doi: 10.3934/jimo.2020137

Maxillofacial surgical simulation system with haptic feedback

1. 

College of Electrical Engineering, Sichuan University, Chengdu, 610000, China

2. 

Centre for Smart Health, School of Nursing, Hong Kong Polytechnic University, Hong Kong, 999077, China

3. 

Faculty of Information Technology, Macau University of Science and Technology, Macau, 999078, China

4. 

West China College of Stomatology, Sichuan University, Chengdu, 610000, China

* Corresponding author: Ling He

Received  April 2020 Revised  June 2020 Published  August 2020

Fund Project: This research was partially supported by research grants from the National Natural Science Foundation of China (Grant: No.61571314)

Due to the complexity of the maxillofacial surgery, the novice should be sufficiently trained before one is qualified to carry on the surgery. To reduce the training costs and improve the training efficiency, a virtual mandible surgical system with haptic feedback is proposed. This surgical simulation system offers users the haptic feedback while simulating maxillofacial surgery. An integrated model is introduced to optimize the system simulation process, which includes force output to a six-degree-of-freedom haptic device. Based on the anatomy structure of the bone tissue, a two-layer mechanism model is designed to balance the requirement of real-time response and the force feedback accuracy. Collision detection, force rendering, and grinding function are studied to simulate some essential operations: open reduction, osteotomy, and palate fixation. The proposed simulation platform can assist in the training and planning of these oral and maxillofacial surgeries. The fast response feature enables surgeons to design a patient-specific guide plate in real-time. Ten stomatology surgeons evaluated this surgical simulation system from the following four indexes: the level of immersion, user-friendliness, stability, and the effect of surgical training. The evaluation score is eight out of ten.

Citation: Jing Zhang, Jiahui Qian, Han Zhang, Ling He, Bin Li, Jing Qin, Hongning Dai, Wei Tang, Weidong Tian. Maxillofacial surgical simulation system with haptic feedback. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020137
References:
[1]

M. Bakr, W. Massey and H. Alexander, Can virtual simulators replace traditional preclinical teaching methods: a studentsṕerspective, Int. J. Dent. Oral Health, 2. Google Scholar

[2]

J. Bian, J. Chen and M. Sun, Simulation of soft tissue deformation in virtual surgery based on physics engine, in IEEE 2011 Third International Conference on Multimedia Information Networking and Security, Shanghai, China, 2011, 60–64. doi: 10.1109/MINES.2011.84.  Google Scholar

[3]

S. A.-H. Centenero and F. Hernández-Alfaro, 3D planning in orthognathic surgery: Cad/cam surgical splints and prediction of the soft and hard tissues results–our experience in 16 cases, Journal of Cranio-Maxillofacial Surgery, 40 (2012), 162-168.   Google Scholar

[4]

X. Chen and J. Hu, A review of haptic simulator for oral and maxillofacial surgery based on virtual reality, Expert Review of Medical Devices, 15 (2018), 435-444.  doi: 10.1080/17434440.2018.1484727.  Google Scholar

[5]

X. ChenL. XuY. Sun and C. Politis, A review of computer-aided oral and maxillofacial surgery: Planning, simulation and navigation, Expert Review of Medical Devices, 13 (2016), 1043-1051.  doi: 10.1080/17434440.2016.1243054.  Google Scholar

[6]

T.-B. Deng, Biquadratic digital phase-compensator design with stability-margin controllability, Journal of Circuits, Systems and Computers, 28 (2019), 1950068. doi: 10.1142/S0218126619500683.  Google Scholar

[7]

D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana and B. Benes, A review of simulators with haptic devices for medical training, Journal of Medical Systems, 40 (2016), Art. 104. doi: 10.1007/s10916-016-0459-8.  Google Scholar

[8]

G. EttorreM. WeberH. SchaafJ. C. LowryM. Y. Mommaerts and H.-P. Howaldt, Standards for digital photography in cranio-maxillo-facial surgery–part Ⅰ: Basic views and guidelines, Journal of Cranio-Maxillofacial Surgery, 34 (2006), 65-73.  doi: 10.1016/j.jcms.2005.11.002.  Google Scholar

[9]

