
-
Previous Article
On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system
- JIMO Home
- This Issue
-
Next Article
A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications
An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers
School of Management, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China |
This paper investigates the decentralized resource-constrained multi-project scheduling problem with transfer times (DRCMPSPTT) in which the transfer times of the global resources among different projects are assumed to be sequence-independent, while transfers of local resources take no time within a project. First, two decision variables ($ {y_{ijg}} $ and $ {w_{ijg}} $) are adopted to express the transition state of global resources between projects. $ {y_{ijg}} $ (takes a value of 0 or 1) represents whether activity i transfers global resource g to activity j; accordingly, the transferred quantity is denoted as $ {w_{ijg}} $. Then, we construct an integer linear model with the goal of minimizing the average project delay for the DRCMPSPTT. Second, an adaptive genetic algorithm (GA) is developed to solve the DRCMPSPTT. To gain the schedules for the DRCMPSPTT, the traditional serial and parallel scheduling generation schemes (SGSs) are modified to combine with different resource transfer rules and to design multiple decoding schemes. Third, the numerical experiments are implemented to analyse the effects of eight decoding schemes, and we found that the scheme comprising the parallel SGS and maxRS rule can make the GA work the best; furthermore, the effectiveness of the GA_maxRS (GA embedded with the best scheme) is demonstrated by solving some instances with different sizes.
References:
[1] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for decentralized multi project scheduling with resource transfers, International Journal of Production Economics, 146 (2013), 646-661.
doi: 10.1016/j.ijpe.2013.08.013. |
[2] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for distributed multi-project scheduling: An auction-based negotiation approach, Engineering Applications of Artificial Intelligence, 25 (2012), 1738-1751.
doi: 10.1016/j.engappai.2011.12.003. |
[3] |
B. Afshar-Nadjafi and M. Majlesi,
Resource constrained project scheduling problem with setup times after preemptive processes, Computers and Chemical Engineering, 69 (2014), 16-25.
doi: 10.1016/j.compchemeng.2014.06.012. |
[4] |
C. Artigues, P. Michelon and S. Reusser,
Insertion techniques for static and dynamic resource-constrained project scheduling, European Journal of Operational Research, 149 (2003), 249-267.
doi: 10.1016/S0377-2217(02)00758-0. |
[5] |
D. Bedworth and J. Bailey, Integrated Production Control Systems Management, Analysis, Design, 2$^nd$ edition, John Wiley & Sons, Inc., New York, 1999. Google Scholar |
[6] |
C. Bierwirth, D. Mattfeld and H. Kopfer, On permutation representations for scheduling problems, in Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 1996,310–318.
doi: 10.1007/3-540-61723-X_995. |
[7] |
P. Brucker, S. Knust, A. Schoo and O. Thiele,
A branch and bound algorithm for the resource-constrained project scheduling problem, European Journal of Operational Research, 107 (1998), 272-288.
doi: 10.1016/S0377-2217(97)00335-4. |
[8] |
Z. Cai and X. Li, A hybrid genetic algorithm for resource-constrained multi-project scheduling problem with resource transfer time, IEEE International Conference on Automation Science and Engineering, Seoul, 2012,569–574.
doi: 10.1109/CoASE.2012.6386457. |
[9] |
G. Confessore, S. Giordani and S. Rismondo,
A market-based multi-agent system model for decentralized multi–project scheduling, Annals of Operations Research, 150 (2007), 115-135.
doi: 10.1007/s10479-006-0158-9. |
[10] |
E. W. Davis,
Project network summary measures constrained resource scheduling, AIIE Transactions, 7 (1975), 132-142.
doi: 10.1080/05695557508974995. |
[11] |
E. L. Demeulemeester and W. S. Herroelen,
An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem, European Journal of Operational Research, 90 (1996), 334-348.
doi: 10.1016/0377-2217(95)00358-4. |
[12] |
L. Djerid, M. C. Portman and P. Villon,
Performance analysis of permutation cross-over genetic operators, Journal of Decision Systems, 5 (1996), 131-140.
doi: 10.1080/12460125.1996.10511679. |
[13] |
S. Hartmann and R. Kolisch,
Experimental evaluation of state-of-the-art heuristics for resource-constrained project scheduling problem, European Journal of Operational Research, 127 (2000), 394-407.
doi: 10.1016/S0377-2217(99)00485-3. |
[14] |
J. B. Holland and J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich., 1975.
![]() |
[15] |
J. Homberger,
A multi-agent system for the decentralized resource constrained multi-project scheduling problem, International Transactions in Operational Research, 14 (2007), 565-589.
doi: 10.1111/j.1475-3995.2007.00614.x. |
[16] |
J. Homberger,
A (${\mu}$, ${\lambda}$)-coordination mechanism for agent-based multi-project scheduling, OR Spectrum, 34 (2012), 107-132.
doi: 10.1007/s00291-009-0178-3. |
[17] |
R. Jans and Z. Degraeve,
Modeling industrial lot sizing problems: A review, International Journal of Production Research, 46 (2008), 1619-1643.
doi: 10.1080/00207540600902262. |
[18] |
R. L. Kadri and F. F. Boctor, An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case, European Journal of Operational Research, 265 (2018), 454-–462.
doi: 10.1016/j.ejor.2017.07.027. |
[19] |
J. E. Kelley, The critical-path method: Resources planning and scheduling, Industrial Scheduling, 13 (1963), 347365. Google Scholar |
[20] |
S. Khalilpourazari, B. Naderi and S. Khalilpourazary, Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020), 3037–-3066.
