doi: 10.3934/jimo.2020131

Continuity, differentiability and semismoothness of generalized tensor functions

School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author: Yong Wang

Received  February 2020 Revised  May 2020 Published  August 2020

A large number of real-world problems can be transformed into mathematical problems by means of third-order real tensors. Recently, as an extension of the generalized matrix function, the generalized tensor function over the third-order real tensor space was introduced with the aid of a scalar function based on the T-product for third-order tensors and the tensor singular value decomposition; and some useful algebraic properties of the function were investigated. In this paper, we show that the generalized tensor function can inherit a lot of good properties from the associated scalar function, including continuity, directional differentiability, Fréchet differentiability, Lipschitz continuity and semismoothness. These properties provide an important theoretical basis for the studies of various mathematical problems with generalized tensor functions, and particularly, for the studies of tensor optimization problems with generalized tensor functions.

Citation: Xia Li, Yong Wang, Zheng-Hai Huang. Continuity, differentiability and semismoothness of generalized tensor functions. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020131
References:
[1]

B. P. W. Ames and H. S. Sendov, Derivatives of compound matrix valued functions, Journal of Mathematical Analysis and Applications, 433 (2016), 1459-1485.  doi: 10.1016/j.jmaa.2015.08.029.  Google Scholar

[2]

F. AnderssonM. Carlsson and K. M. Perfekt, Operator-Lipschitz estimates for the singular value functional calculus, Proceedings of the American Mathematical Society, 144 (2016), 1867-1875.  doi: 10.1090/proc/12843.  Google Scholar

[3]

F. ArrigoM. Benzi and C. Fenu, Computation of generalized matrix functions, SIAM Journal on Matrix Analysis and Applications, 37 (2016), 836-860.  doi: 10.1137/15M1049634.  Google Scholar

[4]

J. L. AurentzA. P. AustinM. Benzi and V. Kalantzis, Stable computation of generalized matrix functions via polynomial interpolation, SIAM Journal on Matrix Analysis and Applications, 40 (2019), 210-234.  doi: 10.1137/18M1191786.  Google Scholar

[5]

M. Benzi and R. Huang, Some matrix properties preserved by generalized matrix functions, Special Matrices, 7 (2019), 27-37.  doi: 10.1515/spma-2019-0003.  Google Scholar

[6]

R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0653-8.  Google Scholar

[7]

K. Braman, Third-order tensors as linear operators on a space of matrices, Linear Algebra and its Applications, 433 (2010), 1241-1253.  doi: 10.1016/j.laa.2010.05.025.  Google Scholar

[8]

R. H. F. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, PA, 2007. doi: 10.1137/1.9780898718850.  Google Scholar

[9]

X. ChenH. Qi and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems, SIAM Journal on Optimization, 13 (2003), 960-985.  doi: 10.1137/S1052623400380584.  Google Scholar

[10]

X. Chen and P. Tseng, Non-interior continuation methods for solving semidefinite complementarity problems, Mathematical Programming, 95 (2003), 431-474.  doi: 10.1007/s10107-002-0306-1.  Google Scholar

[11]

F. H. Clarke, Optimization and Nonsmooth Analysis, Second edition, SIAM, Philadelphia, PA, 1990. doi: 10.1137/1.9781611971309.  Google Scholar

[12]

S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19 pp. doi: 10.1088/0266-5611/27/2/025010.  Google Scholar

[13]

D. Goldfarb and Z. Qin, Robust low-rank tensor recovery: Models and algorithms, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 225-253.  doi: 10.1137/130905010.  Google Scholar

[14]

G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University Press, Baltimore, MD, 2013.  Google Scholar

[15]

N. HaoM. E. KilmerK. Braman and R. C. Hoover, Facial recognition using tensor-tensor decompositions, SIAM Journal on Imaging Sciences, 6 (2013), 437-463.  doi: 10.1137/110842570.  Google Scholar

[16]