R. EwersK. SchichoG. UndtF. WanschitzM. TruppeR. Seemann and A. Wagner, Basic research and 12 years of clinical experience in computer-assisted navigation technology: A review, International Journal of Oral and Maxillofacial Surgery, 34 (2005), 1-8.  doi: 10.1016/j.ijom.2004.03.018.  Google Scholar

[10]

FawzyHanssan and Jong-Woo, Evaluation of virtual surgical plan applicability in 3D simulation-guided two-jaw surgery, Journal of Cranio-Maxillofacial Surgery, 47 (2019), 860-866.  doi: 10.1016/j.jcms.2019.03.005.  Google Scholar

[11]

Z. Galias and M. J. Ogorzalek, On symbolic dynamics of a chaotic second-order digital filter, International Journal of Circuit Theory and Applications, 20 (1992), 401-409.  doi: 10.1002/cta.4490200406.  Google Scholar

[12]

S. GirodS. C. SchvartzmanD. GaudilliereK. Salisbury and R. Silva, Haptic feedback improves surgeons' user experience and fracture reduction in facial trauma simulation, Journal of Rehabilitation Research & Development, 53 (2016), 561-570.  doi: 10.1682/JRRD.2015.03.0043.  Google Scholar

[13]

T. J. HoppenreijsH. P. M. FreihoferP. J. StoelingaD. B. Tuinzing and M. A. van't Hof, Condylar remodelling and resorption after Le Fort I and bimaxillary osteotomies in patients with anterior open bite: A clinical and radiological study aesthetic and reconstructive surgery, International Journal of Oral and Maxillofacial Surgery, 27 (1998), 81-91.   Google Scholar

[14]

T. IizukaK. LädrachA. H. Geering and J. Raveh, Open reduction without fixation of dislocated condylar process fractures: Long-term clinical and radiologic analysis, Journal of Oral and Maxillofacial Surgery, 56 (1998), 553-561.  doi: 10.1016/S0278-2391(98)90450-5.  Google Scholar

[15]

K. KashiwaS. KobayashiH. KimuraT. HondaT. NoharaH. FujiwaraY. Hosoya and Y. Arai, Reconstruction of a severe maxillofacial deformity after tumorectomy and irradiation using distraction osteogenesis and Le Fort I osteotomy before vascularized bone graft, Journal of Craniofacial Surgery, 18 (2007), 1133-1137.  doi: 10.1097/scs.0b013e318157280b.  Google Scholar

[16]

E. I. KonuksevenM. E. ÖnderE. Mumcuoglu and R. S. Kisnisci, Development of a visio-haptic integrated dental training simulation system, Journal of Dental Education, 74 (2010), 880-891.   Google Scholar

[17]

K. Kurita and N. V. Echiverre, Protective guide plate to aid in downfracture and positioning of the maxilla after Le Fort I osteotomy, Journal of Oral and Maxillofacial Surgery, 55 (1997), 1185-1186.  doi: 10.1016/S0278-2391(97)90306-2.  Google Scholar

[18]

B. LethausL. PoortR. BöckmannR. SmeetsR. Tolba and P. Kessler, Additive manufacturing for microvascular reconstruction of the mandible in 20 patients, Journal of Cranio-Maxillofacial Surgery, 40 (2012), 43-46.  doi: 10.1016/j.jcms.2011.01.007.  Google Scholar

[19]

J. P. LevineA. PatelP. B. Saadeh and D. L. Hirsch, Computer-aided design and manufacturing in craniomaxillofacial surgery: The new state of the art, The Journal of Craniofacial Surgery, 23 (2012), 288-293.  doi: 10.1097/SCS.0b013e318241ba92.  Google Scholar

[20]

Q. Ma, E. Kobayashi, J. Wang, K. Hara, H. Suenaga, I. Sakuma and K. Masamune, Development and preliminary evaluation of an autonomous surgical system for oral and maxillofacial surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, 15 (2019), e1997. doi: 10.1002/rcs.1997.  Google Scholar

[21]

A. MacielT. HalicZ. LuL. P. Nedel and S. De, Using the PhysX engine for physics-based virtual surgery with force feedback, The International Journal of Medical Robotics and Computer Assisted Surgery, 5 (2009), 341-353.  doi: 10.1002/rcs.266.  Google Scholar

