[1]
|
S. Adhau, M. L. Mittal and A. Mittal, A multi-agent system for decentralized multi project scheduling with resource transfers, International Journal of Production Economics, 146 (2013), 646-661.
doi: 10.1016/j.ijpe.2013.08.013.
|
[2]
|
S. Adhau, M. L. Mittal and A. Mittal, A multi-agent system for distributed multi-project scheduling: An auction-based negotiation approach, Engineering Applications of Artificial Intelligence, 25 (2012), 1738-1751.
doi: 10.1016/j.engappai.2011.12.003.
|
[3]
|
B. Afshar-Nadjafi and M. Majlesi, Resource constrained project scheduling problem with setup times after preemptive processes, Computers and Chemical Engineering, 69 (2014), 16-25.
doi: 10.1016/j.compchemeng.2014.06.012.
|
[4]
|
C. Artigues, P. Michelon and S. Reusser, Insertion techniques for static and dynamic resource-constrained project scheduling, European Journal of Operational Research, 149 (2003), 249-267.
doi: 10.1016/S0377-2217(02)00758-0.
|
[5]
|
D. Bedworth and J. Bailey, Integrated Production Control Systems Management, Analysis, Design, 2$^nd$ edition, John Wiley & Sons, Inc., New York, 1999.
|
[6]
|
C. Bierwirth, D. Mattfeld and H. Kopfer, On permutation representations for scheduling problems, in Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 1996,310–318.
doi: 10.1007/3-540-61723-X_995.
|
[7]
|
P. Brucker, S. Knust, A. Schoo and O. Thiele, A branch and bound algorithm for the resource-constrained project scheduling problem, European Journal of Operational Research, 107 (1998), 272-288.
doi: 10.1016/S0377-2217(97)00335-4.
|
[8]
|
Z. Cai and X. Li, A hybrid genetic algorithm for resource-constrained multi-project scheduling problem with resource transfer time, IEEE International Conference on Automation Science and Engineering, Seoul, 2012,569–574.
doi: 10.1109/CoASE.2012.6386457.
|
[9]
|
G. Confessore, S. Giordani and S. Rismondo, A market-based multi-agent system model for decentralized multi–project scheduling, Annals of Operations Research, 150 (2007), 115-135.
doi: 10.1007/s10479-006-0158-9.
|
[10]
|
E. W. Davis, Project network summary measures constrained resource scheduling, AIIE Transactions, 7 (1975), 132-142.
doi: 10.1080/05695557508974995.
|
[11]
|
E. L. Demeulemeester and W. S. Herroelen, An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem, European Journal of Operational Research, 90 (1996), 334-348.
doi: 10.1016/0377-2217(95)00358-4.
|
[12]
|
L. Djerid, M. C. Portman and P. Villon, Performance analysis of permutation cross-over genetic operators, Journal of Decision Systems, 5 (1996), 131-140.
doi: 10.1080/12460125.1996.10511679.
|
[13]
|
S. Hartmann and R. Kolisch, Experimental evaluation of state-of-the-art heuristics for resource-constrained project scheduling problem, European Journal of Operational Research, 127 (2000), 394-407.
doi: 10.1016/S0377-2217(99)00485-3.
|
[14]
|
J. B. Holland and J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich., 1975.
|
[15]
|
J. Homberger, A multi-agent system for the decentralized resource constrained multi-project scheduling problem, International Transactions in Operational Research, 14 (2007), 565-589.
doi: 10.1111/j.1475-3995.2007.00614.x.
|
[16]
|
J. Homberger, A (${\mu}$, ${\lambda}$)-coordination mechanism for agent-based multi-project scheduling, OR Spectrum, 34 (2012), 107-132.
doi: 10.1007/s00291-009-0178-3.
|
[17]
|
R. Jans and Z. Degraeve, Modeling industrial lot sizing problems: A review, International Journal of Production Research, 46 (2008), 1619-1643.
doi: 10.1080/00207540600902262.
|
[18]
|
R. L. Kadri and F. F. Boctor, An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case, European Journal of Operational Research, 265 (2018), 454-–462.
doi: 10.1016/j.ejor.2017.07.027.
|
[19]
|
J. E. Kelley, The critical-path method: Resources planning and scheduling, Industrial Scheduling, 13 (1963), 347365.
|
[20]
|
S. Khalilpourazari, B. Naderi and S. Khalilpourazary, Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020), 3037–-3066.
doi: 10.1007/s00500-019-04080-6.
|
[21]
|
S. Khalilpourazari and S. H. R. Pasandideh, Modeling and optimization of multi-item multi-constrained EOQ model for growing items, Knowledge-Based Systems, 164 (2019), 150-162.
doi: 10.1016/j.knosys.2018.10.032.
|
[22]
|
S. Khalilpourazari and S. H. R. Pasandideh, Sine-cosine crow search algorithm: Theory and applications, Neural Computing and Applications, 32 (2019), 7725–-7742.
doi: 10.1007/s00521-019-04530-0.
|
[23]
|
R. Kolisch, Project scheduling with setup times, in Project Scheduling Under Resource Constraints, Production and Logistics, Physica, Heidelberg, 1995,177–185.