doi: 10.1007/s00500-019-04080-6. |
[21] |
S. Khalilpourazari and S. H. R. Pasandideh,
Modeling and optimization of multi-item multi-constrained EOQ model for growing items, Knowledge-Based Systems, 164 (2019), 150-162.
doi: 10.1016/j.knosys.2018.10.032. |
[22] |
S. Khalilpourazari and S. H. R. Pasandideh, Sine-cosine crow search algorithm: Theory and applications, Neural Computing and Applications, 32 (2019), 7725–-7742.
doi: 10.1007/s00521-019-04530-0. |
[23] |
R. Kolisch, Project scheduling with setup times, in Project Scheduling Under Resource Constraints, Production and Logistics, Physica, Heidelberg, 1995,177–185.
doi: 10.1007/978-3-642-50296-5_8. |
[24] |
R. Kolisch and S. Hartmann, Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis, in Project Scheduling, International Series in Operations Research & Management Science, Springer, Boston, 1999,147–178.
doi: 10.1007/978-1-4615-5533-9_7. |
[25] |
R. Kolisch and A. Sprecher, PSPLIB–A project scheduling library, European Journal of Operation Research, 96 (1996), 205-216. Google Scholar |
[26] |
D. Kruger and A. Scholl,
A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times, European Journal of Operation Research, 197 (2009), 492-508.
doi: 10.1016/j.ejor.2008.07.036. |
[27] |
D. Kruger and A. Scholl,
Managing and modelling general resource transfers in (multi-)project scheduling, OR Spectrum, 32 (2010), 369-394.
doi: 10.1007/s00291-008-0144-5. |
[28] |
C. J. Liao, C. W. Chao and L. C. Chen,
An improved heuristic for parallel machine weighted flowtime scheduling with family set-up times, Computers and Mathematics with Applications, 63 (2012), 110-117.
doi: 10.1016/j.camwa.2011.10.077. |
[29] |
A. Lova and P. Tormos,
Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling, Annals of Operations Research, 102 (2001), 263-286.
doi: 10.1023/A:1010966401888. |
[30] |
A. Lova, P. Tormos, M. Cervantes and F. Barber,
An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes, International Journal of Production Economics, 117 (2009), 302-316.
doi: 10.1016/j.ijpe.2008.11.002. |
[31] |
D. Merkle, M. Middendorf and H. Schmeck,
Ant colony optimization for resource-constrained project scheduling, IEEE Transactions on Evolutionary Computation, 6 (2002), 333-346.
doi: 10.1109/TEVC.2002.802450. |
[32] |
M. Mika, G. Waligra and J. Weglarz,
Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times, European Journal of Operational Research, 187 (2008), 1238-1250.
doi: 10.1016/j.ejor.2006.06.069. |
[33] |
M. L. Mittal and A. Kanda,
Scheduling of multiple projects with resource transfers, International Journal of Mathematics in Operational Research, 1 (2009), 303-325.
doi: 10.1504/IJMOR.2009.024288. |
[34] |
K. Moumene and J. A. Ferland,
Activity list representation for a generalization of the resource-constrained project scheduling problem, European Journal of Operational Research, 199 (2009), 46-54.
doi: 10.1016/j.ejor.2008.10.030. |
[35] |
M. S. Nagano, A. A. Silva and L. A. N. Lorena,
A new evolutionary clustering search for a no-wait flow shop problem with set-up times, Engineering Applications of Artificial Intelligence, 25 (2012), 1114-1120.
doi: 10.1016/j.engappai.2012.05.017. |
[36] |
K. Neumann, C. Schwindt and J. Zimmermann, Project Scheduling with Time Windows and Scarce Resources, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-24800-2. |
[37] |
S. H. R. Pasandideh and S. Khalilpourazari, Sine cosine crow search algorithm: A powerful hybrid meta heuristic for global optimization, preprint, arXiv: 1801.08485. Google Scholar |
[38] |
J. Poppenborg and S. Knust,
A flow-based tabu search algorithm for the RCPSP with transfer times, OR Spectrum, 38 (2016), 305-334.
doi: 10.1007/s00291-015-0402-2. |
[39] |
V. Roshanaei, B. Naderi, F. Jolai and M. Khalili,
A variable neighborhood search for job shop scheduling with set-up times to minimize makespan, Future Generation Computer Systems, 25 (2009), 654-661.
doi: 10.1016/j.future.2009.01.004. |
[40] |
M. Rostami, M. Bagherpour, M. M. Mazdeh and A. Makui, Resource Pool Location for Periodic Services in Decentralized Multi-Project Scheduling Problems, Journal of Computing in Civil Engineering, 31 (2017), 04017022.
doi: 10.1061/(ASCE)CP.1943-5487.0000671. |
[41] |
V. Valls, F. Ballestin and M. S. Quintanilla, A hybrid genetic algorithm for the RCPSP, Technical report, Department of Statistics and Operations Research, University of Valencia, 2003. Google Scholar |
[42] |
V. Valls, F. Ballestin and M. S. Quintanilla,
Justification and RCPSP: A technique that pays, European Journal of Operational Research, 165 (2005), 375-386.
doi: 10.1016/j.ejor.2004.04.008. |
[43] |
M. Vanhoucke,
Setup times and fast tracking in resource-constrained project scheduling, Computers & Industrial Engineering, 54 (2008), 1062-1070.
doi: 10.1016/j.cie.2007.11.008. |
[44] |
K. K. Yang and C. C. Sum,
A comparison of resource allocation and activity scheduling rules in a dynamic multi-project environment, Journal of Operation Management, 11 (1993), 207-218.
