 6) | (8, 1) |
(16, 0.5) | - | (8, -6) | (15, 6) |
(12, -2) | - | (6, 6) | (-6, 1) |
(0.5, -2) | - | (6, 1) | (1, -6) |
(12, 0.5) | - | (20, 1) | (6, 1) |
(16, -2) | - | (20, -1) | - |
(2, 2) | - | (20, 6) | - |
(2, 0.5) | - | (13, 6) | - |
(-2, -2) | - | (-1, 6) | - |
(12, 2) | - | (6, -6) | - |
(13.5, 2) | - | (13, -6) | - |
(-0.5, -2) | - | - | - |
(2, -0.5) | - | - | - |
(16, 2) | - | - | - |
(-2, 0.5) | - | - | - |
(-2, -0.5) | - | - | - |
(12, -0.5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(16, 0.5) | (12, -2) | (-6, -6) | (6, 6) |
(-0.5, -2) | (0.5, -2) | (8, -1) | (6, 1) |
(16, 2) | (12, 0.5) | (15, -6) | (20, 1) |
(-2, 0.5) | (16, -2) | (-6, 6) | (20, -1) |
(12, -0.5) | (2, 2) | (6, -6) | (20, 6) |
(1, 6) | (2, 0.5) | (-6, -1) | (13, 6) |
(8, -6) | - | (8, 6) | - |
(-1, 6) | - | (8, 1) | - |
(13, -6) | - | (15, 6) | - |
(20, -6) | - | (6, -1) | - |
(-1, -6) | - | (14.5, -2) | - |
(-6, 1) | - | (0.5, 2) | - |
(1, -6) | - | (2, -2) | - |
- | - | (-2, 2) | - |
- | - | (16, -0, 5) | - |
- | - | (-2, -2) | - |
- | - | (12, 2) | - |
- | - | (13.5, 2) | - |
- | - | (2, -0.5) | - |
- | - | (-2, -0.5) | - |
- | - | (-0.5, 2) | - |
- | - | (14.5, 2) | - |
- | - | (13.5, -2) | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(16, 0.5) | (12, -2) | (-6, -6) | (6, 6) |
(-0.5, -2) | (0.5, -2) | (8, -1) | (6, 1) |
(16, 2) | (12, 0.5) | (15, -6) | (20, 1) |
(-2, 0.5) | (16, -2) | (-6, 6) | (20, -1) |
(12, -0.5) | (2, 2) | (6, -6) | (20, 6) |
(1, 6) | (2, 0.5) | (-6, -1) | (13, 6) |
(8, -6) | - | (8, 6) | - |
(-1, 6) | - | (8, 1) | - |
(13, -6) | - | (15, 6) | - |
(20, -6) | - | (6, -1) | - |
(-1, -6) | - | (14.5, -2) | - |
(-6, 1) | - | (0.5, 2) | - |
(1, -6) | - | (2, -2) | - |
- | - | (-2, 2) | - |
- | - | (16, -0, 5) | - |
- | - | (-2, -2) | - |
- | - | (12, 2) | - |
- | - | (13.5, 2) | - |
- | - | (2, -0.5) | - |
- | - | (-2, -0.5) | - |
- | - | (-0.5, 2) | - |
- | - | (14.5, 2) | - |
- | - | (13.5, -2) | - |
P-PCF Algorithm | M-PCF Algorithm | |||
Training | Test | Training | Test | |
Original Data | 88.89 | 85.41 | 100 | 83.33 |
Noisy Data | 61.80 | 56.25 | 100 | 52.08 |
P-PCF Algorithm | M-PCF Algorithm | |||
Training | Test | Training | Test | |
Original Data | 88.89 | 85.41 | 100 | 83.33 |
Noisy Data | 61.80 | 56.25 | 100 | 52.08 |
Dataset | Short Name | ||||
Wisconsin Breast Cancer | Wis | 683 | 444 | 239 | 10 |
German-Credit | Ger | 1000 | 700 | 300 | 21 |
Haberman | Hab | 306 | 225 | 81 | 4 |
