• Previous Article
    Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters
  • JIMO Home
  • This Issue
  • Next Article
    Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages
doi: 10.3934/jimo.2020136

A reformulation-linearization based algorithm for the smallest enclosing circle problem

School of Mathematical Sciences and VC/VR Key Lab, Sichuan Normal University, Chengdu, Sichuan 610066, China

* Corresponding author: yijiang103@163.com

Received  March 2020 Revised  June 2020 Published  August 2020

Fund Project: The first author is supported by National Natural Science Foundation of China No.11126336 and No.11201324, New Teachers' Fund for Doctor Stations, Ministry of Education No.20115134120001, Fok Ying Tuny Education Foundation No.141114, Youth fund of Sichuan province No.2013JQ0027

In this paper, an effective algorithm based on the reformulation-linearization technique (RLT) is developed to solve the smallest enclosing circle problem. Extensive computational experiments demonstrate that the algorithm based on the RLT outperforms the existing algorithms in terms of the solution time and quality in average.

Citation: Yi Jiang, Yuan Cai. A reformulation-linearization based algorithm for the smallest enclosing circle problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020136
References:
[1]

C. AudetP. HansenB. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.  doi: 10.1007/s101079900106.  Google Scholar

[2]

M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-77974-2.  Google Scholar

[3]

P. Chrystal, On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.  doi: 10.1017/S0013091500037238.  Google Scholar

[4]

D. W. Hearn and J. Vijay, Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.  doi: 10.1287/opre.30.4.777.  Google Scholar

[5]

Y. JiangC. Luo and S. G. Ling, An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.  doi: 10.3934/jimo.2016009.  Google Scholar

[6]

H. D. Sherali and C. H. Tuncbilek, Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.  doi: 10.1007/BF00121304.  Google Scholar

[7]

H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31. doi: 10.1007/BF01100203.  Google Scholar

[8]

H. D. Sherali and C. H. Tuncbilek, Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.  doi: 10.1023/A:1008237515535.  Google Scholar

[9]

S. H. Pan and X. S. Li, An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.  doi: 10.1016/j.amc.2005.01.127.  Google Scholar

[10]

S. Skyum, A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.  doi: 10.1016/0020-0190(91)90030-L.  Google Scholar

[11]

J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653. doi: 10.1080/10556789908805766.  Google Scholar

[12]

J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79. Google Scholar

[13]

E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370. doi: 10.1007/BFb0038202.  Google Scholar

[14]

S. XuR. Freund and J. Sun, Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.  doi: 10.1023/A:1022977709811.  Google Scholar

[15]

E. A. Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.  doi: 10.1137/070690419.  Google Scholar

[16]

G. ZhouK. C. Tohemail and J. Sun, Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.  doi: 10.1007/s10589-005-4565-7.  Google Scholar

show all references

References:
[1]

C. AudetP. HansenB. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.  doi: 10.1007/s101079900106.  Google Scholar

[2]

M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-77974-2.  Google Scholar

[3]

P. Chrystal, On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.  doi: 10.1017/S0013091500037238.  Google Scholar

[4]

D. W. Hearn and J. Vijay, Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.  doi: 10.1287/opre.30.4.777.  Google Scholar

[5]

Y. JiangC. Luo and S. G. Ling, An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.  doi: 10.3934/jimo.2016009.  Google Scholar

[6]

H. D. Sherali and C. H. Tuncbilek, Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.  doi: 10.1007/BF00121304.  Google Scholar

[7]

H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31. doi: 10.1007/BF01100203.  Google Scholar

[8]

H. D. Sherali and C. H. Tuncbilek, Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.  doi: 10.1023/A:1008237515535.  Google Scholar

[9]

S. H. Pan and X. S. Li, An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.  doi: 10.1016/j.amc.2005.01.127.  Google Scholar

[10]

S. Skyum, A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.  doi: 10.1016/0020-0190(91)90030-L.  Google Scholar

[11]

J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653. doi: 10.1080/10556789908805766.  Google Scholar

[12]

J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79. Google Scholar

[13]

E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370. doi: 10.1007/BFb0038202.  Google Scholar

[14]

S. XuR. Freund and J. Sun, Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.  doi: 10.1023/A:1022977709811.  Google Scholar

[15]

E. A. Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.  doi: 10.1137/070690419.  Google Scholar

[16]

G. ZhouK. C. Tohemail and J. Sun, Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.  doi: 10.1007/s10589-005-4565-7.  Google Scholar