doi: 10.1007/978-3-642-50296-5_8.
|
[24]
|
R. Kolisch and S. Hartmann, Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis, in Project Scheduling, International Series in Operations Research & Management Science, Springer, Boston, 1999,147–178.
doi: 10.1007/978-1-4615-5533-9_7.
|
[25]
|
R. Kolisch and A. Sprecher, PSPLIB–A project scheduling library, European Journal of Operation Research, 96 (1996), 205-216.
|
[26]
|
D. Kruger and A. Scholl, A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times, European Journal of Operation Research, 197 (2009), 492-508.
doi: 10.1016/j.ejor.2008.07.036.
|
[27]
|
D. Kruger and A. Scholl, Managing and modelling general resource transfers in (multi-)project scheduling, OR Spectrum, 32 (2010), 369-394.
doi: 10.1007/s00291-008-0144-5.
|
[28]
|
C. J. Liao, C. W. Chao and L. C. Chen, An improved heuristic for parallel machine weighted flowtime scheduling with family set-up times, Computers and Mathematics with Applications, 63 (2012), 110-117.
doi: 10.1016/j.camwa.2011.10.077.
|
[29]
|
A. Lova and P. Tormos, Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling, Annals of Operations Research, 102 (2001), 263-286.
doi: 10.1023/A:1010966401888.
|
[30]
|
A. Lova, P. Tormos, M. Cervantes and F. Barber, An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes, International Journal of Production Economics, 117 (2009), 302-316.
doi: 10.1016/j.ijpe.2008.11.002.
|
[31]
|
D. Merkle, M. Middendorf and H. Schmeck, Ant colony optimization for resource-constrained project scheduling, IEEE Transactions on Evolutionary Computation, 6 (2002), 333-346.
doi: 10.1109/TEVC.2002.802450.
|
[32]
|
M. Mika, G. Waligra and J. Weglarz, Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times, European Journal of Operational Research, 187 (2008), 1238-1250.
doi: 10.1016/j.ejor.2006.06.069.
|
[33]
|
M. L. Mittal and A. Kanda, Scheduling of multiple projects with resource transfers, International Journal of Mathematics in Operational Research, 1 (2009), 303-325.
doi: 10.1504/IJMOR.2009.024288.
|
[34]
|
K. Moumene and J. A. Ferland, Activity list representation for a generalization of the resource-constrained project scheduling problem, European Journal of Operational Research, 199 (2009), 46-54.
doi: 10.1016/j.ejor.2008.10.030.
|
[35]
|
M. S. Nagano, A. A. Silva and L. A. N. Lorena, A new evolutionary clustering search for a no-wait flow shop problem with set-up times, Engineering Applications of Artificial Intelligence, 25 (2012), 1114-1120.
doi: 10.1016/j.engappai.2012.05.017.
|
[36]
|
K. Neumann, C. Schwindt and J. Zimmermann, Project Scheduling with Time Windows and Scarce Resources, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-24800-2.
|
[37]
|
S. H. R. Pasandideh and S. Khalilpourazari, Sine cosine crow search algorithm: A powerful hybrid meta heuristic for global optimization, preprint, arXiv: 1801.08485.
|
[38]
|
J. Poppenborg and S. Knust, A flow-based tabu search algorithm for the RCPSP with transfer times, OR Spectrum, 38 (2016), 305-334.
doi: 10.1007/s00291-015-0402-2.
|
[39]
|
V. Roshanaei, B. Naderi, F. Jolai and M. Khalili, A variable neighborhood search for job shop scheduling with set-up times to minimize makespan, Future Generation Computer Systems, 25 (2009), 654-661.
doi: 10.1016/j.future.2009.01.004.
|
[40]
|
M. Rostami, M. Bagherpour, M. M. Mazdeh and A. Makui, Resource Pool Location for Periodic Services in Decentralized Multi-Project Scheduling Problems, Journal of Computing in Civil Engineering, 31 (2017), 04017022.
doi: 10.1061/(ASCE)CP.1943-5487.0000671.
|
[41]
|
V. Valls, F. Ballestin and M. S. Quintanilla, A hybrid genetic algorithm for the RCPSP, Technical report, Department of Statistics and Operations Research, University of Valencia, 2003.
|
[42]
|
V. Valls, F. Ballestin and M. S. Quintanilla, Justification and RCPSP: A technique that pays, European Journal of Operational Research, 165 (2005), 375-386.
doi: 10.1016/j.ejor.2004.04.008.
|
[43]
|
M. Vanhoucke, Setup times and fast tracking in resource-constrained project scheduling, Computers & Industrial Engineering, 54 (2008), 1062-1070.
doi: 10.1016/j.cie.2007.11.008.
|
[44]
|
K. K. Yang and C. C. Sum, A comparison of resource allocation and activity scheduling rules in a dynamic multi-project environment, Journal of Operation Management, 11 (1993), 207-218.
doi: 10.1016/0272-6963(93)90023-I.
|
[45]
|
K. K. Yang and C. C. Sum, An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multi project environment, European Journal of Operational Research, 103 (1997), 139-154.
|