Hearth-statlog | Hea | 270 | 137 | 160 | 14 |
Ionosphere | Ion | 351 | 126 | 225 | 35 |
Liver-disorders | Liv | 345 | 145 | 200 | 7 |
Sonar | Son | 208 | 111 | 107 | 61 |
Australian credit | Aus | 690 | 383 | 307 | 14 |
Monk | Monk | 432 | 228 | 204 | 6 |
Dataset | Short Name | ||||
Wisconsin Breast Cancer | Wis | 683 | 444 | 239 | 10 |
German-Credit | Ger | 1000 | 700 | 300 | 21 |
Haberman | Hab | 306 | 225 | 81 | 4 |
Hearth-statlog | Hea | 270 | 137 | 160 | 14 |
Ionosphere | Ion | 351 | 126 | 225 | 35 |
Liver-disorders | Liv | 345 | 145 | 200 | 7 |
Sonar | Son | 208 | 111 | 107 | 61 |
Australian credit | Aus | 690 | 383 | 307 | 14 |
Monk | Monk | 432 | 228 | 204 | 6 |
M-PCF Algorithm | P-PCF Algorithm | |||
Training | Test | Training | Test | |
Wis | 100 | 98.50 | 98.59 | 96.13 |
Ger | 100 | 72.41 | 82.56 | 73.80 |
Hab | 100 | 74.27 | 86.97 | 74.25 |
Hea | 100 | 84.41 | 93.67 | 84.76 |
Ion | 100 | 88.42 | 94.87 | 88.96 |
Liv | 100 | 68.87 | 78.43 | 69.40 |
Son | 100 | 70.24 | 80.47 | 71.09 |
Aus | 100 | 85.42 | 87.2 | 86.23 |
Monk | 100 | 99.82 | 100 | 99.02 |
M-PCF Algorithm | P-PCF Algorithm | |||
Training | Test | Training | Test | |
Wis | 100 | 98.50 | 98.59 | 96.13 |
Ger | 100 | 72.41 | 82.56 | 73.80 |
Hab | 100 | 74.27 | 86.97 | 74.25 |
Hea | 100 | 84.41 | 93.67 | 84.76 |
Ion | 100 | 88.42 | 94.87 | 88.96 |
Liv | 100 | 68.87 | 78.43 | 69.40 |
Son | 100 | 70.24 | 80.47 | 71.09 |
Aus | 100 | 85.42 | 87.2 | 86.23 |
Monk | 100 | 99.82 | 100 | 99.02 |
Datasets | M-PCF | P-PCF | SVM | 1-NN | 3-NN | C 4.5 |
Wis | 98.50 | 96.13 | 95.91 | 91.21 | 95.61 | 92.39 |
Ger | 72.41 | 73.80 | 70.35 | 68.50 | 67.70 | 74.5 |
Hab | 74.27 | 74.25 | 73.82 | 68.48 | 68.28 | 69.42 |
Hea | 84.41 | 84.76 | 78.88 | 69.99 | 68.47 | 70.73 |
Ion | 88.42 | 88.96 | 90.48 | 90.22 | 89.98 | 89.87 |
Liv | 68.87 | 69.40 | 61.12 | 59.17 | 58.87 | 58.96 |
Son | 70.24 | 71.09 | 78.21 | 89.75 | 82.52 | 71.18 |
Aus | 85.42 | 86.23 | 85.51 | 80.73 | 85.8 | 84.35 |
Monk2 | 99.82 | 92.02 | 80.56 | 75.69 | 97.92 | 99.5 |
Datasets | M-PCF | P-PCF | SVM | 1-NN | 3-NN | C 4.5 |
Wis | 98.50 | 96.13 | 95.91 | 91.21 | 95.61 | 92.39 |
Ger | 72.41 | 73.80 | 70.35 | 68.50 | 67.70 | 74.5 |
Hab | 74.27 | 74.25 | 73.82 | 68.48 | 68.28 | 69.42 |
Hea | 84.41 | 84.76 | 78.88 | 69.99 | 68.47 | 70.73 |
Ion | 88.42 | 88.96 | 90.48 | 90.22 | 89.98 | 89.87 |
Liv | 68.87 | 69.40 | 61.12 | 59.17 | 58.87 | 58.96 |
Son | 70.24 | 71.09 | 78.21 | 89.75 | 82.52 | 71.18 |
Aus | 85.42 | 86.23 | 85.51 | 80.73 | 85.8 | 84.35 |
