\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Maxillofacial surgical simulation system with haptic feedback

  • * Corresponding author: Ling He

    * Corresponding author: Ling He 
This research was partially supported by research grants from the National Natural Science Foundation of China (Grant: No.61571314)
Abstract Full Text(HTML) Figure(7) / Table(2) Related Papers Cited by
  • Due to the complexity of the maxillofacial surgery, the novice should be sufficiently trained before one is qualified to carry on the surgery. To reduce the training costs and improve the training efficiency, a virtual mandible surgical system with haptic feedback is proposed. This surgical simulation system offers users the haptic feedback while simulating maxillofacial surgery. An integrated model is introduced to optimize the system simulation process, which includes force output to a six-degree-of-freedom haptic device. Based on the anatomy structure of the bone tissue, a two-layer mechanism model is designed to balance the requirement of real-time response and the force feedback accuracy. Collision detection, force rendering, and grinding function are studied to simulate some essential operations: open reduction, osteotomy, and palate fixation. The proposed simulation platform can assist in the training and planning of these oral and maxillofacial surgeries. The fast response feature enables surgeons to design a patient-specific guide plate in real-time. Ten stomatology surgeons evaluated this surgical simulation system from the following four indexes: the level of immersion, user-friendliness, stability, and the effect of surgical training. The evaluation score is eight out of ten.

    Mathematics Subject Classification: Primary: 68Q01; Secondary: 68Q15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The architecture of the virtual surgery system

    Figure 2.  Interaction between the two engines and the system

    Figure 3.  Interaction between the input force and the system

    Figure 4.  Simulation of the virtual surgical system for open reduction

    Figure 5.  Simulation of the virtual surgical system for grinding and design of fixing plate

    Figure 6.  Visual and haptic authenticity

    Figure 7.  Evaluation of the system

    Table 1.  Performance of virtual surgical system without griding function

    Points Lines of tool Points of bone Lines of bone Triangles of bone Draw frame(FPS)
    35 34 23175 69454 46280 72.2
    35 34 17728 53190 35460 145.8
     | Show Table
    DownLoad: CSV

