
-
Previous Article
Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking
- JIMO Home
- This Issue
- Next Article
An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers
School of Management, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China |
This paper investigates the decentralized resource-constrained multi-project scheduling problem with transfer times (DRCMPSPTT) in which the transfer times of the global resources among different projects are assumed to be sequence-independent, while transfers of local resources take no time within a project. First, two decision variables ($ {y_{ijg}} $ and $ {w_{ijg}} $) are adopted to express the transition state of global resources between projects. $ {y_{ijg}} $ (takes a value of 0 or 1) represents whether activity i transfers global resource g to activity j; accordingly, the transferred quantity is denoted as $ {w_{ijg}} $. Then, we construct an integer linear model with the goal of minimizing the average project delay for the DRCMPSPTT. Second, an adaptive genetic algorithm (GA) is developed to solve the DRCMPSPTT. To gain the schedules for the DRCMPSPTT, the traditional serial and parallel scheduling generation schemes (SGSs) are modified to combine with different resource transfer rules and to design multiple decoding schemes. Third, the numerical experiments are implemented to analyse the effects of eight decoding schemes, and we found that the scheme comprising the parallel SGS and maxRS rule can make the GA work the best; furthermore, the effectiveness of the GA_maxRS (GA embedded with the best scheme) is demonstrated by solving some instances with different sizes.
References:
[1] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for decentralized multi project scheduling with resource transfers, International Journal of Production Economics, 146 (2013), 646-661.
doi: 10.1016/j.ijpe.2013.08.013. |
[2] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for distributed multi-project scheduling: An auction-based negotiation approach, Engineering Applications of Artificial Intelligence, 25 (2012), 1738-1751.
doi: 10.1016/j.engappai.2011.12.003. |
[3] |
B. Afshar-Nadjafi and M. Majlesi,
Resource constrained project scheduling problem with setup times after preemptive processes, Computers and Chemical Engineering, 69 (2014), 16-25.
doi: 10.1016/j.compchemeng.2014.06.012. |
[4] |
C. Artigues, P. Michelon and S. Reusser,
Insertion techniques for static and dynamic resource-constrained project scheduling, European Journal of Operational Research, 149 (2003), 249-267.
doi: 10.1016/S0377-2217(02)00758-0. |
[5] |
D. Bedworth and J. Bailey, Integrated Production Control Systems Management, Analysis, Design, 2$^nd$ edition, John Wiley & Sons, Inc., New York, 1999. |
[6] |
C. Bierwirth, D. Mattfeld and H. Kopfer, On permutation representations for scheduling problems, in Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 1996,310–318.
doi: 10.1007/3-540-61723-X_995. |
[7] |
P. Brucker, S. Knust, A. Schoo and O. Thiele,
A branch and bound algorithm for the resource-constrained project scheduling problem, European Journal of Operational Research, 107 (1998), 272-288.
doi: 10.1016/S0377-2217(97)00335-4. |
[8] |
Z. Cai and X. Li, A hybrid genetic algorithm for resource-constrained multi-project scheduling problem with resource transfer time, IEEE International Conference on Automation Science and Engineering, Seoul, 2012,569–574.
doi: 10.1109/CoASE.2012.6386457. |
[9] |
G. Confessore, S. Giordani and S. Rismondo,
A market-based multi-agent system model for decentralized multi–project scheduling, Annals of Operations Research, 150 (2007), 115-135.
doi: 10.1007/s10479-006-0158-9. |
[10] |
E. W. Davis,
Project network summary measures constrained resource scheduling, AIIE Transactions, 7 (1975), 132-142.
doi: 10.1080/05695557508974995. |
[11] |
E. L. Demeulemeester and W. S. Herroelen,
An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem, European Journal of Operational Research, 90 (1996), 334-348.
doi: 10.1016/0377-2217(95)00358-4. |
[12] |
L. Djerid, M. C. Portman and P. Villon,
Performance analysis of permutation cross-over genetic operators, Journal of Decision Systems, 5 (1996), 131-140.
doi: 10.1080/12460125.1996.10511679. |
[13] |
S. Hartmann and R. Kolisch,
Experimental evaluation of state-of-the-art heuristics for resource-constrained project scheduling problem, European Journal of Operational Research, 127 (2000), 394-407.
doi: 10.1016/S0377-2217(99)00485-3. |
[14] |
J. B. Holland and J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich., 1975.
![]() ![]() |
[15] |
J. Homberger,
A multi-agent system for the decentralized resource constrained multi-project scheduling problem, International Transactions in Operational Research, 14 (2007), 565-589.
doi: 10.1111/j.1475-3995.2007.00614.x. |
[16] |
J. Homberger,
A (${\mu}$, ${\lambda}$)-coordination mechanism for agent-based multi-project scheduling, OR Spectrum, 34 (2012), 107-132.
doi: 10.1007/s00291-009-0178-3. |
[17] |
R. Jans and Z. Degraeve,
Modeling industrial lot sizing problems: A review, International Journal of Production Research, 46 (2008), 1619-1643.
doi: 10.1080/00207540600902262. |
[18] |
R. L. Kadri and F. F. Boctor, An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case, European Journal of Operational Research, 265 (2018), 454-–462.
doi: 10.1016/j.ejor.2017.07.027. |
[19] |
J. E. Kelley, The critical-path method: Resources planning and scheduling, Industrial Scheduling, 13 (1963), 347365. |
[20] |
S. Khalilpourazari, B. Naderi and S. Khalilpourazary, Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020), 3037–-3066.
doi: 10.1007/s00500-019-04080-6. |
[21] |
S. Khalilpourazari and S. H. R. Pasandideh,
Modeling and optimization of multi-item multi-constrained EOQ model for growing items, Knowledge-Based Systems, 164 (2019), 150-162.
doi: 10.1016/j.knosys.2018.10.032. |
[22] |
S. Khalilpourazari and S. H. R. Pasandideh, Sine-cosine crow search algorithm: Theory and applications, Neural Computing and Applications, 32 (2019), 7725–-7742.