[22]

S. G. Maliha, J. R. Diaz-Siso, N. M. Plana, A. Torroni and R. L. Flores, Haptic, physical, and web-based simulators: Are they underused in maxillofacial surgery training?, Journal of Oral and Maxillofacial Surgery, 76 (2018), 2424.E1–2424.E11. doi: 10.1016/j.joms.2018.06.177.  Google Scholar

[23]

C. Mendoza and C. OŚullivan, Interruptible collision detection for deformable objects, Computers & Graphics, 30 (2006), 432-438.  doi: 10.1016/j.cag.2006.02.018.  Google Scholar

[24]

A. MoroiY. IshiharaM. SotoboriR. NakazawaM. HiguchiY. NakanoK. Marukawa and K. Ueki, Evaluation of soft tissue morphologic changes after using the alar base cinch suture in Le Fort I osteotomy in mandibular prognathism with and without asymmetry, Journal of Cranio-Maxillofacial Surgery, 42 (2014), 718-724.  doi: 10.1016/j.jcms.2013.11.001.  Google Scholar

[25]

M. NakaoS. AsoY. ImaiN. UedaT. HatanakaM. ShibaT. Kirita and T. Matsuda, Automated planning with multivariate shape descriptors for fibular transfer in mandibular reconstruction, IEEE Transactions on Biomedical Engineering, 64 (2016), 1772-1785.  doi: 10.1109/TBME.2016.2621742.  Google Scholar

[26]

P. PohlenzA. GröbeA. PetersikN. Von SternbergB. PflesserA. PommertK.-H. HöhneU. TiedeI. Springer and M. Heiland, Virtual dental surgery as a new educational tool in dental school, Journal of Cranio-Maxillofacial Surgery, 38 (2010), 560-564.   Google Scholar

[27]

S. Raith, A. Rauen, S. C. Möhlhenrich, N. Ayoub, F. Peters, T. Steiner, F. Hölzle and A. Modabber, Introduction of an algorithm for planning of autologous fibular transfer in mandibular reconstruction based on individual bone curvatures, The International Journal of Medical Robotics and Computer Assisted Surgery, 14 (2018), e1894. doi: 10.1002/rcs.1894.  Google Scholar

[28]

H. RashidA. HussainA. H. SheikhK. AzamS. Malik and M. Amin, Measure of frequency of alveolar osteitis using two different methods of osteotomy in mandibular third molar impactions: A double-blind randomized clinical trial, Journal of Ayub Medical College Abbottabad, 30 (2018), 103-106.   Google Scholar

[29]

C. E. ReileyT. AkinbiyiD. BurschkaD. C. ChangA. M. Okamura and D. D. Yuh, Effects of visual force feedback on robot-assisted surgical task performance, The Journal of Thoracic and Cardiovascular Surgery, 135 (2008), 196-202.  doi: 10.1016/j.jtcvs.2007.08.043.  Google Scholar

[30]

H. SchaafP. StreckbeinG. EttorreJ. C. LowryM. Y. Mommaerts and H.-P. Howaldt, Standards for digital photography in cranio-maxillo-facial surgery–part Ⅱ: Additional picture sets and avoiding common mistakes, Journal of Cranio-Maxillofacial Surgery, 34 (2006), 366-377.   Google Scholar

[31]

T. Sohmura, H. Hojo, M. Nakajima, K. Wakabayashi, M. Nagao, S. Iida, T. Kitagawa, M. Kogo, T. Kojima, K. Matsumura, et al., Prototype of simulation of orthognathic surgery using a virtual reality haptic device, International Journal of Oral and Maxillofacial Surgery, 33 (2004), 740-750. Google Scholar

[32]

H. I. SonA. FranchiL. L. ChuangJ. KimH. H. Bulthoff and P. R. Giordano, Human-centered design and evaluation of haptic cueing for teleoperation of multiple mobile robots, IEEE Transactions on Cybernetics, 43 (2013), 597-609.   Google Scholar

[33]