Figure 1.  The error for under-estimating a square
Figure 2.  Average CPU time of three methods in 2D
Figure 3.  Average CPU time of three methods in 3D
Table 1.  Computational results for 30000 circles by Algorithm Ⅰ in 2D
k R (x, y) Time
$ 1 $ 22.39739458 (-0.23034495, 1.54096380) 1256
$ 2 $ 22.45136334 (-0.22954489, 1.54016746) 4437
$ 3 $ 22.45378444 (-0.22950900, 1.54013173) 4705
$ 4 $ 22.45382627 (-0.22950838, 1.54013111) 4817
k R (x, y) Time
$ 1 $ 22.39739458 (-0.23034495, 1.54096380) 1256
$ 2 $ 22.45136334 (-0.22954489, 1.54016746) 4437
$ 3 $ 22.45378444 (-0.22950900, 1.54013173) 4705
$ 4 $ 22.45382627 (-0.22950838, 1.54013111) 4817
Table 2.  The number of iterations on Algorithm Ⅰ in 2D
Problem Iteration
m Average Maximum Minimum
$ 30 $ 4.48 6 4
$ 300 $ 4.12 5 3
$ 3000 $ 3.78 4 3
$ 30000 $ 3.70 4 3
Problem Iteration
m Average Maximum Minimum
$ 30 $ 4.48 6 4
$ 300 $ 4.12 5 3
$ 3000 $ 3.78 4 3
$ 30000 $ 3.70 4 3
Table 3.  Objective function value and average CPU time of four methods in 2D
Problem SOCP CP SDPT3 Algorithm Ⅰ
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 30 $ 9.13411 128.98 9.13411 125.80 9.13411 1744.45 9.13411 66.50
$ 300 $ 15.05421 179.80 15.05421 165.26 15.05421 6848.30 15.05421 70.60
$ 3000 $ 18.31612 781.82 18.31612 918.92 18.31612 65688.71 18.31612 530.66
$ 30000 $ 21.21799 25641.96 21.21799 15716.18 21.21799 1548266.51 21.21799 5052.26
Problem SOCP CP SDPT3 Algorithm Ⅰ
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 30 $ 9.13411 128.98 9.13411 125.80 9.13411 1744.45 9.13411 66.50
$ 300 $ 15.05421 179.80 15.05421 165.26 15.05421 6848.30 15.05421 70.60
$ 3000 $ 18.31612 781.82 18.31612 918.92 18.31612 65688.71 18.31612 530.66
$ 30000 $ 21.21799 25641.96 21.21799 15716.18 21.21799 1548266.51 21.21799 5052.26
Table 4.  Computational results for 20000 balls by Algorithm Ⅰ in 3D
k R (x, y, z) Time
$ 1 $ 21.18238030 (-0.41033399, 0.50362615, -1.77470296) 2682
$ 2 $ 21.25471838 (-0.40932025, 0.50524350, -1.77617447) 4658
$ 3 $ 21.25805248 (-0.40927352, 0.50531805, -1.77624230) 6623
$ 4 $ 21.25808485 (-0.40927307, 0.50531877, -1.77624296) 10525
$ 5 $ 21.25808512 (-0.40927306, 0.50531878, -1.77624296) 14668
k R (x, y, z) Time
$ 1 $ 21.18238030 (-0.41033399, 0.50362615, -1.77470296) 2682
$ 2 $ 21.25471838 (-0.40932025, 0.50524350, -1.77617447) 4658
$ 3 $ 21.25805248 (-0.40927352, 0.50531805, -1.77624230) 6623
$ 4 $ 21.25808485 (-0.40927307, 0.50531877, -1.77624296) 10525
$ 5 $ 21.25808512 (-0.40927306, 0.50531878, -1.77624296) 14668
Table 5.  The number of iterations on Algorithm Ⅰ in 3D
Problem Iteration
m Average Maximum Minimum
$ 20 $ 8.96 13 5
$ 200 $ 6.54 11 4
$ 2000 $ 6.68 12 4
$ 20000 $ 5.84 10 4
Problem Iteration
m Average Maximum Minimum
$ 20 $ 8.96 13 5
$ 200 $ 6.54 11 4
$ 2000 $ 6.68 12 4
$ 20000 $ 5.84 10 4
Table 6.  Objective function value and average CPU time of four methods in 3D
Problem SOCP CP SDPT3 Algorithm 1
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 20 $ 10.20133 131.26 10.20133 138.96 10.20133 1589.39 10.20133 120.92
$ 200 $ 13.90667 168.56 13.90667 251.66 13.90667 5157.42 13.90667 123.88
$ 2000 $ 16.47548 633.00 16.47548 1694.06 16.47548 43022.79 16.47548 161.02
$ 20000 $ 20.54257 16953.74 20.54257 18185.18 20.54257 907801.50 20.54257 1462.04
Problem SOCP CP SDPT3 Algorithm 1
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 20 $ 10.20133 131.26 10.20133 138.96 10.20133 1589.39 10.20133 120.92
$ 200 $ 13.90667 168.56 13.90667 251.66 13.90667 5157.42 13.90667 123.88
$ 2000 $ 16.47548 633.00 16.47548 1694.06 16.47548 43022.79 16.47548 161.02
$ 20000 $ 20.54257 16953.74 20.54257 18185.18 20.54257 907801.50 20.54257 1462.04
[1]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[9]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[17]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[18]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[19]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[20]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (17)
  • HTML views (120)
  • Cited by (0)

Other articles
by authors

[Back to Top]