    Table 2.  Performance of virtual surgical system with grinding function

    Points Lines of tool Points of bone Lines of bone Triangles of bone Draw frame(FPS)
    35 34 23175 69454 46280 No response
    35 34 535 1526 4994 16.6
    35 34 535 1526 2996 30.0
     | Show Table
    DownLoad: CSV
  • [1] M. Bakr, W. Massey and H. Alexander, Can virtual simulators replace traditional preclinical teaching methods: a studentsṕerspective, Int. J. Dent. Oral Health, 2.
    [2] J. Bian, J. Chen and M. Sun, Simulation of soft tissue deformation in virtual surgery based on physics engine, in IEEE 2011 Third International Conference on Multimedia Information Networking and Security, Shanghai, China, 2011, 60–64. doi: 10.1109/MINES.2011.84.
    [3] S. A.-H. Centenero and F. Hernández-Alfaro, 3D planning in orthognathic surgery: Cad/cam surgical splints and prediction of the soft and hard tissues results–our experience in 16 cases, Journal of Cranio-Maxillofacial Surgery, 40 (2012), 162-168. 
    [4] X. Chen and J. Hu, A review of haptic simulator for oral and maxillofacial surgery based on virtual reality, Expert Review of Medical Devices, 15 (2018), 435-444.  doi: 10.1080/17434440.2018.1484727.
    [5] X. ChenL. XuY. Sun and C. Politis, A review of computer-aided oral and maxillofacial surgery: Planning, simulation and navigation, Expert Review of Medical Devices, 13 (2016), 1043-1051.  doi: 10.1080/17434440.2016.1243054.
    [6] T.-B. Deng, Biquadratic digital phase-compensator design with stability-margin controllability, Journal of Circuits, Systems and Computers, 28 (2019), 1950068. doi: 10.1142/S0218126619500683.
    [7] D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana and B. Benes, A review of simulators with haptic devices for medical training, Journal of Medical Systems, 40 (2016), Art. 104. doi: 10.1007/s10916-016-0459-8.
    [8] G. EttorreM. WeberH. SchaafJ. C. LowryM. Y. Mommaerts and H.-P. Howaldt, Standards for digital photography in cranio-maxillo-facial surgery–part Ⅰ: Basic views and guidelines, Journal of Cranio-Maxillofacial Surgery, 34 (2006), 65-73.  doi: 10.1016/j.jcms.2005.11.002.
    [9] R. EwersK. SchichoG. UndtF. WanschitzM. TruppeR. Seemann and A. Wagner, Basic research and 12 years of clinical experience in computer-assisted navigation technology: A review, International Journal of Oral and Maxillofacial Surgery, 34 (2005), 1-8.  doi: 10.1016/j.ijom.2004.03.018.
    [10] F. FawzyH. Hanssan and   Jong-Woo, Evaluation of virtual surgical plan applicability in 3D simulation-guided two-jaw surgery, Journal of Cranio-Maxillofacial Surgery, 47 (2019), 860-866.  doi: 10.1016/j.jcms.2019.03.005.
    [11] Z. Galias and M. J. Ogorzalek, On symbolic dynamics of a chaotic second-order digital filter, International Journal of Circuit Theory and Applications, 20 (1992), 401-409.  doi: 10.1002/cta.4490200406.
    [12] S. GirodS. C. SchvartzmanD. GaudilliereK. Salisbury and R. Silva, Haptic feedback improves surgeons' user experience and fracture reduction in facial trauma simulation, Journal of Rehabilitation Research & Development, 53 (2016), 561-570.  doi: 10.1682/JRRD.2015.03.0043.
    [13] T. J. HoppenreijsH. P. M. FreihoferP. J. StoelingaD. B. Tuinzing and M. A. van't Hof, Condylar remodelling and resorption after Le Fort I and bimaxillary osteotomies in patients with anterior open bite: A clinical and radiological study aesthetic and reconstructive surgery, International Journal of Oral and Maxillofacial Surgery, 27 (1998), 81-91. 
    [14] T. IizukaK. LädrachA. H. Geering and J. Raveh, Open reduction without fixation of dislocated condylar process fractures: Long-term clinical and radiologic analysis, Journal of Oral and Maxillofacial Surgery, 56 (1998), 553-561.  doi: 10.1016/S0278-2391(98)90450-5.
    [15] K. KashiwaS. KobayashiH. KimuraT. HondaT. NoharaH. FujiwaraY. Hosoya and Y. Arai, Reconstruction of a severe maxillofacial deformity after tumorectomy and irradiation using distraction osteogenesis and Le Fort I osteotomy before vascularized bone graft, Journal of Craniofacial Surgery, 18 (2007), 1133-1137.  doi: 10.1097/scs.0b013e318157280b.
    [16] E. I. KonuksevenM. E. ÖnderE. Mumcuoglu and R. S. Kisnisci, Development of a visio-haptic integrated dental training simulation system, Journal of Dental Education, 74 (2010), 880-891. 
    [17] K. Kurita and N. V. Echiverre, Protective guide plate to aid in downfracture and positioning of the maxilla after Le Fort I osteotomy, Journal of Oral and Maxillofacial Surgery, 55 (1997), 1185-1186.  doi: 10.1016/S0278-2391(97)90306-2.
    [18] B. LethausL. PoortR. BöckmannR. SmeetsR. Tolba and P. Kessler, Additive manufacturing for microvascular reconstruction of the mandible in 20 patients, Journal of Cranio-Maxillofacial Surgery, 40 (2012), 43-46.  doi: 10.1016/j.jcms.2011.01.007.
    [19] J. P. LevineA. PatelP. B. Saadeh and D. L. Hirsch, Computer-aided design and manufacturing in craniomaxillofacial surgery: The new state of the art, The Journal of Craniofacial Surgery, 23 (2012), 288-293.  doi: 10.1097/SCS.0b013e318241ba92.
    [20] Q. Ma, E. Kobayashi, J. Wang, K. Hara, H. Suenaga, I. Sakuma and K. Masamune, Development and preliminary evaluation of an autonomous surgical system for oral and maxillofacial surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, 15 (2019), e1997. doi: 10.1002/rcs.1997.