doi: 10.1016/0272-6963(93)90023-I. |
[45] |
K. K. Yang and C. C. Sum, An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multi project environment, European Journal of Operational Research, 103 (1997), 139-154. Google Scholar |
show all references
References:
[1] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for decentralized multi project scheduling with resource transfers, International Journal of Production Economics, 146 (2013), 646-661.
doi: 10.1016/j.ijpe.2013.08.013. |
[2] |
S. Adhau, M. L. Mittal and A. Mittal,
A multi-agent system for distributed multi-project scheduling: An auction-based negotiation approach, Engineering Applications of Artificial Intelligence, 25 (2012), 1738-1751.
doi: 10.1016/j.engappai.2011.12.003. |
[3] |
B. Afshar-Nadjafi and M. Majlesi,
Resource constrained project scheduling problem with setup times after preemptive processes, Computers and Chemical Engineering, 69 (2014), 16-25.
doi: 10.1016/j.compchemeng.2014.06.012. |
[4] |
C. Artigues, P. Michelon and S. Reusser,
Insertion techniques for static and dynamic resource-constrained project scheduling, European Journal of Operational Research, 149 (2003), 249-267.
doi: 10.1016/S0377-2217(02)00758-0. |
[5] |
D. Bedworth and J. Bailey, Integrated Production Control Systems Management, Analysis, Design, 2$^nd$ edition, John Wiley & Sons, Inc., New York, 1999. Google Scholar |
[6] |
C. Bierwirth, D. Mattfeld and H. Kopfer, On permutation representations for scheduling problems, in Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 1996,310–318.
doi: 10.1007/3-540-61723-X_995. |
[7] |
P. Brucker, S. Knust, A. Schoo and O. Thiele,
A branch and bound algorithm for the resource-constrained project scheduling problem, European Journal of Operational Research, 107 (1998), 272-288.
doi: 10.1016/S0377-2217(97)00335-4. |
[8] |
Z. Cai and X. Li, A hybrid genetic algorithm for resource-constrained multi-project scheduling problem with resource transfer time, IEEE International Conference on Automation Science and Engineering, Seoul, 2012,569–574.
doi: 10.1109/CoASE.2012.6386457. |
[9] |
G. Confessore, S. Giordani and S. Rismondo,
A market-based multi-agent system model for decentralized multi–project scheduling, Annals of Operations Research, 150 (2007), 115-135.
doi: 10.1007/s10479-006-0158-9. |
[10] |
E. W. Davis,
Project network summary measures constrained resource scheduling, AIIE Transactions, 7 (1975), 132-142.
doi: 10.1080/05695557508974995. |
[11] |
E. L. Demeulemeester and W. S. Herroelen,
An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem, European Journal of Operational Research, 90 (1996), 334-348.
doi: 10.1016/0377-2217(95)00358-4. |
[12] |
L. Djerid, M. C. Portman and P. Villon,
Performance analysis of permutation cross-over genetic operators, Journal of Decision Systems, 5 (1996), 131-140.
doi: 10.1080/12460125.1996.10511679. |
[13] |
S. Hartmann and R. Kolisch,
Experimental evaluation of state-of-the-art heuristics for resource-constrained project scheduling problem, European Journal of Operational Research, 127 (2000), 394-407.
doi: 10.1016/S0377-2217(99)00485-3. |
[14] |
J. B. Holland and J. H. Holland, Adaption in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich., 1975.
![]() |
[15] |
J. Homberger,
A multi-agent system for the decentralized resource constrained multi-project scheduling problem, International Transactions in Operational Research, 14 (2007), 565-589.
doi: 10.1111/j.1475-3995.2007.00614.x. |
[16] |
J. Homberger,
A (${\mu}$, ${\lambda}$)-coordination mechanism for agent-based multi-project scheduling, OR Spectrum, 34 (2012), 107-132.
doi: 10.1007/s00291-009-0178-3. |
[17] |
R. Jans and Z. Degraeve,
Modeling industrial lot sizing problems: A review, International Journal of Production Research, 46 (2008), 1619-1643.
doi: 10.1080/00207540600902262. |
[18] |
R. L. Kadri and F. F. Boctor, An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case, European Journal of Operational Research, 265 (2018), 454-–462.
doi: 10.1016/j.ejor.2017.07.027. |
[19] |
J. E. Kelley, The critical-path method: Resources planning and scheduling, Industrial Scheduling, 13 (1963), 347365. Google Scholar |
[20] |
S. Khalilpourazari, B. Naderi and S. Khalilpourazary, Multi-objective stochastic fractal search: A powerful algorithm for solving complex multi-objective optimization problems, Soft Computing, 24 (2020), 3037–-3066.
doi: 10.1007/s00500-019-04080-6. |
[21] |
S. Khalilpourazari and S. H. R. Pasandideh,
Modeling and optimization of multi-item multi-constrained EOQ model for growing items, Knowledge-Based Systems, 164 (2019), 150-162.
doi: 10.1016/j.knosys.2018.10.032. |
[22] |
S. Khalilpourazari and S. H. R. Pasandideh, Sine-cosine crow search algorithm: Theory and applications, Neural Computing and Applications, 32 (2019), 7725–-7742.
doi: 10.1007/s00521-019-04530-0. |
[23] |
R. Kolisch, Project scheduling with setup times, in Project Scheduling Under Resource Constraints, Production and Logistics, Physica, Heidelberg, 1995,177–185.
doi: 10.1007/978-3-642-50296-5_8. |
[24] |
R. Kolisch and S. Hartmann, Heuristic algorithms for solving the resource-constrained project scheduling problem: Classification and computational analysis, in Project Scheduling, International Series in Operations Research & Management Science, Springer, Boston, 1999,147–178.