J. P. ThawaniA. G. RamayyaK. G. AbdullahE. HudginsK. VaughanM. PiazzaP. J. MadsenV. Buch and M. S. Grady, Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology, Journal of Clinical Neuroscience, 34 (2016), 112-116.  doi: 10.1016/j.jocn.2016.05.036.  Google Scholar

[34]

B. Tse, W. Harwin, A. Barrow, B. Quinn, M. Cox, et al., Design and development of a haptic dental training system–hapTEL, in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Springer, 2010,101–108. doi: 10.1007/978-3-642-14075-4_15.  Google Scholar

[35]

C. G. WallaceY.-M. ChangC.-Y. Tsai and F.-C. Wei, Harnessing the potential of the free fibula osteoseptocutaneous flap in mandible reconstruction, Plastic and Reconstructive Surgery, 125 (2010), 305-314.  doi: 10.1097/PRS.0b013e3181c2bb9d.  Google Scholar

[36]

F. WuX. ChenY. LinC. WangX. WangG. ShenJ. Qin and P.-A. Heng, A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench, The International Journal of Medical Robotics and Computer Assisted Surgery, 10 (2014), 78-87.  doi: 10.1002/rcs.1514.  Google Scholar

[37]

W. Xiao-rong, W. Meng and L. Chun-Gui, Research on collision detection algorithm based on aabb, in IEEE 2009 Fifth International Conference on Natural Computation, vol. 6, Tianjin, China, 2009,422–424. doi: 10.1109/ICNC.2009.196.  Google Scholar

[38]

Y. P. Xin, S. J. Kim, Q. Lei, S. Wei, B. Liu, W. Wang, S. Kastberg, Y. Chen, X. Yang, X. Ma, et al., The effect of computer-assisted conceptual model-based intervention program on mathematics problem-solving performance of at-risk English learners, Reading & Writing Quarterly, 36 (2020), 104-123. Google Scholar

[39]

G. YanX. WangX. TanM. Yang and L. Lu, Study on accuracy of virtual surgical planning in free fibula mandibular reconstruction by using surgicase software, Zhongguo xiu fu chong jian wai ke za zhi. Chinese Journal of Reparative and Reconstructive Surgery, 27 (2013), 1006-1009.   Google Scholar

[40]

L. Zhao, P. K. Patel and M. Cohen, Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery, Archives of Plastic Surgery, 39 (2012), 309. doi: 10.5999/aps.2012.39.4.309.  Google Scholar

show all references

References:
[1]

M. Bakr, W. Massey and H. Alexander, Can virtual simulators replace traditional preclinical teaching methods: a studentsṕerspective, Int. J. Dent. Oral Health, 2. Google Scholar

[2]

J. Bian, J. Chen and M. Sun, Simulation of soft tissue deformation in virtual surgery based on physics engine, in IEEE 2011 Third International Conference on Multimedia Information Networking and Security, Shanghai, China, 2011, 60–64. doi: 10.1109/MINES.2011.84.  Google Scholar

[3]

S. A.-H. Centenero and F. Hernández-Alfaro, 3D planning in orthognathic surgery: Cad/cam surgical splints and prediction of the soft and hard tissues results–our experience in 16 cases, Journal of Cranio-Maxillofacial Surgery, 40 (2012), 162-168.   Google Scholar

[4]

X. Chen and J. Hu, A review of haptic simulator for oral and maxillofacial surgery based on virtual reality, Expert Review of Medical Devices, 15 (2018), 435-444.  doi: 10.1080/17434440.2018.1484727.  Google Scholar

[5]

X. ChenL. XuY. Sun and C. Politis, A review of computer-aided oral and maxillofacial surgery: Planning, simulation and navigation, Expert Review of Medical Devices, 13 (2016), 1043-1051.  doi: 10.1080/17434440.2016.1243054.  Google Scholar

[6]

T.-B. Deng, Biquadratic digital phase-compensator design with stability-margin controllability, Journal of Circuits, Systems and Computers, 28 (2019), 1950068. doi: 10.1142/S0218126619500683.  Google Scholar

[7]

D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana and B. Benes, A review of simulators with haptic devices for medical training, Journal of Medical Systems, 40 (2016), Art. 104. doi: 10.1007/s10916-016-0459-8.  Google Scholar

[8]

