• Previous Article
    Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters
  • JIMO Home
  • This Issue
  • Next Article
    Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages
doi: 10.3934/jimo.2020136

A reformulation-linearization based algorithm for the smallest enclosing circle problem

School of Mathematical Sciences and VC/VR Key Lab, Sichuan Normal University, Chengdu, Sichuan 610066, China

* Corresponding author: yijiang103@163.com

Received  March 2020 Revised  June 2020 Published  August 2020

Fund Project: The first author is supported by National Natural Science Foundation of China No.11126336 and No.11201324, New Teachers' Fund for Doctor Stations, Ministry of Education No.20115134120001, Fok Ying Tuny Education Foundation No.141114, Youth fund of Sichuan province No.2013JQ0027

In this paper, an effective algorithm based on the reformulation-linearization technique (RLT) is developed to solve the smallest enclosing circle problem. Extensive computational experiments demonstrate that the algorithm based on the RLT outperforms the existing algorithms in terms of the solution time and quality in average.

Citation: Yi Jiang, Yuan Cai. A reformulation-linearization based algorithm for the smallest enclosing circle problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020136
References:
[1]

C. AudetP. HansenB. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.  doi: 10.1007/s101079900106.  Google Scholar

[2]

M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-77974-2.  Google Scholar

[3]

P. Chrystal, On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.  doi: 10.1017/S0013091500037238.  Google Scholar

[4]

D. W. Hearn and J. Vijay, Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.  doi: 10.1287/opre.30.4.777.  Google Scholar

[5]

Y. JiangC. Luo and S. G. Ling, An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.  doi: 10.3934/jimo.2016009.  Google Scholar

[6]

H. D. Sherali and C. H. Tuncbilek, Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.  doi: 10.1007/BF00121304.  Google Scholar

[7]

H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31. doi: 10.1007/BF01100203.  Google Scholar

[8]

H. D. Sherali and C. H. Tuncbilek, Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.  doi: 10.1023/A:1008237515535.  Google Scholar

[9]

S. H. Pan and X. S. Li, An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.  doi: 10.1016/j.amc.2005.01.127.  Google Scholar

[10]

S. Skyum, A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.  doi: 10.1016/0020-0190(91)90030-L.  Google Scholar

[11]

J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653. doi: 10.1080/10556789908805766.  Google Scholar

[12]

J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79. Google Scholar

[13]

E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370. doi: 10.1007/BFb0038202.  Google Scholar

[14]

S. XuR. Freund and J. Sun, Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.  doi: 10.1023/A:1022977709811.  Google Scholar

[15]

E. A. Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.  doi: 10.1137/070690419.  Google Scholar

[16]

G. ZhouK. C. Tohemail and J. Sun, Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.  doi: 10.1007/s10589-005-4565-7.  Google Scholar

show all references

References:
[1]

C. AudetP. HansenB. Jaumard and G. Savard, A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.  doi: 10.1007/s101079900106.  Google Scholar

[2]

M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-77974-2.  Google Scholar

[3]

P. Chrystal, On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.  doi: 10.1017/S0013091500037238.  Google Scholar

[4]

D. W. Hearn and J. Vijay, Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.  doi: 10.1287/opre.30.4.777.  Google Scholar

[5]

Y. JiangC. Luo and S. G. Ling, An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.  doi: 10.3934/jimo.2016009.  Google Scholar

[6]

H. D. Sherali and C. H. Tuncbilek, Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.  doi: 10.1007/BF00121304.  Google Scholar

[7]

H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31. doi: 10.1007/BF01100203.  Google Scholar

[8]

H. D. Sherali and C. H. Tuncbilek, Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.  doi: 10.1023/A:1008237515535.  Google Scholar

[9]

S. H. Pan and X. S. Li, An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.  doi: 10.1016/j.amc.2005.01.127.  Google Scholar

[10]

S. Skyum, A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.  doi: 10.1016/0020-0190(91)90030-L.  Google Scholar

[11]

J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653. doi: 10.1080/10556789908805766.  Google Scholar

[12]

J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79. Google Scholar

[13]

E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370. doi: 10.1007/BFb0038202.  Google Scholar

[14]

S. XuR. Freund and J. Sun, Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.  doi: 10.1023/A:1022977709811.  Google Scholar

[15]

E. A. Yildirim, Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.  doi: 10.1137/070690419.  Google Scholar

[16]

G. ZhouK. C. Tohemail and J. Sun, Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.  doi: 10.1007/s10589-005-4565-7.  Google Scholar