doi: 10.1007/978-1-4615-5533-9_7. |
[25] |
R. Kolisch and A. Sprecher, PSPLIB–A project scheduling library, European Journal of Operation Research, 96 (1996), 205-216. Google Scholar |
[26] |
D. Kruger and A. Scholl,
A heuristic solution framework for the resource constrained (multi-)project scheduling problem with sequence-dependent transfer times, European Journal of Operation Research, 197 (2009), 492-508.
doi: 10.1016/j.ejor.2008.07.036. |
[27] |
D. Kruger and A. Scholl,
Managing and modelling general resource transfers in (multi-)project scheduling, OR Spectrum, 32 (2010), 369-394.
doi: 10.1007/s00291-008-0144-5. |
[28] |
C. J. Liao, C. W. Chao and L. C. Chen,
An improved heuristic for parallel machine weighted flowtime scheduling with family set-up times, Computers and Mathematics with Applications, 63 (2012), 110-117.
doi: 10.1016/j.camwa.2011.10.077. |
[29] |
A. Lova and P. Tormos,
Analysis of scheduling schemes and heuristic rules performance in resource-constrained multiproject scheduling, Annals of Operations Research, 102 (2001), 263-286.
doi: 10.1023/A:1010966401888. |
[30] |
A. Lova, P. Tormos, M. Cervantes and F. Barber,
An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes, International Journal of Production Economics, 117 (2009), 302-316.
doi: 10.1016/j.ijpe.2008.11.002. |
[31] |
D. Merkle, M. Middendorf and H. Schmeck,
Ant colony optimization for resource-constrained project scheduling, IEEE Transactions on Evolutionary Computation, 6 (2002), 333-346.
doi: 10.1109/TEVC.2002.802450. |
[32] |
M. Mika, G. Waligra and J. Weglarz,
Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times, European Journal of Operational Research, 187 (2008), 1238-1250.
doi: 10.1016/j.ejor.2006.06.069. |
[33] |
M. L. Mittal and A. Kanda,
Scheduling of multiple projects with resource transfers, International Journal of Mathematics in Operational Research, 1 (2009), 303-325.
doi: 10.1504/IJMOR.2009.024288. |
[34] |
K. Moumene and J. A. Ferland,
Activity list representation for a generalization of the resource-constrained project scheduling problem, European Journal of Operational Research, 199 (2009), 46-54.
doi: 10.1016/j.ejor.2008.10.030. |
[35] |
M. S. Nagano, A. A. Silva and L. A. N. Lorena,
A new evolutionary clustering search for a no-wait flow shop problem with set-up times, Engineering Applications of Artificial Intelligence, 25 (2012), 1114-1120.
doi: 10.1016/j.engappai.2012.05.017. |
[36] |
K. Neumann, C. Schwindt and J. Zimmermann, Project Scheduling with Time Windows and Scarce Resources, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-24800-2. |
[37] |
S. H. R. Pasandideh and S. Khalilpourazari, Sine cosine crow search algorithm: A powerful hybrid meta heuristic for global optimization, preprint, arXiv: 1801.08485. Google Scholar |
[38] |
J. Poppenborg and S. Knust,
A flow-based tabu search algorithm for the RCPSP with transfer times, OR Spectrum, 38 (2016), 305-334.
doi: 10.1007/s00291-015-0402-2. |
[39] |
V. Roshanaei, B. Naderi, F. Jolai and M. Khalili,
A variable neighborhood search for job shop scheduling with set-up times to minimize makespan, Future Generation Computer Systems, 25 (2009), 654-661.
doi: 10.1016/j.future.2009.01.004. |
[40] |
M. Rostami, M. Bagherpour, M. M. Mazdeh and A. Makui, Resource Pool Location for Periodic Services in Decentralized Multi-Project Scheduling Problems, Journal of Computing in Civil Engineering, 31 (2017), 04017022.
doi: 10.1061/(ASCE)CP.1943-5487.0000671. |
[41] |
V. Valls, F. Ballestin and M. S. Quintanilla, A hybrid genetic algorithm for the RCPSP, Technical report, Department of Statistics and Operations Research, University of Valencia, 2003. Google Scholar |
[42] |
V. Valls, F. Ballestin and M. S. Quintanilla,
Justification and RCPSP: A technique that pays, European Journal of Operational Research, 165 (2005), 375-386.
doi: 10.1016/j.ejor.2004.04.008. |
[43] |
M. Vanhoucke,
Setup times and fast tracking in resource-constrained project scheduling, Computers & Industrial Engineering, 54 (2008), 1062-1070.
doi: 10.1016/j.cie.2007.11.008. |
[44] |
K. K. Yang and C. C. Sum,
A comparison of resource allocation and activity scheduling rules in a dynamic multi-project environment, Journal of Operation Management, 11 (1993), 207-218.