doi: 10.1007/s00521-019-04530-0. |
[23] |
R. Kolisch, Project scheduling with setup times, in Project Scheduling Under Resource Constraints, Production and Logistics, Physica, Heidelberg, 1995,177–185.
doi: 10.1007/978-3-642-50296-5_8. |
[24] |
R. Kolisch and S. Hartmann, Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis, in Project Scheduling, International Series in Operations Research & Management Science, Springer, Boston, 1999,147–178.
doi: 10.1007/978-1-4615-5533-9_7. |
[25] |
R. Kolisch and A. Sprecher,
PSPLIB–A project scheduling library, European Journal of Operation Research, 96 (1996), 205-216.
|
[26] |
D. Kruger and A. Scholl,
A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times, European Journal of Operation Research, 197 (2009), 492-508.
doi: 10.1016/j.ejor.2008.07.036. |
[27] |
D. Kruger and A. Scholl,
Managing and modelling general resource transfers in (multi-)project scheduling, OR Spectrum, 32 (2010), 369-394.
doi: 10.1007/s00291-008-0144-5. |
[28] |
C. J. Liao, C. W. Chao and L. C. Chen,
An improved heuristic for parallel machine weighted flowtime scheduling with family set-up times, Computers and Mathematics with Applications, 63 (2012), 110-117.
doi: 10.1016/j.camwa.2011.10.077. |
[29] |
A. Lova and P. Tormos,
Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling, Annals of Operations Research, 102 (2001), 263-286.
doi: 10.1023/A:1010966401888. |
[30] |
A. Lova, P. Tormos, M. Cervantes and F. Barber,
An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes, International Journal of Production Economics, 117 (2009), 302-316.
doi: 10.1016/j.ijpe.2008.11.002. |
[31] |
D. Merkle, M. Middendorf and H. Schmeck,
Ant colony optimization for resource-constrained project scheduling, IEEE Transactions on Evolutionary Computation, 6 (2002), 333-346.
doi: 10.1109/TEVC.2002.802450. |
[32] |
M. Mika, G. Waligra and J. Weglarz,
Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times, European Journal of Operational Research, 187 (2008), 1238-1250.
doi: 10.1016/j.ejor.2006.06.069. |
[33] |
M. L. Mittal and A. Kanda,
Scheduling of multiple projects with resource transfers, International Journal of Mathematics in Operational Research, 1 (2009), 303-325.
doi: 10.1504/IJMOR.2009.024288. |
[34] |
K. Moumene and J. A. Ferland,
Activity list representation for a generalization of the resource-constrained project scheduling problem, European Journal of Operational Research, 199 (2009), 46-54.
doi: 10.1016/j.ejor.2008.10.030. |
[35] |
M. S. Nagano, A. A. Silva and L. A. N. Lorena,
A new evolutionary clustering search for a no-wait flow shop problem with set-up times, Engineering Applications of Artificial Intelligence, 25 (2012), 1114-1120.
doi: 10.1016/j.engappai.2012.05.017. |
[36] |
K. Neumann, C. Schwindt and J. Zimmermann, Project Scheduling with Time Windows and Scarce Resources, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-24800-2. |
[37] |
S. H. R. Pasandideh and S. Khalilpourazari, Sine cosine crow search algorithm: A powerful hybrid meta heuristic for global optimization, preprint, arXiv: 1801.08485. |
[38] |
J. Poppenborg and S. Knust,
A flow-based tabu search algorithm for the RCPSP with transfer times, OR Spectrum, 38 (2016), 305-334.
doi: 10.1007/s00291-015-0402-2. |
[39] |
V. Roshanaei, B. Naderi, F. Jolai and M. Khalili,
A variable neighborhood search for job shop scheduling with set-up times to minimize makespan, Future Generation Computer Systems, 25 (2009), 654-661.
doi: 10.1016/j.future.2009.01.004. |
[40] |
M. Rostami, M. Bagherpour, M. M. Mazdeh and A. Makui, Resource Pool Location for Periodic Services in Decentralized Multi-Project Scheduling Problems, Journal of Computing in Civil Engineering, 31 (2017), 04017022.
doi: 10.1061/(ASCE)CP.1943-5487.0000671. |
[41] |
V. Valls, F. Ballestin and M. S. Quintanilla, A hybrid genetic algorithm for the RCPSP, Technical report, Department of Statistics and Operations Research, University of Valencia, 2003. |
[42] |
V. Valls, F. Ballestin and M. S. Quintanilla,
Justification and RCPSP: A technique that pays, European Journal of Operational Research, 165 (2005), 375-386.
doi: 10.1016/j.ejor.2004.04.008. |
[43] |
M. Vanhoucke,
Setup times and fast tracking in resource-constrained project scheduling, Computers & Industrial Engineering, 54 (2008), 1062-1070.
doi: 10.1016/j.cie.2007.11.008. |
[44] |
K. K. Yang and C. C. Sum,
A comparison of resource allocation and activity scheduling rules in a dynamic multi-project environment, Journal of Operation Management, 11 (1993), 207-218.
doi: 10.1016/0272-6963(93)90023-I. |
[45] |
K. K. Yang and C. C. Sum,
An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multi project environment, European Journal of Operational Research, 103 (1997), 139-154.
|
show all references
References:
[1] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for decentralized multi project scheduling with resource transfers, International Journal of Production Economics, 146 (2013), 646-661.
doi: 10.1016/j.ijpe.2013.08.013. |
[2] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for distributed multi-project scheduling: An auction-based negotiation approach, Engineering Applications of Artificial Intelligence, 25 (2012), 1738-1751.
doi: 10.1016/j.engappai.2011.12.003. |
[3] |
B. Afshar-Nadjafi and M. Majlesi,
Resource constrained project scheduling problem with setup times after preemptive processes, Computers and Chemical Engineering, 69 (2014), 16-25.
doi: 10.1016/j.compchemeng.2014.06.012. |
[4] |
C. Artigues, P. Michelon and S. Reusser,
Insertion techniques for static and dynamic resource-constrained project scheduling, European Journal of Operational Research, 149 (2003), 249-267.