J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear and Multilinear Algebra, 1 (1973), 163-171.  doi: 10.1080/03081087308817015.  Google Scholar

[17]

N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[18]

A. Hjorungnes and D. Gesbert, Complex-valued matrix differentiation: Techniques and key results, IEEE Transactions on Signal Processing, 55 (2007), 2740-2746.  doi: 10.1109/TSP.2007.893762.  Google Scholar

[19]

Z. H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576.  doi: 10.1007/s10589-016-9872-7.  Google Scholar

[20]

M. E. KilmerK. BramanN. Hao and R. C. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 148-172.  doi: 10.1137/110837711.  Google Scholar

[21]

M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra and its Applications, 435 (2011), 641-658.  doi: 10.1016/j.laa.2010.09.020.  Google Scholar

[22]

J. LiuP. MusialskiP. Wonka and J. Ye, Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 208-220.  doi: 10.1109/TPAMI.2012.39.  Google Scholar

[23]

C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 5249–5257. doi: 10.1109/CVPR.2016.567.  Google Scholar

[24]

C. LuJ. FengY. ChenW. LiuZ. Lin and S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 42 (2020), 925-938.   Google Scholar

[25]

K. Lund, The tensor t-function: a definition for functions of third-order tensors, Numerical Linear Algebra with Applications, 27 (2020), e2288. doi: 10.1002/nla.2288.  Google Scholar

[26]

C. D. Martin, R. Shafer and B. LaRue, An order-p tensor factorization with applications in imaging, SIAM Journal on Scientific Computing, 35 (2013), A474–A490. doi: 10.1137/110841229.  Google Scholar

[27]

Y. MiaoL. Qi and Y. Wei, Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear Algebra and its Applications, 590 (2020), 258-303.  doi: 10.1016/j.laa.2019.12.035.  Google Scholar

[28]

Y. Miao, L. Qi and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Communications on Applied Mathematics and Computation, (2020). doi: 10.1007/s42967-019-00055-4.  Google Scholar

[29]

E. Newman, L. Horesh, H. Avron and M. E. Kilmer, Stable tensor neural networks for rapid deep learning, preprint, arXiv: 1811.06569 Google Scholar

[30]

V. Noferini, A formula for the Fréchet derivative of a generalized matrix function, SIAM Journal on Matrix Analysis and Applications, 38 (2017), 434-457.  doi: 10.1137/16M1072851.  Google Scholar

[31]

R. F. Rinehart, The equivalence of definitions of a matric function, American Mathematical Monthly, 62 (1955), 395-414.  doi: 10.1080/00029890.1955.11988651.  Google Scholar

[32]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer, Heidelberg, 2009. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[33]

N. D. SidiropoulosL. De LathauwerX. FuK. HuangE. E. Papalexakis and C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65 (2017), 3551-3582.  doi: 10.1109/TSP.2017.2690524.  Google Scholar

[34] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA, 1990.   Google Scholar
[35]

D. Sun and J. Sun, Semismooth matrix-valued functions, Mathematics of Operations Research, 27 (2002), 150-169.  doi: 10.1287/moor.27.1.150.342.  Google Scholar

[36]

Y. XieD. TaoW. ZhangY. LiuL. Zhang and Y. Qu, On unifying multi-view self-representations for clustering by tensor multi-rank minimization, International Journal of Computer Vision, 126 (2018), 1157-1179.  doi: 10.1007/s11263-018-1086-2.  Google Scholar

[37]

Y. XuZ. WuJ. Chanussot and Z. Wei, Joint reconstruction and anomaly detection from compressive hyperspectral images using Mahalanobis distance-regularized tensor RPCA, IEEE Transactions on Geoscience and Remote Sensing, 56 (2018), 2919-2930.  doi: 10.1109/TGRS.2017.2786718.  Google Scholar

[38]

Y. XuL. YuH. XuH. Zhang and T. Nguyen, Vector sparse representation of color image using quaternion matrix analysis, IEEE Transactions on Image Processing, 24 (2015), 1315-1329.  doi: 10.1109/TIP.2015.2397314.  Google Scholar