doi: 10.1016/0272-6963(93)90023-I. |
[45] |
K. K. Yang and C. C. Sum, An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multi project environment, European Journal of Operational Research, 103 (1997), 139-154. Google Scholar |











Authors | Project | Objective | Transfer times | Algorithm | ||||
Single | Multi- | Decentralized multi- | Makespan | Others | sequence-dependent | sequence-independent | ||
Kolisch (1995) | Parallel scheme based heuristic | |||||||
Neumann et al (2003) | Branch-and-bound | |||||||
Vanhoucke(2008) | Branch-and-bound | |||||||
Mika (2008) | Tabu search | |||||||
Afshar-Nadjafi et al (2014) | GA | |||||||
Poppenborg(2016) | Tabu search | |||||||
Kadri and Boctor (2017) | GA | |||||||
Yang and Sum(1993, 1997) | Computational experiment | |||||||
Mittal and Kanda (2009) | Cost | Heuristics | ||||||
Kruger and Scholl(2009, 2010) | Cost | Priority-rule based heuristic | ||||||
Cai and Li(2012) | APD | Hybrid GA | ||||||
Adhau and Mittal(2013) | APD | DMAS/RIA | ||||||
This research | APD | GA |
Authors | Project | Objective | Transfer times | Algorithm | ||||
Single | Multi- | Decentralized multi- | Makespan | Others | sequence-dependent | sequence-independent | ||
Kolisch (1995) | Parallel scheme based heuristic | |||||||
Neumann et al (2003) | Branch-and-bound | |||||||
Vanhoucke(2008) | Branch-and-bound | |||||||
Mika (2008) | Tabu search | |||||||
Afshar-Nadjafi et al (2014) | GA | |||||||
Poppenborg(2016) | Tabu search | |||||||
Kadri and Boctor (2017) | GA | |||||||
Yang and Sum(1993, 1997) | Computational experiment | |||||||
Mittal and Kanda (2009) | Cost | Heuristics | ||||||
Kruger and Scholl(2009, 2010) | Cost | Priority-rule based heuristic | ||||||
Cai and Li(2012) | APD | Hybrid GA | ||||||
Adhau and Mittal(2013) | APD | DMAS/RIA | ||||||
This research | APD | GA |
Transfer rules | Priority value |
Extremum |
minTT | min | |
minGAP | min | |
maxRS | max | |
minRS | min |
Transfer rules | Priority value |
Extremum |
minTT | min | |
minGAP | min | |
maxRS | max | |
minRS | min |
Problem subset | NOI | Characterization per instance | UF |
||
MP30_2 | 5 | 2 | 30 | (1;3)/(2;2)/(3;1) | 0.84 |
MP90_2 | 5 | 2 | 90 | (1;3)/(2;2)/(3;1) | 0.57 |
MP120_2 | 5 | 2 | 120 | (1;3)/(2;2)/(3;1) | 1.31 |
MP30_5 | 5 | 5 | 30 | (1;3)/(2;2)/(3;1) | 0.82 |
MP90_5 | 5 | 5 | 90 | (1;3)/(2;2)/(3;1) | 0.61 |
MP120_5 | 5 | 5 | 120 | (1;3)/(2;2)/(3;1) | 1.32 |
MP30_10 | 5 | 10 | 30 | (1;3)/(2;2)/(3;1) | 2.38 |
MP90_10 | 5 | 10 | 90 | (1;3)/(2;2)/(3;1) | 1.14 |
MP120_10 | 5 | 10 | 120 | (1;3)/(2;2)/(3;1) | 1.91 |
MP30_20 | 5 | 20 | 30 | (1;3)/(2;2)/(3;1) | 3.37 |
MP90_20 | 5 | 20 | 90 | (1;3)/(2;2)/(3;1) | 0.9 |
MP120_20 | 5 | 20 | 120 | (1;3)/(2;2)/(3;1) | 0.87 |
Problem subset | NOI | Characterization per instance | UF |
||
MP30_2 | 5 | 2 | 30 | (1;3)/(2;2)/(3;1) | 0.84 |
MP90_2 | 5 | 2 | 90 | (1;3)/(2;2)/(3;1) | 0.57 |
MP120_2 | 5 | 2 | 120 | (1;3)/(2;2)/(3;1) | 1.31 |
MP30_5 | 5 | 5 | 30 | (1;3)/(2;2)/(3;1) | 0.82 |
MP90_5 | 5 | 5 | 90 | (1;3)/(2;2)/(3;1) | 0.61 |
MP120_5 | 5 | 5 | 120 | (1;3)/(2;2)/(3;1) | 1.32 |
MP30_10 | 5 | 10 | 30 | (1;3)/(2;2)/(3;1) | 2.38 |
MP90_10 | 5 | 10 | 90 | (1;3)/(2;2)/(3;1) | 1.14 |
MP120_10 | 5 | 10 | 120 | (1;3)/(2;2)/(3;1) | 1.91 |