doi: 10.1016/S0377-2217(02)00758-0. |
[5] |
D. Bedworth and J. Bailey, Integrated Production Control Systems Management, Analysis, Design, 2$^nd$ edition, John Wiley & Sons, Inc., New York, 1999. |
[6] |
C. Bierwirth, D. Mattfeld and H. Kopfer, On permutation representations for scheduling problems, in Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 1996,310–318.
doi: 10.1007/3-540-61723-X_995. |
[7] |
P. Brucker, S. Knust, A. Schoo and O. Thiele,
A branch and bound algorithm for the resource-constrained project scheduling problem, European Journal of Operational Research, 107 (1998), 272-288.
doi: 10.1016/S0377-2217(97)00335-4. |
[8] |
Z. Cai and X. Li, A hybrid genetic algorithm for resource-constrained multi-project scheduling problem with resource transfer time, IEEE International Conference on Automation Science and Engineering, Seoul, 2012,569–574.
doi: 10.1109/CoASE.2012.6386457. |
[9] |
G. Confessore, S. Giordani and S. Rismondo,
A market-based multi-agent system model for decentralized multi–project scheduling, Annals of Operations Research, 150 (2007), 115-135.
doi: 10.1007/s10479-006-0158-9. |
[10] |
E. W. Davis,
Project network summary measures constrained resource scheduling, AIIE Transactions, 7 (1975), 132-142.
doi: 10.1080/05695557508974995. |
[11] |
E. L. Demeulemeester and W. S. Herroelen,
An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem, European Journal of Operational Research, 90 (1996), 334-348.
doi: 10.1016/0377-2217(95)00358-4. |
[12] |
L. Djerid, M. C. Portman and P. Villon,
Performance analysis of permutation cross-over genetic operators, Journal of Decision Systems, 5 (1996), 131-140.
doi: 10.1080/12460125.1996.10511679. |
[13] |
S. Hartmann and R. Kolisch,
Experimental evaluation of state-of-the-art heuristics for resource-constrained project scheduling problem, European Journal of Operational Research, 127 (2000), 394-407.
doi: 10.1016/S0377-2217(99)00485-3. |
[14] |
J. B. Holland and J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich., 1975.
![]() ![]() |
[15] |
J. Homberger,
A multi-agent system for the decentralized resource constrained multi-project scheduling problem, International Transactions in Operational Research, 14 (2007), 565-589.
doi: 10.1111/j.1475-3995.2007.00614.x. |
[16] |
J. Homberger,
A (${\mu}$, ${\lambda}$)-coordination mechanism for agent-based multi-project scheduling, OR Spectrum, 34 (2012), 107-132.
doi: 10.1007/s00291-009-0178-3. |
[17] |
R. Jans and Z. Degraeve,
Modeling industrial lot sizing problems: A review, International Journal of Production Research, 46 (2008), 1619-1643.
doi: 10.1080/00207540600902262. |
[18] |
R. L. Kadri and F. F. Boctor, An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case, European Journal of Operational Research, 265 (2018), 454-–462.
doi: 10.1016/j.ejor.2017.07.027. |
[19] |
J. E. Kelley, The critical-path method: Resources planning and scheduling, Industrial Scheduling, 13 (1963), 347365. |
[20] |
S. Khalilpourazari, B. Naderi and S. Khalilpourazary, Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020), 3037–-3066.
doi: 10.1007/s00500-019-04080-6. |
[21] |
S. Khalilpourazari and S. H. R. Pasandideh,
Modeling and optimization of multi-item multi-constrained EOQ model for growing items, Knowledge-Based Systems, 164 (2019), 150-162.
doi: 10.1016/j.knosys.2018.10.032. |
[22] |
S. Khalilpourazari and S. H. R. Pasandideh, Sine-cosine crow search algorithm: Theory and applications, Neural Computing and Applications, 32 (2019), 7725–-7742.
doi: 10.1007/s00521-019-04530-0. |
[23] |
R. Kolisch, Project scheduling with setup times, in Project Scheduling Under Resource Constraints, Production and Logistics, Physica, Heidelberg, 1995,177–185.
doi: 10.1007/978-3-642-50296-5_8. |
[24] |
R. Kolisch and S. Hartmann, Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis, in Project Scheduling, International Series in Operations Research & Management Science, Springer, Boston, 1999,147–178.
doi: 10.1007/978-1-4615-5533-9_7. |
[25] |
R. Kolisch and A. Sprecher,
PSPLIB–A project scheduling library, European Journal of Operation Research, 96 (1996), 205-216.
|
[26] |
D. Kruger and A. Scholl,
A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times, European Journal of Operation Research, 197 (2009), 492-508.
doi: 10.1016/j.ejor.2008.07.036. |
[27] |
D. Kruger and A. Scholl,
Managing and modelling general resource transfers in (multi-)project scheduling, OR Spectrum, 32 (2010), 369-394.
doi: 10.1007/s00291-008-0144-5. |
[28] |
C. J. Liao, C. W. Chao and L. C. Chen,
An improved heuristic for parallel machine weighted flowtime scheduling with family set-up times, Computers and Mathematics with Applications, 63 (2012), 110-117.
doi: 10.1016/j.camwa.2011.10.077. |
[29] |
A. Lova and P. Tormos,
Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling, Annals of Operations Research, 102 (2001), 263-286.
doi: 10.1023/A:1010966401888. |
[30] |
A. Lova, P. Tormos, M. Cervantes and F. Barber,
An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes, International Journal of Production Economics, 117 (2009), 302-316.
doi: 10.1016/j.ijpe.2008.11.002. |
[31] |
D. Merkle, M. Middendorf and H. Schmeck,
Ant colony optimization for resource-constrained project scheduling, IEEE Transactions on Evolutionary Computation, 6 (2002), 333-346.
doi: 10.1109/TEVC.2002.802450. |
[32] |
M. Mika, G. Waligra and J. Weglarz,
Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times, European Journal of Operational Research, 187 (2008), 1238-1250.