Figure 1.  The error for under-estimating a square
Figure 2.  Average CPU time of three methods in 2D
Figure 3.  Average CPU time of three methods in 3D
Table 1.  Computational results for 30000 circles by Algorithm Ⅰ in 2D
k R (x, y) Time
$ 1 $ 22.39739458 (-0.23034495, 1.54096380) 1256
$ 2 $ 22.45136334 (-0.22954489, 1.54016746) 4437
$ 3 $ 22.45378444 (-0.22950900, 1.54013173) 4705
$ 4 $ 22.45382627 (-0.22950838, 1.54013111) 4817
k R (x, y) Time
$ 1 $ 22.39739458 (-0.23034495, 1.54096380) 1256
$ 2 $ 22.45136334 (-0.22954489, 1.54016746) 4437
$ 3 $ 22.45378444 (-0.22950900, 1.54013173) 4705
$ 4 $ 22.45382627 (-0.22950838, 1.54013111) 4817
Table 2.  The number of iterations on Algorithm Ⅰ in 2D
Problem Iteration
m Average Maximum Minimum
$ 30 $ 4.48 6 4
$ 300 $ 4.12 5 3
$ 3000 $ 3.78 4 3
$ 30000 $ 3.70 4 3
Problem Iteration
m Average Maximum Minimum
$ 30 $ 4.48 6 4
$ 300 $ 4.12 5 3
$ 3000 $ 3.78 4 3
$ 30000 $ 3.70 4 3
Table 3.  Objective function value and average CPU time of four methods in 2D
Problem SOCP CP SDPT3 Algorithm Ⅰ
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 30 $ 9.13411 128.98 9.13411 125.80 9.13411 1744.45 9.13411 66.50
$ 300 $ 15.05421 179.80 15.05421 165.26 15.05421 6848.30 15.05421 70.60
$ 3000 $ 18.31612 781.82 18.31612 918.92 18.31612 65688.71 18.31612 530.66
$ 30000 $ 21.21799 25641.96 21.21799 15716.18 21.21799 1548266.51 21.21799 5052.26
Problem SOCP CP SDPT3 Algorithm Ⅰ
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 30 $ 9.13411 128.98 9.13411 125.80 9.13411 1744.45 9.13411 66.50
$ 300 $ 15.05421 179.80 15.05421 165.26 15.05421 6848.30 15.05421 70.60
$ 3000 $ 18.31612 781.82 18.31612 918.92 18.31612 65688.71 18.31612 530.66
$ 30000 $ 21.21799 25641.96 21.21799 15716.18 21.21799 1548266.51 21.21799 5052.26
Table 4.  Computational results for 20000 balls by Algorithm Ⅰ in 3D
k R (x, y, z) Time
$ 1 $ 21.18238030 (-0.41033399, 0.50362615, -1.77470296) 2682
$ 2 $ 21.25471838 (-0.40932025, 0.50524350, -1.77617447) 4658
$ 3 $ 21.25805248 (-0.40927352, 0.50531805, -1.77624230) 6623
$ 4 $ 21.25808485 (-0.40927307, 0.50531877, -1.77624296) 10525
$ 5 $ 21.25808512 (-0.40927306, 0.50531878, -1.77624296) 14668
k R (x, y, z) Time
$ 1 $ 21.18238030 (-0.41033399, 0.50362615, -1.77470296) 2682
$ 2 $ 21.25471838 (-0.40932025, 0.50524350, -1.77617447) 4658
$ 3 $ 21.25805248 (-0.40927352, 0.50531805, -1.77624230) 6623
$ 4 $ 21.25808485 (-0.40927307, 0.50531877, -1.77624296) 10525
$ 5 $ 21.25808512 (-0.40927306, 0.50531878, -1.77624296) 14668
Table 5.  The number of iterations on Algorithm Ⅰ in 3D
Problem Iteration
m Average Maximum Minimum
$ 20 $ 8.96 13 5
$ 200 $ 6.54 11 4
$ 2000 $ 6.68 12 4
$ 20000 $ 5.84 10 4
Problem Iteration
m Average Maximum Minimum
$ 20 $ 8.96 13 5
$ 200 $ 6.54 11 4
$ 2000 $ 6.68 12 4
$ 20000 $ 5.84 10 4
Table 6.  Objective function value and average CPU time of four methods in 3D
Problem SOCP CP SDPT3 Algorithm 1
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 20 $ 10.20133 131.26 10.20133 138.96 10.20133 1589.39 10.20133 120.92
$ 200 $ 13.90667 168.56 13.90667 251.66 13.90667 5157.42 13.90667 123.88
$ 2000 $ 16.47548 633.00 16.47548 1694.06 16.47548 43022.79 16.47548 161.02
$ 20000 $ 20.54257 16953.74 20.54257 18185.18 20.54257 907801.50 20.54257 1462.04
Problem SOCP CP SDPT3 Algorithm 1
m Obj Value Time Obj Value Time Obj Value Time Obj Value Time
$ 20 $ 10.20133 131.26 10.20133 138.96 10.20133 1589.39 10.20133 120.92
$ 200 $ 13.90667 168.56 13.90667 251.66 13.90667 5157.42 13.90667 123.88
$ 2000 $ 16.47548 633.00 16.47548 1694.06 16.47548 43022.79 16.47548 161.02
$ 20000 $ 20.54257 16953.74 20.54257 18185.18 20.54257 907801.50 20.54257 1462.04
[1]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[2]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[3]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[4]

Yi Jiang, Chuan Luo, Shenggui Ling. An efficient cutting plane algorithm for the smallest enclosing circle problem. Journal of Industrial & Management Optimization, 2017, 13 (1) : 147-153. doi: 10.3934/jimo.2016009

[5]

Ye Tian, Shu-Cherng Fang, Zhibin Deng, Wenxun Xing. Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming. Journal of Industrial & Management Optimization, 2013, 9 (3) : 703-721. doi: 10.3934/jimo.2013.9.703

[6]

Xinmin Yang. On second order symmetric duality in nondifferentiable multiobjective programming. Journal of Industrial & Management Optimization, 2009, 5 (4) : 697-703. doi: 10.3934/jimo.2009.5.697

[7]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1873-1884. doi: 10.3934/jimo.2019033

[8]

Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020108

[9]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[10]

Ziye Shi, Qingwei Jin. Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 871-882. doi: 10.3934/jimo.2014.10.871

[11]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[12]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[13]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[14]

Ali Tebbi, Terence Chan, Chi Wan Sung. Linear programming bounds for distributed storage codes. Advances in Mathematics of Communications, 2020, 14 (2) : 333-357. doi: 10.3934/amc.2020024

[15]

Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003

[16]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041

[17]

Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739

[18]

Yue Zheng, Zhongping Wan, Shihui Jia, Guangmin Wang. A new method for strong-weak linear bilevel programming problem. Journal of Industrial & Management Optimization, 2015, 11 (2) : 529-547. doi: 10.3934/jimo.2015.11.529

[19]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[20]

Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]