MP30_20 | 5 | 20 | 30 | (1;3)/(2;2)/(3;1) | 3.37 |
MP90_20 | 5 | 20 | 90 | (1;3)/(2;2)/(3;1) | 0.9 |
MP120_20 | 5 | 20 | 120 | (1;3)/(2;2)/(3;1) | 0.87 |
Problem subsets | Serial | parallel | |||||||
minTT | minGAP | maxRS | minRS | minTT | minGAP | maxRS | minRS | ||
MP30_2 | 14.8 | 13.7 | 14.8 | 16.1 | 13.9 | 13.3 | 13.7 | 14 | |
MP90_2 | 10 | 8.8 | 10.1 | 11.3 | 6.9 | 6.8 | 7.1 | 7.3 | |
MP120_2 | 86.3 | 83.6 | 85.1 | 92.3 | 57.2 | 56.7 | 56.6 | 57.2 | |
MP30_5 | 34.24 | 34.2 | 36.44 | 39.04 | 23.16 | 23.28 | 22.48 | 23.36 | |
MP90_5 | 23.96 | 21.76 | 22.92 | 25.44 | 12.4 | 12.4 | 11.76 | 13 | |
MP120_5 | 104.04 | 104.44 | 106.56 | 112.64 | 67.72 | 68.32 | 67.56 | 67.8 | |
MP30_10 | 131.78 | 126.4 | 134.3 | 145.34 | 85.1 | 85.22 | 83.48 | 87.62 | |
MP90_10 | 104.14 | 106.72 | 108.96 | 114.3 | 61.34 | 60.4 | 61.12 | 62.1 | |
MP120_10 | 252.43 | 254.44 | 256.73 | 262.54 | 164.38 | 166.78 | 166.84 | 171.96 | |
MP30_20 | 333.61 | 340.69 | 338.15 | 352.6 | 205.06 | 208.3 | 203.74 | 213.16 | |
MP90_20 | 65.24 | 65.04 | 66.76 | 72.84 | 44.16 | 43.95 | 44.06 | 44.49 | |
MP120_20 | 71.28 | 70.49 | 71.48 | 77.56 | 47.48 | 48.28 | 47.24 | 47.52 | |
Average | 102.65 | 102.52 | 104.36 | 110.17 | 65.73 | 66.14 | 65.47 | 67.46 |
Problem subsets | Serial | parallel | |||||||
minTT | minGAP | maxRS | minRS | minTT | minGAP | maxRS | minRS | ||
MP30_2 | 14.8 | 13.7 | 14.8 | 16.1 | 13.9 | 13.3 | 13.7 | 14 | |
MP90_2 | 10 | 8.8 | 10.1 | 11.3 | 6.9 | 6.8 | 7.1 | 7.3 | |
MP120_2 | 86.3 | 83.6 | 85.1 | 92.3 | 57.2 | 56.7 | 56.6 | 57.2 | |
MP30_5 | 34.24 | 34.2 | 36.44 | 39.04 | 23.16 | 23.28 | 22.48 | 23.36 | |
MP90_5 | 23.96 | 21.76 | 22.92 | 25.44 | 12.4 | 12.4 | 11.76 | 13 | |
MP120_5 | 104.04 | 104.44 | 106.56 | 112.64 | 67.72 | 68.32 | 67.56 | 67.8 | |
MP30_10 | 131.78 | 126.4 | 134.3 | 145.34 | 85.1 | 85.22 | 83.48 | 87.62 | |
MP90_10 | 104.14 | 106.72 | 108.96 | 114.3 | 61.34 | 60.4 | 61.12 | 62.1 | |
MP120_10 | 252.43 | 254.44 | 256.73 | 262.54 | 164.38 | 166.78 | 166.84 | 171.96 | |
MP30_20 | 333.61 | 340.69 | 338.15 | 352.6 | 205.06 | 208.3 | 203.74 | 213.16 | |
MP90_20 | 65.24 | 65.04 | 66.76 | 72.84 | 44.16 | 43.95 | 44.06 | 44.49 | |
MP120_20 | 71.28 | 70.49 | 71.48 | 77.56 | 47.48 | 48.28 | 47.24 | 47.52 | |
Average | 102.65 | 102.52 | 104.36 | 110.17 | 65.73 | 66.14 | 65.47 | 67.46 |
Parameter | J | P | K | NC | RF | RS | ||
value | 5, 8, 10 or 14 | 2 or 3 | 4 | 1.5 | 0.25 | 0.2 |
Parameter | J | P | K | NC | RF | RS | ||
value | 5, 8, 10 or 14 | 2 or 3 | 4 | 1.5 | 0.25 | 0.2 |
instances | CPLEX | GA_maxRS (100 solutions) | (%) |
(%) |
(%) |
||||||
opt | worst | best | mean | ||||||||
J5_2 | 1 | 3 | 0.08 | 3 | 3 | 3 | 0.11 | 0 | 0 | 0 | |
2 | 1.5 | 0.03 | 1.5 | 1.5 | 1.5 | 0.14 | 0 | 0 | 0 | ||
3 | 2 | 0.05 | 2 | 2 | 2 | 0.1 | 0 | 0 | 0 | ||
4 | 5 | 0.08 | 5 | 5 | 5 | 0.15 | 0 | 0 | 0 | ||
5 | 2 | 0.05 | 2 | 2 | 2 | 0.13 | 0 | 0 | 0 | ||
J8_2 | 1 | 0.5 | 0.06 | 0.5 | 0.5 | 0.5 | 0.11 | 0 | 0 | 0 | |
2 | 1 | 0.09 | 1 | 1 | 1 | 0.17 | 0 | 0 | 0 | ||
3 | 2.5 | 0.08 | 2.5 | 2.5 | 2.5 | 0.2 | 0 | 0 | 0 | ||
4 | 5 | 0.3 | 5 | 5 | 5 | 0.24 | 0 | 0 | 0 | ||
5 | 3 | 0.2 | 3 | 3 | 3 | 0.31 | 0 | 0 | 0 | ||
J10_2 | 1 | 2.5 | 2.11 | 2.5 | 2.5 | 2.5 | 0.94 | 0 | 0 | 0 | |