doi: 10.1016/j.ejor.2006.06.069. |
[33] |
M. L. Mittal and A. Kanda,
Scheduling of multiple projects with resource transfers, International Journal of Mathematics in Operational Research, 1 (2009), 303-325.
doi: 10.1504/IJMOR.2009.024288. |
[34] |
K. Moumene and J. A. Ferland,
Activity list representation for a generalization of the resource-constrained project scheduling problem, European Journal of Operational Research, 199 (2009), 46-54.
doi: 10.1016/j.ejor.2008.10.030. |
[35] |
M. S. Nagano, A. A. Silva and L. A. N. Lorena,
A new evolutionary clustering search for a no-wait flow shop problem with set-up times, Engineering Applications of Artificial Intelligence, 25 (2012), 1114-1120.
doi: 10.1016/j.engappai.2012.05.017. |
[36] |
K. Neumann, C. Schwindt and J. Zimmermann, Project Scheduling with Time Windows and Scarce Resources, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-24800-2. |
[37] |
S. H. R. Pasandideh and S. Khalilpourazari, Sine cosine crow search algorithm: A powerful hybrid meta heuristic for global optimization, preprint, arXiv: 1801.08485. |
[38] |
J. Poppenborg and S. Knust,
A flow-based tabu search algorithm for the RCPSP with transfer times, OR Spectrum, 38 (2016), 305-334.
doi: 10.1007/s00291-015-0402-2. |
[39] |
V. Roshanaei, B. Naderi, F. Jolai and M. Khalili,
A variable neighborhood search for job shop scheduling with set-up times to minimize makespan, Future Generation Computer Systems, 25 (2009), 654-661.
doi: 10.1016/j.future.2009.01.004. |
[40] |
M. Rostami, M. Bagherpour, M. M. Mazdeh and A. Makui, Resource Pool Location for Periodic Services in Decentralized Multi-Project Scheduling Problems, Journal of Computing in Civil Engineering, 31 (2017), 04017022.
doi: 10.1061/(ASCE)CP.1943-5487.0000671. |
[41] |
V. Valls, F. Ballestin and M. S. Quintanilla, A hybrid genetic algorithm for the RCPSP, Technical report, Department of Statistics and Operations Research, University of Valencia, 2003. |
[42] |
V. Valls, F. Ballestin and M. S. Quintanilla,
Justification and RCPSP: A technique that pays, European Journal of Operational Research, 165 (2005), 375-386.
doi: 10.1016/j.ejor.2004.04.008. |
[43] |
M. Vanhoucke,
Setup times and fast tracking in resource-constrained project scheduling, Computers & Industrial Engineering, 54 (2008), 1062-1070.
doi: 10.1016/j.cie.2007.11.008. |
[44] |
K. K. Yang and C. C. Sum,
A comparison of resource allocation and activity scheduling rules in a dynamic multi-project environment, Journal of Operation Management, 11 (1993), 207-218.
doi: 10.1016/0272-6963(93)90023-I. |
[45] |
K. K. Yang and C. C. Sum,
An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multi project environment, European Journal of Operational Research, 103 (1997), 139-154.
|











Authors | Project | Objective | Transfer times | Algorithm | ||||
Single | Multi- | Decentralized multi- | Makespan | Others | sequence-dependent | sequence-independent | ||
Kolisch (1995) | Parallel scheme based heuristic | |||||||
Neumann et al (2003) | Branch-and-bound | |||||||
Vanhoucke(2008) | Branch-and-bound | |||||||
Mika (2008) | Tabu search | |||||||
Afshar-Nadjafi et al (2014) | GA | |||||||
Poppenborg(2016) | Tabu search | |||||||
Kadri and Boctor (2017) | GA | |||||||
Yang and Sum(1993, 1997) | Computational experiment | |||||||
Mittal and Kanda (2009) | Cost | Heuristics | ||||||
Kruger and Scholl(2009, 2010) | Cost | Priority-rule based heuristic | ||||||
Cai and Li(2012) | APD | Hybrid GA | ||||||
Adhau and Mittal(2013) | APD | DMAS/RIA | ||||||
This research | APD | GA |
Authors | Project | Objective | Transfer times | Algorithm | ||||
Single | Multi- | Decentralized multi- | Makespan | Others | sequence-dependent | sequence-independent | ||
