[1]
|
A. Aguezzoul and P. Ladet, A nonlinear multiobjective approach for the supplier selection, integrating transportation policies, J. Model. Man., 2, (2007), 157–169.
doi: 10.1108/17465660710763434.
|
[2]
|
N. Aissaoui, M. Haouari and E. Hassini, Supplier selection and order lot sizing modeling: A review, Comput. Oper. Res., 34 (2007), no. 12, 3516–3540.
doi: 10.1016/j.cor.2006.01.016.
|
[3]
|
S. Amin and G. Zhang, An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Syst. Appl., 39 (2012), no. 8, 6782–6791.
doi: 10.1016/j.eswa.2011.12.056.
|
[4]
|
T. F. Anthony and F. P. Buffa, Strategic purchase scheduling, J. Purch. Mater. Manag., 13 (1977), no. 3, 27–31.
doi: 10.1111/j.1745-493X.1977.tb00400.x.
|
[5]
|
F. Arikan, A fuzzy solution approach for multi objective supplier selection, Expert Syst. Appl., 40 (2013), no. 3,947–952.
doi: 10.1016/j.eswa.2012.05.051.
|
[6]
|
E. Babaee Tirkolaee, A. Goli, G.-W. Weber, Multi-Objective Aggregate Production Planning Model Considering Overtime and Outsourcing Options Under Fuzzy Seasonal Demand, in Adv. Manuf. II, Springer, 2019, 81–96.
|
[7]
|
E. Babaee Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani and G.-W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, J. of Cleaner Prod., 250 (2020), 119517.
doi: 10.1016/j.jclepro.2019.119517.
|
[8]
|
M. Bevilacqua, F. E. Ciarapica and G. Giacchetta, A fuzzy-QFD approach to supplier selection, J. Purchase Supp. Man., 12 (2006), no. 1, 14–27.
doi: 10.1016/j.pursup.2006.02.001.
|
[9]
|
E. Buzdogan-Lindenmayr, G. Kara and A. Selcuk-Kestel, Sevtap Assessment of supplier risk for copper procurement, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68 (2019), no. 1, 1045–1060.
doi: 10.31801/cfsuasmas.501491.
|
[10]
|
S. Chou and Y. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach, Expert Syst. Appl., 34 (2008), no. 4, 2241–2253.
doi: 10.1016/j.eswa.2007.03.001.
|
[11]
|
K. Deb and A. Pratap, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. E. Comput., 6 (2002), no. 2,182–197.
doi: 10.1109/4235.996017.
|
[12]
|
E. A. Demirtas and O. Ustun, Analytic network process and multi-period goal programming integration in purchasing decisions, Comput. Ind. Eng., 56 (2009), no. 2,677–690.
doi: 10.1016/j.cie.2006.12.006.
|
[13]
|
S. Deng, R. Aydin, C. K. K. Kwong and Y. Huang, Integrated product line design and supplier selection: A multi-objective optimization paradigm, Comput. Ind. Eng., 70 (2014), 150-158.
doi: 10.1016/j.cie.2014.01.011.
|
[14]
|
R. M. Ebrahim, J. Razmi and H. Haleh, Scatter search algorithm for supplier selection and order lot sizing under multiple price discount environment, Adv. Eng. Softw., 40 (2009), no. 9,766–776.
doi: 10.1016/j.advengsoft.2009.02.003.
|
[15]
|
A. Ekici, An improved model for supplier selection under capacity constraint and multiple criteria, Int. J. Prod. Econ., 141 (2013), no. 2,574–581.
doi: 10.1016/j.ijpe.2012.09.013.
|
[16]
|
R. Farzipoor Sean, A new mathematical approach for suppliers selection: Accounting for non-homogeneity is important, Appl. Math. Comput., 185 (2007), no. 1, 84–95.
doi: 10.1016/j.amc.2006.07.071.
|
[17]
|
A. Gaballa, Minimum cost allocation of tenders, J. Oper. Res. Soc., 25 (1974), no. 3,389–398.
doi: 10.1057/jors.1974.73.
|
[18]
|
S. Ghodsypour and C. O$\mathop {\rm{B}}\limits^{'} $rien, The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint, Int. J. Prod. Econ., 73 (2001), no. 1, 15–27.
doi: 10.1016/S0925-5273(01)00093-7.
|
[19]
|
X. Hu and J. G. Motwani, Minimizing downside risks for global sourcing under price-sensitive stochastic demand, exchange rate uncertainties and supplier capacity constraints, Int. J. Prod. Econ., 147 (2014), 398-409.