2 | 9 | 3.72 | 9.5 | 9 | 9.1 | 0.87 | 6 | 0 | 1 | ||
3 | 10.5 | 2.23 | 12 | 10.5 | 11 | 1.06 | 14 | 0 | 5 | ||
4 | 7.5 | 3.2 | 7.5 | 7.5 | 7.5 | 0.56 | 0 | 0 | 0 | ||
5 | 7 | 4.83 | 7 | 7 | 7 | 1.42 | 0 | 0 | 0 | ||
J14_2 | 1 | 2 | 0.94 | 2.5 | 2 | 2.2 | 0.89 | 25 | 0 | 10 | |
2 | 6 | 25.23 | 6 | 6 | 6 | 0.99 | 0 | 0 | 0 | ||
3 | 4.5 | 1.91 | 5.5 | 4.5 | 4.7 | 1.18 | 22 | 0 | 4 | ||
4 | 7.5 | 30.42 | 7.5 | 7.5 | 7.5 | 1.5 | 0 | 0 | 0 | ||
5 | 4 | 15.2 | 6 | 4 | 5.5 | 1.45 | 50 | 0 | 38 | ||
J5_3 | 1 | 4.33 | 0.23 | 4.33 | 4.33 | 4.33 | 0.44 | 0 | 0 | 0 | |
2 | 2.67 | 0.63 | 3.67 | 3.33 | 3.53 | 0.82 | 37 | 25 | 32 | ||
3 | 4 | 0.86 | 5.33 | 4 | 4.67 | 0.61 | 33 | 0 | 17 | ||
4 | 3.33 | 0.19 | 4.33 | 3.33 | 3.94 | 0.45 | 30 | 0 | 18 | ||
5 | 3.33 | 0.7 | 3.33 | 3.33 | 3.33 | 0.63 | 0 | 0 | 0 | ||
J8_3 | 1 | 2 | 0.5 | 2 | 2 | 2 | 0.75 | 0 | 0 | 0 | |
2 | 7.67 | 15.69 | 8.67 | 7.67 | 7.94 | 1.18 | 13 | 0 | 4 | ||
3 | 2 | 0.22 | 2 | 2 | 2 | 0.58 | 0 | 0 | 0 | ||
4 | 6 | 152.2 | 8.33 | 6 | 6.47 | 1.85 | 39 | 0 | 8 | ||
5 | 1.33 | 0.41 | 1.33 | 1.33 | 1.33 | 0.66 | 0 | 0 | 0 | ||
J10_3 | 1 | 8.67 | 157.94 | 9.33 | 8.76 | 9.01 | 1.86 | 8 | 1 | 4 | |
2 | 10.67 | 249.08 | 11 | 10.67 | 10.79 | 1.67 | 3 | 0 | 1 | ||
3 | 4.33 | 320.17 | 5.67 | 4.33 | 4.79 | 1.27 | 31 | 0 | 11 | ||
4 | 8 | 824.63 | 8 | 8 | 8 | 1.28 | 0 | 0 | 0 | ||
5 | 6 | 1832.06 | 6 | 6 | 6 | 1.06 | 0 | 0 | 0 | ||
J14_3 | 1 | 6.33 | 131.98 | 6.33 | 6.33 | 6.33 | 2.14 | 0 | 0 | 0 | |
2 | 3.33 | 411.58 | 5 | 3.33 | 3.79 | 2.93 | 50 | 0 | 14 | ||
3 | 5.67 | 3600.44 | 6.67 | 5.67 | 5.79 | 3.03 | 18 | 0 | 2 | ||
4 | 11 | 3600.13 | 13.67 | 11 | 12.1 | 7.33 | 24 | 0 | 10 | ||
5 | 5 | 450.97 | 7 | 5 | 5.4 | 3.01 | 40 | 0 | 8 |
instances | CPLEX | GA_maxRS (100 solutions) | (%) |
(%) |
(%) |
||||||
opt | worst | best | mean | ||||||||
J5_2 | 1 | 3 | 0.08 | 3 | 3 | 3 | 0.11 | 0 | 0 | 0 | |
2 | 1.5 | 0.03 | 1.5 | 1.5 | 1.5 | 0.14 | 0 | 0 | 0 | ||
3 | 2 | 0.05 | 2 | 2 | 2 | 0.1 | 0 | 0 | 0 | ||
4 | 5 | 0.08 | 5 | 5 | 5 | 0.15 | 0 | 0 | 0 | ||
5 | 2 | 0.05 | 2 | 2 | 2 | 0.13 | 0 | 0 | 0 | ||
J8_2 | 1 | 0.5 | 0.06 | 0.5 | 0.5 | 0.5 | 0.11 | 0 | 0 | 0 | |
2 | 1 | 0.09 | 1 | 1 | 1 | 0.17 | 0 | 0 | 0 | ||
3 | 2.5 | 0.08 | 2.5 | 2.5 | 2.5 | 0.2 | 0 | 0 | 0 | ||
4 | 5 | 0.3 | 5 | 5 | 5 | 0.24 | 0 | 0 | 0 | ||
5 | 3 | 0.2 | 3 | 3 | 3 | 0.31 | 0 | 0 | 0 | ||
J10_2 | 1 | 2.5 | 2.11 | 2.5 | 2.5 | 2.5 | 0.94 | 0 | 0 | 0 | |
2 | 9 | 3.72 | 9.5 | 9 | 9.1 | 0.87 | 6 | 0 | 1 | ||
3 | 10.5 | 2.23 | 12 | 10.5 | 11 | 1.06 | 14 | 0 | 5 | ||
4 | 7.5 | 3.2 | 7.5 | 7.5 | 7.5 | 0.56 | 0 | 0 | 0 | ||
5 | 7 | 4.83 | 7 | 7 | 7 | 1.42 | 0 | 0 | 0 | ||
J14_2 | 1 | 2 | 0.94 | 2.5 | 2 | 2.2 | 0.89 | 25 | 0 | 10 | |
2 | 6 | 25.23 | 6 | 6 | 6 | 0.99 | 0 | 0 | 0 | ||
3 | 4.5 | 1.91 | 5.5 | 4.5 | 4.7 | 1.18 | 22 | 0 | 4 | ||
4 | 7.5 | 30.42 | 7.5 | 7.5 | 7.5 | 1.5 | 0 | 0 | 0 | ||
5 | 4 | 15.2 | 6 | 4 | 5.5 | 1.45 | 50 | 0 | 38 | ||
J5_3 | 1 | 4.33 | 0.23 | 4.33 | 4.33 | 4.33 | 0.44 | 0 | 0 | 0 | |
2 | 2.67 | 0.63 | 3.67 | 3.33 | 3.53 | 0.82 | 37 | 25 | 32 | ||
3 | 4 | 0.86 | 5.33 | 4 | 4.67 | 0.61 | 33 | 0 | 17 | ||
4 | 3.33 | 0.19 | 4.33 | 3.33 | 3.94 | 0.45 | 30 | 0 | 18 | ||
5 | 3.33 | 0.7 | 3.33 | 3.33 | 3.33 | 0.63 | 0 | 0 | 0 | ||