Kolisch (1995) | Parallel scheme based heuristic | |||||||
Neumann et al (2003) | Branch-and-bound | |||||||
Vanhoucke(2008) | Branch-and-bound | |||||||
Mika (2008) | Tabu search | |||||||
Afshar-Nadjafi et al (2014) | GA | |||||||
Poppenborg(2016) | Tabu search | |||||||
Kadri and Boctor (2017) | GA | |||||||
Yang and Sum(1993, 1997) | Computational experiment | |||||||
Mittal and Kanda (2009) | Cost | Heuristics | ||||||
Kruger and Scholl(2009, 2010) | Cost | Priority-rule based heuristic | ||||||
Cai and Li(2012) | APD | Hybrid GA | ||||||
Adhau and Mittal(2013) | APD | DMAS/RIA | ||||||
This research | APD | GA |
Transfer rules | Priority value |
Extremum |
minTT | min | |
minGAP | min | |
maxRS | max | |
minRS | min |
Transfer rules | Priority value |
Extremum |
minTT | min | |
minGAP | min | |
maxRS | max | |
minRS | min |
Problem subset | NOI | Characterization per instance | UF |
||
MP30_2 | 5 | 2 | 30 | (1;3)/(2;2)/(3;1) | 0.84 |
MP90_2 | 5 | 2 | 90 | (1;3)/(2;2)/(3;1) | 0.57 |
MP120_2 | 5 | 2 | 120 | (1;3)/(2;2)/(3;1) | 1.31 |
MP30_5 | 5 | 5 | 30 | (1;3)/(2;2)/(3;1) | 0.82 |
MP90_5 | 5 | 5 | 90 | (1;3)/(2;2)/(3;1) | 0.61 |
MP120_5 | 5 | 5 | 120 | (1;3)/(2;2)/(3;1) | 1.32 |
MP30_10 | 5 | 10 | 30 | (1;3)/(2;2)/(3;1) | 2.38 |
MP90_10 | 5 | 10 | 90 | (1;3)/(2;2)/(3;1) | 1.14 |
MP120_10 | 5 | 10 | 120 | (1;3)/(2;2)/(3;1) | 1.91 |
MP30_20 | 5 | 20 | 30 | (1;3)/(2;2)/(3;1) | 3.37 |
MP90_20 | 5 | 20 | 90 | (1;3)/(2;2)/(3;1) | 0.9 |
MP120_20 | 5 | 20 | 120 | (1;3)/(2;2)/(3;1) | 0.87 |
Problem subset | NOI | Characterization per instance | UF |
||
MP30_2 | 5 | 2 | 30 | (1;3)/(2;2)/(3;1) | 0.84 |
MP90_2 | 5 | 2 | 90 | (1;3)/(2;2)/(3;1) | 0.57 |
MP120_2 | 5 | 2 | 120 | (1;3)/(2;2)/(3;1) | 1.31 |
MP30_5 | 5 | 5 | 30 | (1;3)/(2;2)/(3;1) | 0.82 |
MP90_5 | 5 | 5 | 90 | (1;3)/(2;2)/(3;1) | 0.61 |
MP120_5 | 5 | 5 | 120 | (1;3)/(2;2)/(3;1) | 1.32 |
MP30_10 | 5 | 10 | 30 | (1;3)/(2;2)/(3;1) | 2.38 |
MP90_10 | 5 | 10 | 90 | (1;3)/(2;2)/(3;1) | 1.14 |
MP120_10 | 5 | 10 | 120 | (1;3)/(2;2)/(3;1) | 1.91 |
MP30_20 | 5 | 20 | 30 | (1;3)/(2;2)/(3;1) | 3.37 |
MP90_20 | 5 | 20 | 90 | (1;3)/(2;2)/(3;1) | 0.9 |
MP120_20 | 5 | 20 | 120 | (1;3)/(2;2)/(3;1) | 0.87 |
Problem subsets | Serial | parallel | |||||||
minTT | minGAP | maxRS | minRS | minTT | minGAP | maxRS | minRS | ||
MP30_2 | 14.8 | 13.7 | 14.8 | 16.1 | 13.9 | 13.3 | 13.7 | 14 | |
MP90_2 | 10 | 8.8 | 10.1 | 11.3 | 6.9 | 6.8 | 7.1 | 7.3 | |
MP120_2 | 86.3 | 83.6 | 85.1 | 92.3 | 57.2 | 56.7 | 56.6 | 57.2 | |
MP30_5 | 34.24 | 34.2 | 36.44 | 39.04 | 23.16 | 23.28 | 22.48 | 23.36 | |
MP90_5 | 23.96 | 21.76 | 22.92 | 25.44 | 12.4 | 12.4 | 11.76 | 13 | |
MP120_5 | 104.04 | 104.44 | 106.56 | 112.64 | 67.72 | 68.32 | 67.56 | 67.8 | |
MP30_10 | 131.78 | 126.4 | 134.3 | 145.34 | 85.1 | 85.22 | 83.48 | 87.62 | |
MP90_10 | 104.14 | 106.72 | 108.96 | 114.3 | 61.34 | 60.4 | 61.12 | 62.1 | |
MP120_10 | 252.43 | 254.44 | 256.73 | 262.54 | 164.38 | 166.78 | 166.84 | 171.96 | |
MP30_20 | 333.61 | 340.69 | 338.15 | 352.6 | 205.06 | 208.3 | 203.74 | 213.16 | |
MP90_20 | 65.24 | 65.04 | 66.76 | 72.84 | 44.16 | 43.95 | 44.06 | 44.49 | |
MP120_20 | 71.28 | 70.49 | 71.48 | 77.56 | 47.48 | 48.28 | 47.24 | 47.52 | |
Average | 102.65 | 102.52 | 104.36 | 110.17 | 65.73 | 66.14 | 65.47 | 67.46 |
Problem subsets | Serial | parallel | |||||||
minTT | minGAP | maxRS | minRS | minTT | minGAP | maxRS | minRS | ||
MP30_2 | 14.8 | 13.7 | 14.8 | 16.1 | 13.9 | 13.3 | 13.7 | 14 | |
MP90_2 | 10 | 8.8 | 10.1 | 11.3 | 6.9 | 6.8 | 7.1 | 7.3 | |
MP120_2 | 86.3 | 83.6 | 85.1 | 92.3 | 57.2 | 56.7 | 56.6 | 57.2 | |
MP30_5 | 34.24 | 34.2 | 36.44 | 39.04 | 23.16 | 23.28 | 22.48 | 23.36 | |
MP90_5 | 23.96 | 21.76 | 22.92 | 25.44 | 12.4 | 12.4 | 11.76 | 13 | |
MP120_5 | 104.04 | 104.44 | 106.56 | 112.64 | 67.72 | 68.32 | 67.56 | 67.8 | |