Monk2 | 99.82 | 92.02 | 80.56 | 75.69 | 97.92 | 99.5 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 86.84 | 96.14 | 96.34 | 89.16 | 94.29 | 92.80 |
Ger | 70.8 | 72.40 | 73.37 | 68.44 | 65.98 | 63.01 |
Hab | 63.9 | 74.44 | 72.17 | 67.29 | 66.25 | 68.47 |
Hea | 68.89 | 78.44 | 77.84 | 62.58 | 67.03 | 69.99 |
Ion | 67.85 | 85.84 | 89.18 | 88.02 | 89.10 | 88.28 |
Liv | 61.46 | 67.76 | 55.29 | 59.52 | 53.85 | 59.45 |
Son | 67.14 | 70.52 | 74.37 | 86.53 | 83.31 | 68.64 |
Aus | 78.21 | 85.37 | 81.74 | 72.75 | 80.15 | 81.16 |
Monk | 88.42 | 98.21 | 77.55 | 73.84 | 90.05 | 95.14 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 86.84 | 96.14 | 96.34 | 89.16 | 94.29 | 92.80 |
Ger | 70.8 | 72.40 | 73.37 | 68.44 | 65.98 | 63.01 |
Hab | 63.9 | 74.44 | 72.17 | 67.29 | 66.25 | 68.47 |
Hea | 68.89 | 78.44 | 77.84 | 62.58 | 67.03 | 69.99 |
Ion | 67.85 | 85.84 | 89.18 | 88.02 | 89.10 | 88.28 |
Liv | 61.46 | 67.76 | 55.29 | 59.52 | 53.85 | 59.45 |
Son | 67.14 | 70.52 | 74.37 | 86.53 | 83.31 | 68.64 |
Aus | 78.21 | 85.37 | 81.74 | 72.75 | 80.15 | 81.16 |
Monk | 88.42 | 98.21 | 77.55 | 73.84 | 90.05 | 95.14 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 84.27 | 95.85 | 96.05 | 86.52 | 91.95 | 93.26 |
Ger | 68.4 | 73.8 | 70.64 | 65.28 | 64.97 | 60.24 |
Hab | 60.54 | 75.65 | 70.28 | 64.23 | 65.42 | 67.93 |
Hea | 68.52 | 79.26 | 76.03 | 58.14 | 62.95 | 65.18 |
Ion | 65.45 | 83.17 | 81.57 | 86.25 | 88.47 | 85.23 |
Liv | 60.29 | 67.49 | 55.50 | 54.07 | 59.20 | 51.36 |
Son | 62.64 | 68.56 | 73.97 | 81.18 | 81.11 | 52.36 |
Aus | 72.01 | 83.48 | 77.54 | 69.42 | 74.93 | 74.89 |
Monk | 78.56 | 96.98 | 74.77 | 69.91 | 81.48 | 89.35 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 84.27 | 95.85 | 96.05 | 86.52 | 91.95 | 93.26 |
Ger | 68.4 | 73.8 | 70.64 | 65.28 | 64.97 | 60.24 |
Hab | 60.54 | 75.65 | 70.28 | 64.23 | 65.42 | 67.93 |
Hea | 68.52 | 79.26 | 76.03 | 58.14 | 62.95 | 65.18 |
Ion | 65.45 | 83.17 | 81.57 | 86.25 | 88.47 | 85.23 |
Liv | 60.29 | 67.49 | 55.50 | 54.07 | 59.20 | 51.36 |
Son | 62.64 | 68.56 | 73.97 | 81.18 | 81.11 | 52.36 |
Aus | 72.01 | 83.48 | 77.54 | 69.42 | 74.93 | 74.89 |
Monk | 78.56 | 96.98 | 74.77 | 69.91 | 81.48 | 89.35 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 79.56 | 95.43 | 95.32 | 81.24 | 84.91 | 90.19 |
Ger | 65.8 | 71.56 | 65.14 | 60.48 | 62.11 | 61.40 |
Hab | 54.28 | 74.54 | 67.25 | 63.28 | 62.47 | 65.37 |
Hea | 67.04 | 74.82 | 69.46 | 56.91 | 58.14 | 60.60 |
