\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A reformulation-linearization based algorithm for the smallest enclosing circle problem

  • * Corresponding author: yijiang103@163.com

    * Corresponding author: yijiang103@163.com 
The first author is supported by National Natural Science Foundation of China No.11126336 and No.11201324, New Teachers' Fund for Doctor Stations, Ministry of Education No.20115134120001, Fok Ying Tuny Education Foundation No.141114, Youth fund of Sichuan province No.2013JQ0027
Abstract Full Text(HTML) Figure(3) / Table(6) Related Papers Cited by
  • In this paper, an effective algorithm based on the reformulation-linearization technique (RLT) is developed to solve the smallest enclosing circle problem. Extensive computational experiments demonstrate that the algorithm based on the RLT outperforms the existing algorithms in terms of the solution time and quality in average.

    Mathematics Subject Classification: Primary: 90C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The error for under-estimating a square

    Figure 2.  Average CPU time of three methods in 2D

    Figure 3.  Average CPU time of three methods in 3D

    Table 1.  Computational results for 30000 circles by Algorithm Ⅰ in 2D

    k R (x, y) Time
    $ 1 $ 22.39739458 (-0.23034495, 1.54096380) 1256
    $ 2 $ 22.45136334 (-0.22954489, 1.54016746) 4437
    $ 3 $ 22.45378444 (-0.22950900, 1.54013173) 4705
    $ 4 $ 22.45382627 (-0.22950838, 1.54013111) 4817
     | Show Table
    DownLoad: CSV

    Table 2.  The number of iterations on Algorithm Ⅰ in 2D

    Problem Iteration
    m Average Maximum Minimum
    $ 30 $ 4.48 6 4
    $ 300 $ 4.12 5 3
    $ 3000 $ 3.78 4 3
    $ 30000 $ 3.70 4 3
     | Show Table
    DownLoad: CSV

    Table 3.  Objective function value and average CPU time of four methods in 2D

    Problem SOCP CP SDPT3 Algorithm Ⅰ
    m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
    $ 30 $ 9.13411 128.98 9.13411 125.80 9.13411 1744.45 9.13411 66.50
    $ 300 $ 15.05421 179.80 15.05421 165.26 15.05421 6848.30 15.05421 70.60
    $ 3000 $ 18.31612 781.82 18.31612 918.92 18.31612 65688.71 18.31612 530.66
    $ 30000 $ 21.21799 25641.96 21.21799 15716.18 21.21799 1548266.51 21.21799 5052.26
     | Show Table
    DownLoad: CSV

    Table 4.  Computational results for 20000 balls by Algorithm Ⅰ in 3D

    k R (x, y, z) Time
    $ 1 $ 21.18238030 (-0.41033399, 0.50362615, -1.77470296) 2682
    $ 2 $ 21.25471838 (-0.40932025, 0.50524350, -1.77617447) 4658
    $ 3 $ 21.25805248 (-0.40927352, 0.50531805, -1.77624230) 6623
    $ 4 $ 21.25808485 (-0.40927307, 0.50531877, -1.77624296) 10525
    $ 5 $ 21.25808512 (-0.40927306, 0.50531878, -1.77624296) 14668
     | Show Table
    DownLoad: CSV

    Table 5.  The number of iterations on Algorithm Ⅰ in 3D

    Problem Iteration
    m Average Maximum Minimum
    $ 20 $ 8.96 13 5
    $ 200 $ 6.54 11 4
    $ 2000 $ 6.68 12 4
    $ 20000 $ 5.84 10 4
     | Show Table
    DownLoad: CSV

    Table 6.  Objective function value and average CPU time of four methods in 3D

    Problem SOCP CP SDPT3 Algorithm 1
    m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
    $ 20 $ 10.20133 131.26 10.20133 138.96 10.20133 1589.39 10.20133 120.92
    $ 200 $ 13.90667 168.56 13.90667 251.66 13.90667 5157.42 13.90667 123.88
    $ 2000 $ 16.47548 633.00 16.47548 1694.06 16.47548 43022.79 16.47548 161.02
    $ 20000 $ 20.54257 16953.74 20.54257 18185.18 20.54257 907801.50 20.54257 1462.04
     | Show Table
    DownLoad: CSV
  • [1] C. AudetP. HansenB. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.  doi: 10.1007/s101079900106.
    [2] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-77974-2.
    [3] P. Chrystal, On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.  doi: 10.1017/S0013091500037238.
    [4] D. W. Hearn and J. Vijay, Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.  doi: 10.1287/opre.30.4.777.
    [5] Y. JiangC. Luo and S. G. Ling, An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.  doi: 10.3934/jimo.2016009.
    [6] H. D. Sherali and C. H. Tuncbilek, Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.  doi: 10.1007/BF00121304.
    [7] H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31. doi: 10.1007/BF01100203.
    [8] H. D. Sherali and C. H. Tuncbilek, Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.  doi: 10.1023/A:1008237515535.
    [9] S. H. Pan and X. S. Li, An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.  doi: 10.1016/j.amc.2005.01.127.
    [10] S. Skyum, A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.  doi: 10.1016/0020-0190(91)90030-L.
    [11] J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653. doi: 10.1080/10556789908805766.
    [12] J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79.
    [13] E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370. doi: 10.1007/BFb0038202.
    [14] S. XuR. Freund and J. Sun, Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.  doi: 10.1023/A:1022977709811.
    [15] E. A. Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.  doi: 10.1137/070690419.
    [16] G. ZhouK. C. Tohemail and J. Sun, Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.  doi: 10.1007/s10589-005-4565-7.
  • 加载中

Figures(3)

Tables(6)

SHARE

Article Metrics

HTML views(803) PDF downloads(231) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return