MP30_10 | 131.78 | 126.4 | 134.3 | 145.34 | 85.1 | 85.22 | 83.48 | 87.62 | |
MP90_10 | 104.14 | 106.72 | 108.96 | 114.3 | 61.34 | 60.4 | 61.12 | 62.1 | |
MP120_10 | 252.43 | 254.44 | 256.73 | 262.54 | 164.38 | 166.78 | 166.84 | 171.96 | |
MP30_20 | 333.61 | 340.69 | 338.15 | 352.6 | 205.06 | 208.3 | 203.74 | 213.16 | |
MP90_20 | 65.24 | 65.04 | 66.76 | 72.84 | 44.16 | 43.95 | 44.06 | 44.49 | |
MP120_20 | 71.28 | 70.49 | 71.48 | 77.56 | 47.48 | 48.28 | 47.24 | 47.52 | |
Average | 102.65 | 102.52 | 104.36 | 110.17 | 65.73 | 66.14 | 65.47 | 67.46 |
Parameter | J | P | K | NC | RF | RS | ||
value | 5, 8, 10 or 14 | 2 or 3 | 4 | 1.5 | 0.25 | 0.2 |
Parameter | J | P | K | NC | RF | RS | ||
value | 5, 8, 10 or 14 | 2 or 3 | 4 | 1.5 | 0.25 | 0.2 |
instances | CPLEX | GA_maxRS (100 solutions) | (%) |
(%) |
(%) |
||||||
opt | worst | best | mean | ||||||||
J5_2 | 1 | 3 | 0.08 | 3 | 3 | 3 | 0.11 | 0 | 0 | 0 | |
2 | 1.5 | 0.03 | 1.5 | 1.5 | 1.5 | 0.14 | 0 | 0 | 0 | ||
3 | 2 | 0.05 | 2 | 2 | 2 | 0.1 | 0 | 0 | 0 | ||
4 | 5 | 0.08 | 5 | 5 | 5 | 0.15 | 0 | 0 | 0 | ||
5 | 2 | 0.05 | 2 | 2 | 2 | 0.13 | 0 | 0 | 0 | ||
J8_2 | 1 | 0.5 | 0.06 | 0.5 | 0.5 | 0.5 | 0.11 | 0 | 0 | 0 | |
2 | 1 | 0.09 | 1 | 1 | 1 | 0.17 | 0 | 0 | 0 | ||
3 | 2.5 | 0.08 | 2.5 | 2.5 | 2.5 | 0.2 | 0 | 0 | 0 | ||
4 | 5 | 0.3 | 5 | 5 | 5 | 0.24 | 0 | 0 | 0 | ||
5 | 3 | 0.2 | 3 | 3 | 3 | 0.31 | 0 | 0 | 0 | ||
J10_2 | 1 | 2.5 | 2.11 | 2.5 | 2.5 | 2.5 | 0.94 | 0 | 0 | 0 | |
2 | 9 | 3.72 | 9.5 | 9 | 9.1 | 0.87 | 6 | 0 | 1 | ||
3 | 10.5 | 2.23 | 12 | 10.5 | 11 | 1.06 | 14 | 0 | 5 | ||
4 | 7.5 | 3.2 | 7.5 | 7.5 | 7.5 | 0.56 | 0 | 0 | 0 | ||
5 | 7 | 4.83 | 7 | 7 | 7 | 1.42 | 0 | 0 | 0 | ||
J14_2 | 1 | 2 | 0.94 | 2.5 | 2 | 2.2 | 0.89 | 25 | 0 | 10 | |
2 | 6 | 25.23 | 6 | 6 | 6 | 0.99 | 0 | 0 | 0 | ||
3 | 4.5 | 1.91 | 5.5 | 4.5 | 4.7 | 1.18 | 22 | 0 | 4 | ||
4 | 7.5 | 30.42 | 7.5 | 7.5 | 7.5 | 1.5 | 0 | 0 | 0 | ||
5 | 4 | 15.2 | 6 | 4 | 5.5 | 1.45 | 50 | 0 | 38 | ||
J5_3 | 1 | 4.33 | 0.23 | 4.33 | 4.33 | 4.33 | 0.44 | 0 | 0 | 0 | |
2 | 2.67 | 0.63 | 3.67 | 3.33 | 3.53 | 0.82 | 37 | 25 | 32 | ||
3 | 4 | 0.86 | 5.33 | 4 | 4.67 | 0.61 | 33 | 0 | 17 | ||
4 | 3.33 | 0.19 | 4.33 | 3.33 | 3.94 | 0.45 | 30 | 0 | 18 | ||
5 | 3.33 | 0.7 | 3.33 | 3.33 | 3.33 | 0.63 | 0 | 0 | 0 | ||
J8_3 | 1 | 2 | 0.5 | 2 | 2 | 2 | 0.75 | 0 | 0 | 0 | |
2 | 7.67 | 15.69 | 8.67 | 7.67 | 7.94 | 1.18 | 13 | 0 | 4 | ||
3 | 2 | 0.22 | 2 | 2 | 2 | 0.58 | 0 | 0 | 0 | ||
4 | 6 | 152.2 | 8.33 | 6 | 6.47 | 1.85 | 39 | 0 | 8 | ||
5 | 1.33 | 0.41 | 1.33 | 1.33 | 1.33 | 0.66 | 0 | 0 | 0 | ||
J10_3 | 1 | 8.67 | 157.94 | 9.33 | 8.76 | 9.01 | 1.86 | 8 | 1 | 4 | |
2 | 10.67 | 249.08 | 11 | 10.67 | 10.79 | 1.67 | 3 | 0 | 1 | ||
3 | 4.33 | 320.17 | 5.67 | 4.33 | 4.79 | 1.27 | 31 | 0 | 11 | ||
4 | 8 | 824.63 | 8 | 8 | 8 | 1.28 | 0 | 0 | 0 | ||
5 | 6 | 1832.06 | 6 | 6 | 6 | 1.06 | 0 | 0 | 0 | ||
J14_3 | 1 | 6.33 | 131.98 | 6.33 | 6.33 | 6.33 | 2.14 | 0 | 0 | 0 | |
2 | 3.33 | 411.58 | 5 | 3.33 | 3.79 | 2.93 | 50 | 0 | 14 | ||
3 | 5.67 | 3600.44 | 6.67 | 5.67 | 5.79 | 3.03 | 18 | 0 | 2 | ||
4 | 11 | 3600.13 | 13.67 | 11 | 12.1 | 7.33 | 24 | 0 | 10 | ||
5 | 5 | 450.97 | 7 | 5 | 5.4 | 3.01 | 40 | 0 | 8 |
instances | CPLEX | GA_maxRS (100 solutions) | (%) |
(%) |
(%) |
||||||
opt | worst | best | mean | ||||||||
J5_2 | 1 | 3 | 0.08 | 3 | 3 | 3 | 0.11 | 0 | 0 | 0 | |
2 | 1.5 | 0.03 | 1.5 | 1.5 | 1.5 | 0.14 | 0 | 0 | 0 | ||
3 | 2 | 0.05 | 2 | 2 | 2 | 0.1 | 0 | 0 | 0 | ||
4 | 5 | 0.08 | 5 | 5 | 5 | 0.15 | 0 | 0 | 0 | ||
5 | 2 | 0.05 | 2 | 2 | 2 | 0.13 | 0 | 0 | 0 | ||
J8_2 | 1 | 0.5 | 0.06 | 0.5 | 0.5 | 0.5 | 0.11 | 0 | 0 | 0 | |
2 | 1 | 0.09 | 1 | 1 | 1 | 0.17 | 0 | 0 | 0 | ||
3 | 2.5 | 0.08 | 2.5 | 2.5 | 2.5 | 0.2 | 0 | 0 | 0 | ||
4 | 5 | 0.3 | 5 | 5 | 5 | 0.24 | 0 | 0 | 0 | ||