    [21] A. MacielT. HalicZ. LuL. P. Nedel and S. De, Using the PhysX engine for physics-based virtual surgery with force feedback, The International Journal of Medical Robotics and Computer Assisted Surgery, 5 (2009), 341-353.  doi: 10.1002/rcs.266.
    [22] S. G. Maliha, J. R. Diaz-Siso, N. M. Plana, A. Torroni and R. L. Flores, Haptic, physical, and web-based simulators: Are they underused in maxillofacial surgery training?, Journal of Oral and Maxillofacial Surgery, 76 (2018), 2424.E1–2424.E11. doi: 10.1016/j.joms.2018.06.177.
    [23] C. Mendoza and C. OŚullivan, Interruptible collision detection for deformable objects, Computers & Graphics, 30 (2006), 432-438.  doi: 10.1016/j.cag.2006.02.018.
    [24] A. MoroiY. IshiharaM. SotoboriR. NakazawaM. HiguchiY. NakanoK. Marukawa and K. Ueki, Evaluation of soft tissue morphologic changes after using the alar base cinch suture in Le Fort I osteotomy in mandibular prognathism with and without asymmetry, Journal of Cranio-Maxillofacial Surgery, 42 (2014), 718-724.  doi: 10.1016/j.jcms.2013.11.001.
    [25] M. NakaoS. AsoY. ImaiN. UedaT. HatanakaM. ShibaT. Kirita and T. Matsuda, Automated planning with multivariate shape descriptors for fibular transfer in mandibular reconstruction, IEEE Transactions on Biomedical Engineering, 64 (2016), 1772-1785.  doi: 10.1109/TBME.2016.2621742.
    [26] P. PohlenzA. GröbeA. PetersikN. Von SternbergB. PflesserA. PommertK.-H. HöhneU. TiedeI. Springer and M. Heiland, Virtual dental surgery as a new educational tool in dental school, Journal of Cranio-Maxillofacial Surgery, 38 (2010), 560-564. 
    [27] S. Raith, A. Rauen, S. C. Möhlhenrich, N. Ayoub, F. Peters, T. Steiner, F. Hölzle and A. Modabber, Introduction of an algorithm for planning of autologous fibular transfer in mandibular reconstruction based on individual bone curvatures, The International Journal of Medical Robotics and Computer Assisted Surgery, 14 (2018), e1894. doi: 10.1002/rcs.1894.
    [28] H. RashidA. HussainA. H. SheikhK. AzamS. Malik and M. Amin, Measure of frequency of alveolar osteitis using two different methods of osteotomy in mandibular third molar impactions: A double-blind randomized clinical trial, Journal of Ayub Medical College Abbottabad, 30 (2018), 103-106. 
    [29] C. E. ReileyT. AkinbiyiD. BurschkaD. C. ChangA. M. Okamura and D. D. Yuh, Effects of visual force feedback on robot-assisted surgical task performance, The Journal of Thoracic and Cardiovascular Surgery, 135 (2008), 196-202.  doi: 10.1016/j.jtcvs.2007.08.043.
    [30] H. SchaafP. StreckbeinG. EttorreJ. C. LowryM. Y. Mommaerts and H.-P. Howaldt, Standards for digital photography in cranio-maxillo-facial surgery–part Ⅱ: Additional picture sets and avoiding common mistakes, Journal of Cranio-Maxillofacial Surgery, 34 (2006), 366-377. 
    [31] T. Sohmura, H. Hojo, M. Nakajima, K. Wakabayashi, M. Nagao, S. Iida, T. Kitagawa, M. Kogo, T. Kojima, K. Matsumura, et al., Prototype of simulation of orthognathic surgery using a virtual reality haptic device, International Journal of Oral and Maxillofacial Surgery, 33 (2004), 740-750.
    [32] H. I. SonA. FranchiL. L. ChuangJ. KimH. H. Bulthoff and P. R. Giordano, Human-centered design and evaluation of haptic cueing for teleoperation of multiple mobile robots, IEEE Transactions on Cybernetics, 43 (2013), 597-609. 
    [33] J. P. ThawaniA. G. RamayyaK. G. AbdullahE. HudginsK. VaughanM. PiazzaP. J. MadsenV. Buch and M. S. Grady, Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology, Journal of Clinical Neuroscience, 34 (2016), 112-116.  doi: 10.1016/j.jocn.2016.05.036.
    [34] B. Tse, W. Harwin, A. Barrow, B. Quinn, M. Cox, et al., Design and development of a haptic dental training system–hapTEL, in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Springer, 2010,101–108. doi: 10.1007/978-3-642-14075-4_15.
    [35] C. G. WallaceY.-M. ChangC.-Y. Tsai and F.-C. Wei, Harnessing the potential of the free fibula osteoseptocutaneous flap in mandible reconstruction, Plastic and Reconstructive Surgery, 125 (2010), 305-314.  doi: 10.1097/PRS.0b013e3181c2bb9d.
    [36] F. WuX. ChenY. LinC. WangX. WangG. ShenJ. Qin and P.-A. Heng, A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench, The International Journal of Medical Robotics and Computer Assisted Surgery, 10 (2014), 78-87.  doi: 10.1002/rcs.1514.
    [37] W. Xiao-rong, W. Meng and L. Chun-Gui, Research on collision detection algorithm based on aabb, in IEEE 2009 Fifth International Conference on Natural Computation, vol. 6, Tianjin, China, 2009,422–424. doi: 10.1109/ICNC.2009.196.
    [38] Y. P. Xin, S. J. Kim, Q. Lei, S. Wei, B. Liu, W. Wang, S. Kastberg, Y. Chen, X. Yang, X. Ma, et al., The effect of computer-assisted conceptual model-based intervention program on mathematics problem-solving performance of at-risk English learners, Reading & Writing Quarterly, 36 (2020), 104-123.
    [39] G. YanX. WangX. TanM. Yang and L. Lu, Study on accuracy of virtual surgical planning in free fibula mandibular reconstruction by using surgicase software, Zhongguo xiu fu chong jian wai ke za zhi. Chinese Journal of Reparative and Reconstructive Surgery, 27 (2013), 1006-1009. 
    [40] L. Zhao, P. K. Patel and M. Cohen, Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery, Archives of Plastic Surgery, 39 (2012), 309. doi: 10.5999/aps.2012.39.4.309.
  • 加载中

Figures(7)

Tables(2)

SHARE

Article Metrics

HTML views(850) PDF downloads(385) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return