[39]

L. YangZ. H. HuangS. Hu and J. Han, An iterative algorithm for third-order tensor multi-rank minimization, Computational Optimization and Applications, 63 (2016), 169-202.  doi: 10.1007/s10589-015-9769-x.  Google Scholar

[40]

L. Yang, Z. H. Huang and Y. F. Li, A splitting augmented Lagrangian method for low multilinear-rank tensor recovery, Asia-Pacific Journal of Operational Research, 32 (2015), 1540008. doi: 10.1142/S0217595915400084.  Google Scholar

[41]

L. YangZ. H. Huang and X. Shi, A fixed point iterative method for low n-rank tensor pursuit, IEEE Transactions on Signal Processing, 61 (2013), 2952-2962.  doi: 10.1109/TSP.2013.2254477.  Google Scholar

[42]

Z. Yang, A Study on Nonsymmetric Matrix-valued Functions, Master's thesis, Department of Mathematics, National University of Singapore, 2009. Google Scholar

[43]

M. YinJ. GaoS. Xie and Y. Guo, Multiview subspace clustering via tensorial t-product representation, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 851-864.  doi: 10.1109/TNNLS.2018.2851444.  Google Scholar

[44]

M. Yuan and C. H. Zhang, On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.  doi: 10.1007/s10208-015-9269-5.  Google Scholar

[45]

M. ZhangL. Yang and Z. H. Huang, Minimum n-rank approximation via iterative hard thresholding, Applied Mathematics and Computation, 256 (2015), 860-875.  doi: 10.1016/j.amc.2015.01.099.  Google Scholar

[46]

Z. Zhang and S. Aeron, Exact tensor completion using t-SVD, IEEE Transactions on Signal Processing, 65 (2017), 1511-1526.  doi: 10.1109/TSP.2016.2639466.  Google Scholar

[47]

Z. Zhang, G. Ely, S. Aeron, N. Hao and M. E. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3842–3849. doi: 10.1109/CVPR.2014.485.  Google Scholar

[48]

P. ZhouC. LuZ. Lin and C. Zhang, Tensor factorization for low-rank tensor completion, IEEE Transactions on Image Processing, 27 (2018), 1152-1163.  doi: 10.1109/TIP.2017.2762595.  Google Scholar

show all references

References:
[1]

B. P. W. Ames and H. S. Sendov, Derivatives of compound matrix valued functions, Journal of Mathematical Analysis and Applications, 433 (2016), 1459-1485.  doi: 10.1016/j.jmaa.2015.08.029.  Google Scholar

[2]

F. AnderssonM. Carlsson and K. M. Perfekt, Operator-Lipschitz estimates for the singular value functional calculus, Proceedings of the American Mathematical Society, 144 (2016), 1867-1875.  doi: 10.1090/proc/12843.  Google Scholar

[3]

F. ArrigoM. Benzi and C. Fenu, Computation of generalized matrix functions, SIAM Journal on Matrix Analysis and Applications, 37 (2016), 836-860.  doi: 10.1137/15M1049634.  Google Scholar

[4]

J. L. AurentzA. P. AustinM. Benzi and V. Kalantzis, Stable computation of generalized matrix functions via polynomial interpolation, SIAM Journal on Matrix Analysis and Applications, 40 (2019), 210-234.  doi: 10.1137/18M1191786.  Google Scholar

[5]

M. Benzi and R. Huang, Some matrix properties preserved by generalized matrix functions, Special Matrices, 7 (2019), 27-37.  doi: 10.1515/spma-2019-0003.  Google Scholar

[6]

R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0653-8.  Google Scholar

[7]

K. Braman, Third-order tensors as linear operators on a space of matrices, Linear Algebra and its Applications, 433 (2010), 1241-1253.  doi: 10.1016/j.laa.2010.05.025.  Google Scholar

[8]