5 | 3 | 0.2 | 3 | 3 | 3 | 0.31 | 0 | 0 | 0 | ||
J10_2 | 1 | 2.5 | 2.11 | 2.5 | 2.5 | 2.5 | 0.94 | 0 | 0 | 0 | |
2 | 9 | 3.72 | 9.5 | 9 | 9.1 | 0.87 | 6 | 0 | 1 | ||
3 | 10.5 | 2.23 | 12 | 10.5 | 11 | 1.06 | 14 | 0 | 5 | ||
4 | 7.5 | 3.2 | 7.5 | 7.5 | 7.5 | 0.56 | 0 | 0 | 0 | ||
5 | 7 | 4.83 | 7 | 7 | 7 | 1.42 | 0 | 0 | 0 | ||
J14_2 | 1 | 2 | 0.94 | 2.5 | 2 | 2.2 | 0.89 | 25 | 0 | 10 | |
2 | 6 | 25.23 | 6 | 6 | 6 | 0.99 | 0 | 0 | 0 | ||
3 | 4.5 | 1.91 | 5.5 | 4.5 | 4.7 | 1.18 | 22 | 0 | 4 | ||
4 | 7.5 | 30.42 | 7.5 | 7.5 | 7.5 | 1.5 | 0 | 0 | 0 | ||
5 | 4 | 15.2 | 6 | 4 | 5.5 | 1.45 | 50 | 0 | 38 | ||
J5_3 | 1 | 4.33 | 0.23 | 4.33 | 4.33 | 4.33 | 0.44 | 0 | 0 | 0 | |
2 | 2.67 | 0.63 | 3.67 | 3.33 | 3.53 | 0.82 | 37 | 25 | 32 | ||
3 | 4 | 0.86 | 5.33 | 4 | 4.67 | 0.61 | 33 | 0 | 17 | ||
4 | 3.33 | 0.19 | 4.33 | 3.33 | 3.94 | 0.45 | 30 | 0 | 18 | ||
5 | 3.33 | 0.7 | 3.33 | 3.33 | 3.33 | 0.63 | 0 | 0 | 0 | ||
J8_3 | 1 | 2 | 0.5 | 2 | 2 | 2 | 0.75 | 0 | 0 | 0 | |
2 | 7.67 | 15.69 | 8.67 | 7.67 | 7.94 | 1.18 | 13 | 0 | 4 | ||
3 | 2 | 0.22 | 2 | 2 | 2 | 0.58 | 0 | 0 | 0 | ||
4 | 6 | 152.2 | 8.33 | 6 | 6.47 | 1.85 | 39 | 0 | 8 | ||
5 | 1.33 | 0.41 | 1.33 | 1.33 | 1.33 | 0.66 | 0 | 0 | 0 | ||
J10_3 | 1 | 8.67 | 157.94 | 9.33 | 8.76 | 9.01 | 1.86 | 8 | 1 | 4 | |
2 | 10.67 | 249.08 | 11 | 10.67 | 10.79 | 1.67 | 3 | 0 | 1 | ||
3 | 4.33 | 320.17 | 5.67 | 4.33 | 4.79 | 1.27 | 31 | 0 | 11 | ||
4 | 8 | 824.63 | 8 | 8 | 8 | 1.28 | 0 | 0 | 0 | ||
5 | 6 | 1832.06 | 6 | 6 | 6 | 1.06 | 0 | 0 | 0 | ||
J14_3 | 1 | 6.33 | 131.98 | 6.33 | 6.33 | 6.33 | 2.14 | 0 | 0 | 0 | |
2 | 3.33 | 411.58 | 5 | 3.33 | 3.79 | 2.93 | 50 | 0 | 14 | ||
3 | 5.67 | 3600.44 | 6.67 | 5.67 | 5.79 | 3.03 | 18 | 0 | 2 | ||
4 | 11 | 3600.13 | 13.67 | 11 | 12.1 | 7.33 | 24 | 0 | 10 | ||
5 | 5 | 450.97 | 7 | 5 | 5.4 | 3.01 | 40 | 0 | 8 |
Problem subsets | GA_maxRS | DMAS/RIA | (%) |
|||||
with TT | without TT | (%) |
with TT | without TT | (%) |
|||
MP30_2 | 13 | 10.9 | 19 | 23.3 | 18 | 29 | -39 | |
MP90_2 | 6.9 | 6.7 | 3 | 17.1 | 11.8 | 45 | -43 | |
MP120_2 | 56.1 | 55.6 | 1 | 89.6 | 80.3 | 12 | -31 | |
MP30_5 | 22.2 | 18.08 | 23 | 35.28 | 21.64 | 63 | -16 | |
MP90_5 | 11.68 | 9.36 | 25 | 22 | 13.32 | 65 | -30 | |
MP120_5 | 66.84 | 65.48 | 2 | 86.12 | 77.68 | 11 | -16 | |
MP30_10 | 81.58 | 78.16 | 4 | 92.68 | 83 | 12 | -6 | |
MP90_10 | 59.34 | 50.36 | 18 | 62.66 | 61.52 | 2 | -18 | |
MP120_10 | 164.28 | 140.3 | 17 | 162.6 | 144.1 | 13 | -3 | |
MP30_20 | 199.63 | 189.6 | 5 | 206.9 | 193 | 7 | -2 | |
MP90_20 | 43.38 | 34.92 | 24 | 42.88 | 43.13 | -1 | -19 | |
MP120_20 | 46.42 | 39.71 | 17 | 48.09 | 42.11 | 14 | -6 | |
Average | 64.28 | 58.26 | 10 | 74.1 | 65.8 | 13 | -11 |
Problem subsets | GA_maxRS | DMAS/RIA | (%) |
|||||
with TT | without TT | (%) |
with TT | without TT | (%) |
|||
MP30_2 | 13 | 10.9 | 19 | 23.3 | 18 | 29 | -39 | |
MP90_2 | 6.9 | 6.7 | 3 | 17.1 | 11.8 | 45 | -43 | |
MP120_2 | 56.1 | 55.6 | 1 | 89.6 | 80.3 | 12 | -31 | |
MP30_5 | 22.2 | 18.08 | 23 | 35.28 | 21.64 | 63 | -16 | |
MP90_5 | 11.68 | 9.36 | 25 | 22 | 13.32 | 65 | -30 | |
MP120_5 | 66.84 | 65.48 | 2 | 86.12 | 77.68 | 11 | -16 | |
MP30_10 | 81.58 | 78.16 | 4 | 92.68 | 83 | 12 | -6 | |
MP90_10 | 59.34 | 50.36 | 18 | 62.66 | 61.52 | 2 | -18 | |
MP120_10 | 164.28 | 140.3 | 17 | 162.6 | 144.1 | 13 | -3 | |
MP30_20 | 199.63 | 189.6 | 5 | 206.9 | 193 | 7 | -2 | |
MP90_20 | 43.38 | 34.92 | 24 | 42.88 | 43.13 | -1 | -19 | |
MP120_20 | 46.42 | 39.71 | 17 | 48.09 | 42.11 | 14 | -6 | |
Average | 64.28 | 58.26 | 10 | 74.1 | 65.8 | 13 | -11 |
[1] |
Yukang He, Zhengwen He, Nengmin Wang. Tabu search and simulated annealing for resource-constrained multi-project scheduling to minimize maximal cash flow gap. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2451-2474. doi: 10.3934/jimo.2020077 |