G. EttorreM. WeberH. SchaafJ. C. LowryM. Y. Mommaerts and H.-P. Howaldt, Standards for digital photography in cranio-maxillo-facial surgery–part Ⅰ: Basic views and guidelines, Journal of Cranio-Maxillofacial Surgery, 34 (2006), 65-73.  doi: 10.1016/j.jcms.2005.11.002.  Google Scholar

[9]

R. EwersK. SchichoG. UndtF. WanschitzM. TruppeR. Seemann and A. Wagner, Basic research and 12 years of clinical experience in computer-assisted navigation technology: A review, International Journal of Oral and Maxillofacial Surgery, 34 (2005), 1-8.  doi: 10.1016/j.ijom.2004.03.018.  Google Scholar

[10]

FawzyHanssan and Jong-Woo, Evaluation of virtual surgical plan applicability in 3D simulation-guided two-jaw surgery, Journal of Cranio-Maxillofacial Surgery, 47 (2019), 860-866.  doi: 10.1016/j.jcms.2019.03.005.  Google Scholar

[11]

Z. Galias and M. J. Ogorzalek, On symbolic dynamics of a chaotic second-order digital filter, International Journal of Circuit Theory and Applications, 20 (1992), 401-409.  doi: 10.1002/cta.4490200406.  Google Scholar

[12]

S. GirodS. C. SchvartzmanD. GaudilliereK. Salisbury and R. Silva, Haptic feedback improves surgeons' user experience and fracture reduction in facial trauma simulation, Journal of Rehabilitation Research & Development, 53 (2016), 561-570.  doi: 10.1682/JRRD.2015.03.0043.  Google Scholar

[13]

T. J. HoppenreijsH. P. M. FreihoferP. J. StoelingaD. B. Tuinzing and M. A. van't Hof, Condylar remodelling and resorption after Le Fort I and bimaxillary osteotomies in patients with anterior open bite: A clinical and radiological study aesthetic and reconstructive surgery, International Journal of Oral and Maxillofacial Surgery, 27 (1998), 81-91.   Google Scholar

[14]

T. IizukaK. LädrachA. H. Geering and J. Raveh, Open reduction without fixation of dislocated condylar process fractures: Long-term clinical and radiologic analysis, Journal of Oral and Maxillofacial Surgery, 56 (1998), 553-561.  doi: 10.1016/S0278-2391(98)90450-5.  Google Scholar

[15]

K. KashiwaS. KobayashiH. KimuraT. HondaT. NoharaH. FujiwaraY. Hosoya and Y. Arai, Reconstruction of a severe maxillofacial deformity after tumorectomy and irradiation using distraction osteogenesis and Le Fort I osteotomy before vascularized bone graft, Journal of Craniofacial Surgery, 18 (2007), 1133-1137.  doi: 10.1097/scs.0b013e318157280b.  Google Scholar

[16]

E. I. KonuksevenM. E. ÖnderE. Mumcuoglu and R. S. Kisnisci, Development of a visio-haptic integrated dental training simulation system, Journal of Dental Education, 74 (2010), 880-891.   Google Scholar

[17]

K. Kurita and N. V. Echiverre, Protective guide plate to aid in downfracture and positioning of the maxilla after Le Fort I osteotomy, Journal of Oral and Maxillofacial Surgery, 55 (1997), 1185-1186.  doi: 10.1016/S0278-2391(97)90306-2.  Google Scholar

[18]

B. LethausL. PoortR. BöckmannR. SmeetsR. Tolba and P. Kessler, Additive manufacturing for microvascular reconstruction of the mandible in 20 patients, Journal of Cranio-Maxillofacial Surgery, 40 (2012), 43-46.  doi: 10.1016/j.jcms.2011.01.007.  Google Scholar

[19]

J. P. LevineA. PatelP. B. Saadeh and D. L. Hirsch, Computer-aided design and manufacturing in craniomaxillofacial surgery: The new state of the art, The Journal of Craniofacial Surgery, 23 (2012), 288-293.  doi: 10.1097/SCS.0b013e318241ba92.  Google Scholar

[20]