J8_3 | 1 | 2 | 0.5 | 2 | 2 | 2 | 0.75 | 0 | 0 | 0 | |
2 | 7.67 | 15.69 | 8.67 | 7.67 | 7.94 | 1.18 | 13 | 0 | 4 | ||
3 | 2 | 0.22 | 2 | 2 | 2 | 0.58 | 0 | 0 | 0 | ||
4 | 6 | 152.2 | 8.33 | 6 | 6.47 | 1.85 | 39 | 0 | 8 | ||
5 | 1.33 | 0.41 | 1.33 | 1.33 | 1.33 | 0.66 | 0 | 0 | 0 | ||
J10_3 | 1 | 8.67 | 157.94 | 9.33 | 8.76 | 9.01 | 1.86 | 8 | 1 | 4 | |
2 | 10.67 | 249.08 | 11 | 10.67 | 10.79 | 1.67 | 3 | 0 | 1 | ||
3 | 4.33 | 320.17 | 5.67 | 4.33 | 4.79 | 1.27 | 31 | 0 | 11 | ||
4 | 8 | 824.63 | 8 | 8 | 8 | 1.28 | 0 | 0 | 0 | ||
5 | 6 | 1832.06 | 6 | 6 | 6 | 1.06 | 0 | 0 | 0 | ||
J14_3 | 1 | 6.33 | 131.98 | 6.33 | 6.33 | 6.33 | 2.14 | 0 | 0 | 0 | |
2 | 3.33 | 411.58 | 5 | 3.33 | 3.79 | 2.93 | 50 | 0 | 14 | ||
3 | 5.67 | 3600.44 | 6.67 | 5.67 | 5.79 | 3.03 | 18 | 0 | 2 | ||
4 | 11 | 3600.13 | 13.67 | 11 | 12.1 | 7.33 | 24 | 0 | 10 | ||
5 | 5 | 450.97 | 7 | 5 | 5.4 | 3.01 | 40 | 0 | 8 |
Problem subsets | GA_maxRS | DMAS/RIA | (%) |
|||||
with TT | without TT | (%) |
with TT | without TT | (%) |
|||
MP30_2 | 13 | 10.9 | 19 | 23.3 | 18 | 29 | -39 | |
MP90_2 | 6.9 | 6.7 | 3 | 17.1 | 11.8 | 45 | -43 | |
MP120_2 | 56.1 | 55.6 | 1 | 89.6 | 80.3 | 12 | -31 | |
MP30_5 | 22.2 | 18.08 | 23 | 35.28 | 21.64 | 63 | -16 | |
MP90_5 | 11.68 | 9.36 | 25 | 22 | 13.32 | 65 | -30 | |
MP120_5 | 66.84 | 65.48 | 2 | 86.12 | 77.68 | 11 | -16 | |
MP30_10 | 81.58 | 78.16 | 4 | 92.68 | 83 | 12 | -6 | |
MP90_10 | 59.34 | 50.36 | 18 | 62.66 | 61.52 | 2 | -18 | |
MP120_10 | 164.28 | 140.3 | 17 | 162.6 | 144.1 | 13 | -3 | |
MP30_20 | 199.63 | 189.6 | 5 | 206.9 | 193 | 7 | -2 | |
MP90_20 | 43.38 | 34.92 | 24 | 42.88 | 43.13 | -1 | -19 | |
MP120_20 | 46.42 | 39.71 | 17 | 48.09 | 42.11 | 14 | -6 | |
Average | 64.28 | 58.26 | 10 | 74.1 | 65.8 | 13 | -11 |
Problem subsets | GA_maxRS | DMAS/RIA | (%) |
|||||
with TT | without TT | (%) |
with TT | without TT | (%) |
|||
MP30_2 | 13 | 10.9 | 19 | 23.3 | 18 | 29 | -39 | |
MP90_2 | 6.9 | 6.7 | 3 | 17.1 | 11.8 | 45 | -43 | |
MP120_2 | 56.1 | 55.6 | 1 | 89.6 | 80.3 | 12 | -31 | |
MP30_5 | 22.2 | 18.08 | 23 | 35.28 | 21.64 | 63 | -16 | |
MP90_5 | 11.68 | 9.36 | 25 | 22 | 13.32 | 65 | -30 | |
MP120_5 | 66.84 | 65.48 | 2 | 86.12 | 77.68 | 11 | -16 | |
MP30_10 | 81.58 | 78.16 | 4 | 92.68 | 83 | 12 | -6 | |
MP90_10 | 59.34 | 50.36 | 18 | 62.66 | 61.52 | 2 | -18 | |
MP120_10 | 164.28 | 140.3 | 17 | 162.6 | 144.1 | 13 | -3 | |
MP30_20 | 199.63 | 189.6 | 5 | 206.9 | 193 | 7 | -2 | |
MP90_20 | 43.38 | 34.92 | 24 | 42.88 | 43.13 | -1 | -19 | |
MP120_20 | 46.42 | 39.71 | 17 | 48.09 | 42.11 | 14 | -6 | |
Average | 64.28 | 58.26 | 10 | 74.1 | 65.8 | 13 | -11 |
[1] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[2] |
Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849 |
[3] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[4] |
Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016 |
[5] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[6] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[7] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[8] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[9] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[10] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[11] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]