k | R | (x, y) | Time | |||
22.39739458 | (-0.23034495, 1.54096380) | 1256 | ||||
22.45136334 | (-0.22954489, 1.54016746) | 4437 | ||||
22.45378444 | (-0.22950900, 1.54013173) | 4705 | ||||
22.45382627 | (-0.22950838, 1.54013111) | 4817 |
In this paper, an effective algorithm based on the reformulation-linearization technique (RLT) is developed to solve the smallest enclosing circle problem. Extensive computational experiments demonstrate that the algorithm based on the RLT outperforms the existing algorithms in terms of the solution time and quality in average.
Citation: |
Table 1. Computational results for 30000 circles by Algorithm Ⅰ in 2D
k | R | (x, y) | Time | |||
22.39739458 | (-0.23034495, 1.54096380) | 1256 | ||||
22.45136334 | (-0.22954489, 1.54016746) | 4437 | ||||
22.45378444 | (-0.22950900, 1.54013173) | 4705 | ||||
22.45382627 | (-0.22950838, 1.54013111) | 4817 |
Table 2. The number of iterations on Algorithm Ⅰ in 2D
Problem | Iteration | |||
m | Average | Maximum | Minimum | |
4.48 | 6 | 4 | ||
4.12 | 5 | 3 | ||
3.78 | 4 | 3 | ||
3.70 | 4 | 3 |
Table 3. Objective function value and average CPU time of four methods in 2D
Problem | SOCP | CP | SDPT3 | Algorithm Ⅰ | ||||||||
m | Obj Value | Time | Obj Value | Time | Obj Value | Time | Obj Value | Time | ||||
9.13411 | 128.98 | 9.13411 | 125.80 | 9.13411 | 1744.45 | 9.13411 | 66.50 | |||||
15.05421 | 179.80 | 15.05421 | 165.26 | 15.05421 | 6848.30 | 15.05421 | 70.60 | |||||
18.31612 | 781.82 | 18.31612 | 918.92 | 18.31612 | 65688.71 | 18.31612 | 530.66 | |||||
21.21799 | 25641.96 | 21.21799 | 15716.18 | 21.21799 | 1548266.51 | 21.21799 | 5052.26 |
Table 4. Computational results for 20000 balls by Algorithm Ⅰ in 3D
k | R | (x, y, z) | Time | |||
21.18238030 | (-0.41033399, 0.50362615, -1.77470296) | 2682 | ||||
21.25471838 | (-0.40932025, 0.50524350, -1.77617447) | 4658 | ||||
21.25805248 | (-0.40927352, 0.50531805, -1.77624230) | 6623 | ||||
21.25808485 | (-0.40927307, 0.50531877, -1.77624296) | 10525 | ||||
21.25808512 | (-0.40927306, 0.50531878, -1.77624296) | 14668 |
Table 5. The number of iterations on Algorithm Ⅰ in 3D
Problem | Iteration | |||
m | Average | Maximum | Minimum | |
8.96 | 13 | 5 | ||
6.54 | 11 | 4 | ||
6.68 | 12 | 4 | ||
5.84 | 10 | 4 |
Table 6. Objective function value and average CPU time of four methods in 3D
Problem | SOCP | CP | SDPT3 | Algorithm 1 | ||||||||
m | Obj Value | Time | Obj Value | Time | Obj Value | Time | Obj Value | Time | ||||
10.20133 | 131.26 | 10.20133 | 138.96 | 10.20133 | 1589.39 | 10.20133 | 120.92 | |||||
13.90667 | 168.56 | 13.90667 | 251.66 | 13.90667 | 5157.42 | 13.90667 | 123.88 | |||||
16.47548 | 633.00 | 16.47548 | 1694.06 | 16.47548 | 43022.79 | 16.47548 | 161.02 | |||||
20.54257 | 16953.74 | 20.54257 | 18185.18 | 20.54257 | 907801.50 | 20.54257 | 1462.04 |
[1] |
C. Audet, P. Hansen, B. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.
doi: 10.1007/s101079900106.![]() ![]() ![]() |
[2] |
M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-77974-2.![]() ![]() |
[3] |
P. Chrystal, On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.
doi: 10.1017/S0013091500037238.![]() ![]() |
[4] |
D. W. Hearn and J. Vijay, Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.
doi: 10.1287/opre.30.4.777.![]() ![]() ![]() |
[5] |
Y. Jiang, C. Luo and S. G. Ling, An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.
doi: 10.3934/jimo.2016009.![]() ![]() ![]() |
[6] |
H. D. Sherali and C. H. Tuncbilek, Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.
doi: 10.1007/BF00121304.![]() ![]() ![]() |
[7] |
H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31.
doi: 10.1007/BF01100203.![]() ![]() ![]() |
[8] |
H. D. Sherali and C. H. Tuncbilek, Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.
doi: 10.1023/A:1008237515535.![]() ![]() ![]() |
[9] |
S. H. Pan and X. S. Li, An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.
doi: 10.1016/j.amc.2005.01.127.![]() ![]() ![]() |
[10] |
S. Skyum, A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.
doi: 10.1016/0020-0190(91)90030-L.![]() ![]() ![]() |
[11] |
J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653.
doi: 10.1080/10556789908805766.![]() ![]() ![]() |
[12] |
J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79.
![]() |
[13] |
E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370.
doi: 10.1007/BFb0038202.![]() ![]() ![]() |
[14] |
S. Xu, R. Freund and J. Sun, Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.
doi: 10.1023/A:1022977709811.![]() ![]() ![]() |
[15] |
E. A. Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.
doi: 10.1137/070690419.![]() ![]() ![]() |
[16] |
G. Zhou, K. C. Tohemail and J. Sun, Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.
doi: 10.1007/s10589-005-4565-7.![]() ![]() ![]() |