doi: 10.1016/j.ijpe.2013.04.045.
|
[20]
|
O. Jadidi, S. Zolfaghari and S. Cavalieri, A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation, Int. J. Prod. Econ., 148 (2014), 158-165.
doi: 10.1016/j.ijpe.2013.10.005.
|
[21]
|
R. Jazemi, J. Gheidar-Kheljani and S. H. Ghodsypour, Modeling the multiobjective problem of supplier selection, taking into account the benefits of the buyer and the suppliers simultaneously, IEEE Trans. Ind. Inform., 7 (2010), no. 3,517–526.
doi: 10.1109/TII.2011.2158835.
|
[22]
|
D. Kannan, R. Khodaverdi, L. Olfat, A. Jafarian and A. Diabat, Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain, J. Clean. Prod., 47 (2013), 355-367.
doi: 10.1016/j.jclepro.2013.02.010.
|
[23]
|
M. Khosroabadi, M. Lotfi and H. Khademizare, Supplier selection program and sizing orders for products at a discounted price and the cost of transportation, J. of Ind. Eng. Res. in Prod. Sys., (2013), no. 1,139–153.
|
[24]
|
Z. Liao and J. Rittscher, A multi-objective supplier selection model under stochastic demand conditions, 105 (2007), 150–159
doi: 10.1016/j.ijpe.2006.03.001.
|
[25]
|
R. Lotfi, G.-W. Weber, S. M. Sajadifar and N. Mardani, Interdependent demand in the two-period newsvendor problem, J. Ind. Manag. Optim., 16 (2020), no. 1,117–140.
doi: 10.3934/jimo.2018143.
|
[26]
|
G. Mavrotas, Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Appl. Math. Comput., 213 (2009), no. 2,455–465.
doi: 10.1016/j.amc.2009.03.037.
|
[27]
|
G. Mavrotas and K. Florios, An improved version of the augmented $\varepsilon$-constraint method (AUGMECON 2) for finding the exact pareto set in multi-objective integer programming problems, Appl. Math. Comput., 219 (2013), no. 18, 9652–9669.
doi: 10.1016/j.amc.2013.03.002.
|
[28]
|
A. Mendoza and J. A. Ventura, Analytical models for supplier selection and order quantity allocation, Appl. Math. Model., 36 (2012), no. 8, 3826–3835.
doi: 10.1016/j.apm.2011.11.025.
|
[29]
|
K. S. Moghaddam, Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty, Expert Syst. Appl., 42 (2015), 6237-6254.
doi: 10.1016/j.eswa.2015.02.010.
|
[30]
|
D. Mohammaditabar, S. H. Ghodsypour and A. Hafezalkotob, A game theoretic analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs, Int. J. Prod. Econ., 181 (2016), 87-97.
doi: 10.1016/j.ijpe.2015.11.016.
|
[31]
|
S. Nazari-Shirkouhi, H. Shakouri, B. Javadi and A. Keramati, Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming, Appl. Math. Model., 37 (2013), no. 22, 9308–9323.
doi: 10.1016/j.apm.2013.04.045.
|
[32]
|
A. Pan, Allocation of order quantity among suppliers, J. Purch. Mater. Manag., 25 (1989), no. 3, 36–39.
doi: 10.1111/j.1745-493X.1989.tb00489.x.
|
[33]
|
K. Shaw, R. Shankar, S. S. Yadav and L. S. Thakur, Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain, Expert Syst. Appl., 39 (2012), no. 9, 8182–8192.
doi: 10.1016/j.eswa.2012.01.149.
|
[34]
|
Y.-C. Tsao and J.-C. Lu, A supply chain network design considering transportation cost discounts, Transp. Res. Part E Logist. Transp. Rev., 48 (2012), no. 2,401–414.
doi: 10.1016/j.tre.2011.10.004.
|
[35]
|
C. A. Weber, J. R. Current and W. C. Benton, Vendor selection criteria and methods, Eur. J. Oper. Res., 50 (1991), no. 1, 2–18.
doi: 10.1016/0377-2217(91)90033-R.
|
[36]
|
W. Xia and Z. Wu, Supplier selection with multiple criteria in volume discount environments, Omega, 35 (2007), no. 5,494–504.
doi: 10.1016/j.omega.2005.09.002.
|
[37]
|
E. Zitzler, K. Deb and L. Thiele, Comparison of multiobjective evolutionary algorithms: Empirical results, E Comput., 8 (2000), no. 2,173–195.
doi: 10.1162/106365600568202.
|