R. H. F. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, PA, 2007. doi: 10.1137/1.9780898718850.  Google Scholar

[9]

X. ChenH. Qi and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems, SIAM Journal on Optimization, 13 (2003), 960-985.  doi: 10.1137/S1052623400380584.  Google Scholar

[10]

X. Chen and P. Tseng, Non-interior continuation methods for solving semidefinite complementarity problems, Mathematical Programming, 95 (2003), 431-474.  doi: 10.1007/s10107-002-0306-1.  Google Scholar

[11]

F. H. Clarke, Optimization and Nonsmooth Analysis, Second edition, SIAM, Philadelphia, PA, 1990. doi: 10.1137/1.9781611971309.  Google Scholar

[12]

S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19 pp. doi: 10.1088/0266-5611/27/2/025010.  Google Scholar

[13]

D. Goldfarb and Z. Qin, Robust low-rank tensor recovery: Models and algorithms, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 225-253.  doi: 10.1137/130905010.  Google Scholar

[14]

G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University Press, Baltimore, MD, 2013.  Google Scholar

[15]

N. HaoM. E. KilmerK. Braman and R. C. Hoover, Facial recognition using tensor-tensor decompositions, SIAM Journal on Imaging Sciences, 6 (2013), 437-463.  doi: 10.1137/110842570.  Google Scholar

[16]

J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear and Multilinear Algebra, 1 (1973), 163-171.  doi: 10.1080/03081087308817015.  Google Scholar

[17]

N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, 2008. doi: 10.1137/1.9780898717778.  Google Scholar

[18]

A. Hjorungnes and D. Gesbert, Complex-valued matrix differentiation: Techniques and key results, IEEE Transactions on Signal Processing, 55 (2007), 2740-2746.  doi: 10.1109/TSP.2007.893762.  Google Scholar

[19]

Z. H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576.  doi: 10.1007/s10589-016-9872-7.  Google Scholar

[20]

M. E. KilmerK. BramanN. Hao and R. C. Hoover, Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 148-172.  doi: 10.1137/110837711.  Google Scholar

[21]

M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear Algebra and its Applications, 435 (2011), 641-658.  doi: 10.1016/j.laa.2010.09.020.  Google Scholar

[22]

J. LiuP. MusialskiP. Wonka and J. Ye, Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 208-220.  doi: 10.1109/TPAMI.2012.39.  Google Scholar

[23]

C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 5249–5257. doi: 10.1109/CVPR.2016.567.  Google Scholar

[24]

C. LuJ. FengY. ChenW. LiuZ. Lin and S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 42 (2020), 925-938.   Google Scholar

[25]

K. Lund, The tensor t-function: a definition for functions of third-order tensors, Numerical Linear Algebra with Applications, 27 (2020), e2288. doi: 10.1002/nla.2288.  Google Scholar

[26]

C. D. Martin, R. Shafer and B. LaRue, An order-p tensor factorization with applications in imaging, SIAM Journal on Scientific Computing, 35 (2013), A474–A490. doi: 10.1137/110841229.  Google Scholar

[27]

Y. MiaoL. Qi and Y. Wei, Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear Algebra and its Applications, 590 (2020), 258-303.  doi: 10.1016/j.laa.2019.12.035.  Google Scholar

[28]

Y. Miao, L. Qi and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Communications on Applied Mathematics and Computation, (2020). doi: 10.1007/s42967-019-00055-4.  Google Scholar

[29]

E. Newman, L. Horesh, H. Avron and M. E. Kilmer, Stable tensor neural networks for rapid deep learning, preprint, arXiv: 1811.06569 Google Scholar

[30]

V. Noferini, A formula for the Fréchet derivative of a generalized matrix function, SIAM Journal on Matrix Analysis and Applications, 38 (2017), 434-457.  doi: 10.1137/16M1072851.  Google Scholar

[31]