[2] |
Xiaoxiao Yuan, Jing Liu, Xingxing Hao. A moving block sequence-based evolutionary algorithm for resource investment project scheduling problems. Big Data & Information Analytics, 2017, 2 (1) : 39-58. doi: 10.3934/bdia.2017007 |
[3] |
Jian Xiong, Yingwu Chen, Zhongbao Zhou. Resilience analysis for project scheduling with renewable resource constraint and uncertain activity durations. Journal of Industrial and Management Optimization, 2016, 12 (2) : 719-737. doi: 10.3934/jimo.2016.12.719 |
[4] |
Zhe Zhang, Jiuping Xu. Bi-level multiple mode resource-constrained project scheduling problems under hybrid uncertainty. Journal of Industrial and Management Optimization, 2016, 12 (2) : 565-593. doi: 10.3934/jimo.2016.12.565 |
[5] |
Shuang Zhao. Resource allocation flowshop scheduling with learning effect and slack due window assignment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2817-2835. doi: 10.3934/jimo.2020096 |
[6] |
Ji-Bo Wang, Dan-Yang Lv, Shi-Yun Wang, Chong Jiang. Resource allocation scheduling with deteriorating jobs and position-dependent workloads. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022011 |
[7] |
Jia-Xuan Yan, Na Ren, Hong-Bin Bei, Han Bao, Ji-Bo Wang. Study on resource allocation scheduling problem with learning factors and group technology. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022091 |
[8] |
Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391 |
[9] |
Zonghan Wang, Moses Olabhele Esangbedo, Sijun Bai. Project portfolio selection based on multi-project synergy. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021177 |
[10] |
Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. Vega-Mejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2943-2969. doi: 10.3934/jimo.2019088 |
[11] |
Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial and Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269 |
[12] |
Xianyu Yu, Dar-Li Yang, Dequn Zhou, Peng Zhou. Multi-machine scheduling with interval constrained position-dependent processing times. Journal of Industrial and Management Optimization, 2018, 14 (2) : 803-815. doi: 10.3934/jimo.2017076 |
[13] |
Ji-Bo Wang, Bo Zhang, Hongyu He. A unified analysis for scheduling problems with variable processing times. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1063-1077. doi: 10.3934/jimo.2021008 |
[14] |
Wenchang Luo, Lin Chen. Approximation schemes for scheduling a maintenance and linear deteriorating jobs. Journal of Industrial and Management Optimization, 2012, 8 (2) : 271-283. doi: 10.3934/jimo.2012.8.271 |
[15] |
Binghai Zhou, Yuanrui Lei, Shi Zong. Lagrangian relaxation algorithm for the truck scheduling problem with products time window constraint in multi-door cross-dock. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021151 |
[16] |
Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial and Management Optimization, 2022, 18 (1) : 375-396. doi: 10.3934/jimo.2020158 |
[17] |
Jiping Tao, Ronghuan Huang, Tundong Liu. A $2.28$-competitive algorithm for online scheduling on identical machines. Journal of Industrial and Management Optimization, 2015, 11 (1) : 185-198. doi: 10.3934/jimo.2015.11.185 |
[18] |
Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006 |
[19] |
Güvenç Şahin, Ravindra K. Ahuja. Single-machine scheduling with stepwise tardiness costs and release times. Journal of Industrial and Management Optimization, 2011, 7 (4) : 825-848. doi: 10.3934/jimo.2011.7.825 |
[20] |
P. Liu, Xiwen Lu. Online scheduling of two uniform machines to minimize total completion times. Journal of Industrial and Management Optimization, 2009, 5 (1) : 95-102. doi: 10.3934/jimo.2009.5.95 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]