Q. Ma, E. Kobayashi, J. Wang, K. Hara, H. Suenaga, I. Sakuma and K. Masamune, Development and preliminary evaluation of an autonomous surgical system for oral and maxillofacial surgery, The International Journal of Medical Robotics and Computer Assisted Surgery, 15 (2019), e1997. doi: 10.1002/rcs.1997.  Google Scholar

[21]

A. MacielT. HalicZ. LuL. P. Nedel and S. De, Using the PhysX engine for physics-based virtual surgery with force feedback, The International Journal of Medical Robotics and Computer Assisted Surgery, 5 (2009), 341-353.  doi: 10.1002/rcs.266.  Google Scholar

[22]

S. G. Maliha, J. R. Diaz-Siso, N. M. Plana, A. Torroni and R. L. Flores, Haptic, physical, and web-based simulators: Are they underused in maxillofacial surgery training?, Journal of Oral and Maxillofacial Surgery, 76 (2018), 2424.E1–2424.E11. doi: 10.1016/j.joms.2018.06.177.  Google Scholar

[23]

C. Mendoza and C. OŚullivan, Interruptible collision detection for deformable objects, Computers & Graphics, 30 (2006), 432-438.  doi: 10.1016/j.cag.2006.02.018.  Google Scholar

[24]

A. MoroiY. IshiharaM. SotoboriR. NakazawaM. HiguchiY. NakanoK. Marukawa and K. Ueki, Evaluation of soft tissue morphologic changes after using the alar base cinch suture in Le Fort I osteotomy in mandibular prognathism with and without asymmetry, Journal of Cranio-Maxillofacial Surgery, 42 (2014), 718-724.  doi: 10.1016/j.jcms.2013.11.001.  Google Scholar

[25]

M. NakaoS. AsoY. ImaiN. UedaT. HatanakaM. ShibaT. Kirita and T. Matsuda, Automated planning with multivariate shape descriptors for fibular transfer in mandibular reconstruction, IEEE Transactions on Biomedical Engineering, 64 (2016), 1772-1785.  doi: 10.1109/TBME.2016.2621742.  Google Scholar

[26]

P. PohlenzA. GröbeA. PetersikN. Von SternbergB. PflesserA. PommertK.-H. HöhneU. TiedeI. Springer and M. Heiland, Virtual dental surgery as a new educational tool in dental school, Journal of Cranio-Maxillofacial Surgery, 38 (2010), 560-564.   Google Scholar

[27]

S. Raith, A. Rauen, S. C. Möhlhenrich, N. Ayoub, F. Peters, T. Steiner, F. Hölzle and A. Modabber, Introduction of an algorithm for planning of autologous fibular transfer in mandibular reconstruction based on individual bone curvatures, The International Journal of Medical Robotics and Computer Assisted Surgery, 14 (2018), e1894. doi: 10.1002/rcs.1894.  Google Scholar

[28]

H. RashidA. HussainA. H. SheikhK. AzamS. Malik and M. Amin, Measure of frequency of alveolar osteitis using two different methods of osteotomy in mandibular third molar impactions: A double-blind randomized clinical trial, Journal of Ayub Medical College Abbottabad, 30 (2018), 103-106.   Google Scholar

[29]

C. E. ReileyT. AkinbiyiD. BurschkaD. C. ChangA. M. Okamura and D. D. Yuh, Effects of visual force feedback on robot-assisted surgical task performance, The Journal of Thoracic and Cardiovascular Surgery, 135 (2008), 196-202.  doi: 10.1016/j.jtcvs.2007.08.043.  Google Scholar

[30]

H. SchaafP. StreckbeinG. EttorreJ. C. LowryM. Y. Mommaerts and H.-P. Howaldt, Standards for digital photography in cranio-maxillo-facial surgery–part Ⅱ: Additional picture sets and avoiding common mistakes, Journal of Cranio-Maxillofacial Surgery, 34 (2006), 366-377.   Google Scholar

[31]

T. Sohmura, H. Hojo, M. Nakajima, K. Wakabayashi, M. Nagao, S. Iida, T. Kitagawa, M. Kogo, T. Kojima, K. Matsumura, et al., Prototype of simulation of orthognathic surgery using a virtual reality haptic device, International Journal of Oral and Maxillofacial Surgery, 33 (2004), 740-750. Google Scholar