R. F. Rinehart, The equivalence of definitions of a matric function, American Mathematical Monthly, 62 (1955), 395-414.  doi: 10.1080/00029890.1955.11988651.  Google Scholar

[32]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer, Heidelberg, 2009. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[33]

N. D. SidiropoulosL. De LathauwerX. FuK. HuangE. E. Papalexakis and C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65 (2017), 3551-3582.  doi: 10.1109/TSP.2017.2690524.  Google Scholar

[34] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA, 1990.   Google Scholar
[35]

D. Sun and J. Sun, Semismooth matrix-valued functions, Mathematics of Operations Research, 27 (2002), 150-169.  doi: 10.1287/moor.27.1.150.342.  Google Scholar

[36]

Y. XieD. TaoW. ZhangY. LiuL. Zhang and Y. Qu, On unifying multi-view self-representations for clustering by tensor multi-rank minimization, International Journal of Computer Vision, 126 (2018), 1157-1179.  doi: 10.1007/s11263-018-1086-2.  Google Scholar

[37]

Y. XuZ. WuJ. Chanussot and Z. Wei, Joint reconstruction and anomaly detection from compressive hyperspectral images using Mahalanobis distance-regularized tensor RPCA, IEEE Transactions on Geoscience and Remote Sensing, 56 (2018), 2919-2930.  doi: 10.1109/TGRS.2017.2786718.  Google Scholar

[38]

Y. XuL. YuH. XuH. Zhang and T. Nguyen, Vector sparse representation of color image using quaternion matrix analysis, IEEE Transactions on Image Processing, 24 (2015), 1315-1329.  doi: 10.1109/TIP.2015.2397314.  Google Scholar

[39]

L. YangZ. H. HuangS. Hu and J. Han, An iterative algorithm for third-order tensor multi-rank minimization, Computational Optimization and Applications, 63 (2016), 169-202.  doi: 10.1007/s10589-015-9769-x.  Google Scholar

[40]

L. Yang, Z. H. Huang and Y. F. Li, A splitting augmented Lagrangian method for low multilinear-rank tensor recovery, Asia-Pacific Journal of Operational Research, 32 (2015), 1540008. doi: 10.1142/S0217595915400084.  Google Scholar

[41]

L. YangZ. H. Huang and X. Shi, A fixed point iterative method for low n-rank tensor pursuit, IEEE Transactions on Signal Processing, 61 (2013), 2952-2962.  doi: 10.1109/TSP.2013.2254477.  Google Scholar

[42]

Z. Yang, A Study on Nonsymmetric Matrix-valued Functions, Master's thesis, Department of Mathematics, National University of Singapore, 2009. Google Scholar

[43]

M. YinJ. GaoS. Xie and Y. Guo, Multiview subspace clustering via tensorial t-product representation, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 851-864.  doi: 10.1109/TNNLS.2018.2851444.  Google Scholar

[44]

M. Yuan and C. H. Zhang, On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.  doi: 10.1007/s10208-015-9269-5.  Google Scholar

[45]

M. ZhangL. Yang and Z. H. Huang, Minimum n-rank approximation via iterative hard thresholding, Applied Mathematics and Computation, 256 (2015), 860-875.  doi: 10.1016/j.amc.2015.01.099.  Google Scholar

[46]

Z. Zhang and S. Aeron, Exact tensor completion using t-SVD, IEEE Transactions on Signal Processing, 65 (2017), 1511-1526.  doi: 10.1109/TSP.2016.2639466.  Google Scholar

[47]

Z. Zhang, G. Ely, S. Aeron, N. Hao and M. E. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3842–3849. doi: 10.1109/CVPR.2014.485.  Google Scholar

[48]

P. ZhouC. LuZ. Lin and C. Zhang, Tensor factorization for low-rank tensor completion, IEEE Transactions on Image Processing, 27 (2018), 1152-1163.  doi: 10.1109/TIP.2017.2762595.  Google Scholar

[1]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[5]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[13]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[18]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[19]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.366

Article outline

[Back to Top]