Ion | 62.03 | 80.34 | 81.43 | 82.27 | 86.07 | 79.45 |
Liv | 59.72 | 66.70 | 54.28 | 55.01 | 58.76 | 51.69 |
Son | 59.64 | 65.98 | 70.84 | 73.91 | 78.21 | 63.9 |
Aus | 64.34 | 82.03 | 70.73 | 63.04 | 65.36 | 68.41 |
Monk | 71.78 | 92.34 | 66.9 | 62.73 | 70.83 | 77.55 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 79.56 | 95.43 | 95.32 | 81.24 | 84.91 | 90.19 |
Ger | 65.8 | 71.56 | 65.14 | 60.48 | 62.11 | 61.40 |
Hab | 54.28 | 74.54 | 67.25 | 63.28 | 62.47 | 65.37 |
Hea | 67.04 | 74.82 | 69.46 | 56.91 | 58.14 | 60.60 |
Ion | 62.03 | 80.34 | 81.43 | 82.27 | 86.07 | 79.45 |
Liv | 59.72 | 66.70 | 54.28 | 55.01 | 58.76 | 51.69 |
Son | 59.64 | 65.98 | 70.84 | 73.91 | 78.21 | 63.9 |
Aus | 64.34 | 82.03 | 70.73 | 63.04 | 65.36 | 68.41 |
Monk | 71.78 | 92.34 | 66.9 | 62.73 | 70.83 | 77.55 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 69.95 | 92.85 | 92.74 | 75.41 | 77.31 | 87.56 |
Ger | 62.4 | 69.21 | 63.78 | 57.62 | 56.70 | 53.17 |
Hab | 51.83 | 68.66 | 62.87 | 61.82 | 60.44 | 63.53 |
Hea | 60.37 | 68.15 | 65.28 | 51.47 | 53.69 | 46.60 |
Ion | 61.48 | 80.71 | 76.98 | 78.51 | 84.27 | 77.81 |
Liv | 56.58 | 63.37 | 54.12 | 48.66 | 55.40 | 43.45 |
Son | 52.64 | 60.01 | 68.64 | 65.23 | 72.80 | 65.75 |
Aus | 52.78 | 73.77 | 62.46 | 55.65 | 55.8 | 58.84 |
Monk | 51.47 | 90.61 | 60.19 | 53.7 | 60.42 | 66.44 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 69.95 | 92.85 | 92.74 | 75.41 | 77.31 | 87.56 |
Ger | 62.4 | 69.21 | 63.78 | 57.62 | 56.70 | 53.17 |
Hab | 51.83 | 68.66 | 62.87 | 61.82 | 60.44 | 63.53 |
Hea | 60.37 | 68.15 | 65.28 | 51.47 | 53.69 | 46.60 |
Ion | 61.48 | 80.71 | 76.98 | 78.51 | 84.27 | 77.81 |
Liv | 56.58 | 63.37 | 54.12 | 48.66 | 55.40 | 43.45 |
Son | 52.64 | 60.01 | 68.64 | 65.23 | 72.80 | 65.75 |
Aus | 52.78 | 73.77 | 62.46 | 55.65 | 55.8 | 58.84 |
Monk | 51.47 | 90.61 | 60.19 | 53.7 | 60.42 | 66.44 |
[1] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[2] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[3] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[4] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[5] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021038 |
[8] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[9] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[10] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[11] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[12] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[13] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]