[32]

H. I. SonA. FranchiL. L. ChuangJ. KimH. H. Bulthoff and P. R. Giordano, Human-centered design and evaluation of haptic cueing for teleoperation of multiple mobile robots, IEEE Transactions on Cybernetics, 43 (2013), 597-609.   Google Scholar

[33]

J. P. ThawaniA. G. RamayyaK. G. AbdullahE. HudginsK. VaughanM. PiazzaP. J. MadsenV. Buch and M. S. Grady, Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology, Journal of Clinical Neuroscience, 34 (2016), 112-116.  doi: 10.1016/j.jocn.2016.05.036.  Google Scholar

[34]

B. Tse, W. Harwin, A. Barrow, B. Quinn, M. Cox, et al., Design and development of a haptic dental training system–hapTEL, in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Springer, 2010,101–108. doi: 10.1007/978-3-642-14075-4_15.  Google Scholar

[35]

C. G. WallaceY.-M. ChangC.-Y. Tsai and F.-C. Wei, Harnessing the potential of the free fibula osteoseptocutaneous flap in mandible reconstruction, Plastic and Reconstructive Surgery, 125 (2010), 305-314.  doi: 10.1097/PRS.0b013e3181c2bb9d.  Google Scholar

[36]

F. WuX. ChenY. LinC. WangX. WangG. ShenJ. Qin and P.-A. Heng, A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench, The International Journal of Medical Robotics and Computer Assisted Surgery, 10 (2014), 78-87.  doi: 10.1002/rcs.1514.  Google Scholar

[37]

W. Xiao-rong, W. Meng and L. Chun-Gui, Research on collision detection algorithm based on aabb, in IEEE 2009 Fifth International Conference on Natural Computation, vol. 6, Tianjin, China, 2009,422–424. doi: 10.1109/ICNC.2009.196.  Google Scholar

[38]

Y. P. Xin, S. J. Kim, Q. Lei, S. Wei, B. Liu, W. Wang, S. Kastberg, Y. Chen, X. Yang, X. Ma, et al., The effect of computer-assisted conceptual model-based intervention program on mathematics problem-solving performance of at-risk English learners, Reading & Writing Quarterly, 36 (2020), 104-123. Google Scholar

[39]

G. YanX. WangX. TanM. Yang and L. Lu, Study on accuracy of virtual surgical planning in free fibula mandibular reconstruction by using surgicase software, Zhongguo xiu fu chong jian wai ke za zhi. Chinese Journal of Reparative and Reconstructive Surgery, 27 (2013), 1006-1009.   Google Scholar

[40]

L. Zhao, P. K. Patel and M. Cohen, Application of virtual surgical planning with computer assisted design and manufacturing technology to cranio-maxillofacial surgery, Archives of Plastic Surgery, 39 (2012), 309. doi: 10.5999/aps.2012.39.4.309.  Google Scholar

Figure 1.  The architecture of the virtual surgery system
Figure 2.  Interaction between the two engines and the system
Figure 3.  Interaction between the input force and the system
Figure 4.  Simulation of the virtual surgical system for open reduction
Figure 5.  Simulation of the virtual surgical system for grinding and design of fixing plate
Figure 6.  Visual and haptic authenticity
Figure 7.  Evaluation of the system
Table 1.  Performance of virtual surgical system without griding function
Points Lines of tool Points of bone Lines of bone Triangles of bone Draw frame(FPS)
35 34 23175 69454 46280 72.2
35 34 17728 53190 35460 145.8
Points Lines of tool Points of bone Lines of bone Triangles of bone Draw frame(FPS)
35 34 23175 69454 46280 72.2
35 34 17728 53190 35460 145.8
Table 2.  Performance of virtual surgical system with grinding function
Points Lines of tool Points of bone Lines of bone Triangles of bone Draw frame(FPS)
35 34 23175 69454 46280 No response
35 34 535 1526 4994 16.6
35 34 535 1526 2996 30.0
Points Lines of tool Points of bone Lines of bone Triangles of bone Draw frame(FPS)
35 34 23175 69454 46280 No response
35 34 535 1526 4994 16.6
35 34 535 1526 2996 30.0
[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]