
-
Previous Article
The joint location-transportation model based on grey bi-level programming for early post-earthquake relief
- JIMO Home
- This Issue
-
Next Article
An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers
Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking
1. | Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan |
2. | Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan |
Behavior that a customer who has just arrived at a crowded queueing system leaves without joining the queue is known as the phenomenon of balking. Queueing systems with balking have been studied continually as one of significant subjects. In this paper, the theoretical approach for the steady-state analysis of the Markovian queueing systems with balking is considered based on the concept of the statistical mechanics. Here, it can be easily seen that the strength of balking is not constant but various in each queueing systems. Note that the strength of balking means how degree a customer who has just arrived at a crowded queueing system leaves without joining the queue. In our approach, under considering the difference of the strength of balking for each queueing systems, we have proposed a statistical mechanics model for analyzing the M/M/$ s $ queueing system with balking by introducing a parameter influencing the strength of balking. Further, we define a procedure for estimating the model parameter influencing the strength of balking. In addition, we consider a method of improving the performance of the M/M/$ s $ queueing system with balking by utilizing the statistical mechanics approach.
References:
[1] |
M. O. Abou-El-Ata and A. M. A. Hariri,
The M/M/c/N queue with balking and reneging, Computers & Operations Research, 19 (1992), 713-716.
doi: 10.1016/0305-0548(92)90010-3. |
[2] |
I. Arizono, Y. Cui and H. Ohta,
An analysis of M/M/$ s $ queueing systems based on the maximum entropy principle, Journal of the Operational Research Society, 42 (1991), 69-73.
doi: 10.1057/jors.1991.8. |
[3] |
D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford, England, UK, 1987.
![]() ![]() |
[4] |
C. Chen, Z. Jia and P. Varaiya,
Causes and cures of highway congestion, IEEE Control Systems Magazine, 21 (2001), 26-32.
doi: 10.1109/37.969132. |
[5] |
A. A. El-Sherbiny,
The truncated heterogeneous two-server queue: M/M/2/N with reneging and general balk function, International Journal of Mathematical Archive, 3 (2012), 2745-2754.
|
[6] |
W. Greiner, L. Neise and H. St{ö}cker, Thermodynamics and Statistical Mechanics, Springer-Verlag, New York, 1995. |
[7] |
N. K. Jain, R. Kumar and B. Kumar Som,
An M/M/1/N queuing system with reverse balking, American Journal of Operational Research, 4 (2014), 17-20.
|
[8] |
A. Montazer-Haghighi, J. Medhi and S. G. Mohanty,
On a multiserver Markovian queueing system with balking and reneging, Computers & Operations Research, 13 (1986), 421-425.
doi: 10.1016/0305-0548(86)90029-8. |
[9] |
B. Natvig,
On the transient state probabilities for a queueing model where potential customers are discouraged by queue length, Journal of Applied Probability, 11 (1974), 345-354.
doi: 10.2307/3212755. |
[10] |
C. Preston, Gibbs States on Countable Sets, Cambridge University Press, London, England, UK, 1974.
![]() ![]() |
[11] |
J. Sztrik, Basic Queueing Theory, Faculty of Informatics, University of Debrecen, Hungary, 2012. |
show all references
References:
[1] |
M. O. Abou-El-Ata and A. M. A. Hariri,
The M/M/c/N queue with balking and reneging, Computers & Operations Research, 19 (1992), 713-716.
doi: 10.1016/0305-0548(92)90010-3. |
[2] |
I. Arizono, Y. Cui and H. Ohta,
An analysis of M/M/$ s $ queueing systems based on the maximum entropy principle, Journal of the Operational Research Society, 42 (1991), 69-73.
doi: 10.1057/jors.1991.8. |
[3] |
D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford, England, UK, 1987.
![]() ![]() |
[4] |
C. Chen, Z. Jia and P. Varaiya,
Causes and cures of highway congestion, IEEE Control Systems Magazine, 21 (2001), 26-32.
doi: 10.1109/37.969132. |
[5] |
A. A. El-Sherbiny,
The truncated heterogeneous two-server queue: M/M/2/N with reneging and general balk function, International Journal of Mathematical Archive, 3 (2012), 2745-2754.
|
[6] |
W. Greiner, L. Neise and H. St{ö}cker, Thermodynamics and Statistical Mechanics, Springer-Verlag, New York, 1995. |
[7] |
N. K. Jain, R. Kumar and B. Kumar Som,
An M/M/1/N queuing system with reverse balking, American Journal of Operational Research, 4 (2014), 17-20.
|
[8] |
A. Montazer-Haghighi, J. Medhi and S. G. Mohanty,
On a multiserver Markovian queueing system with balking and reneging, Computers & Operations Research, 13 (1986), 421-425.
doi: 10.1016/0305-0548(86)90029-8. |
[9] |
B. Natvig,
On the transient state probabilities for a queueing model where potential customers are discouraged by queue length, Journal of Applied Probability, 11 (1974), 345-354.
doi: 10.2307/3212755. |
[10] |
C. Preston, Gibbs States on Countable Sets, Cambridge University Press, London, England, UK, 1974.
![]() ![]() |
[11] |
J. Sztrik, Basic Queueing Theory, Faculty of Informatics, University of Debrecen, Hungary, 2012. |


20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 16.82 | 14.14 | 11.89 | 10.00 | 8.41 | |
20.00 | 15.20 | 11.55 | 8.77 | 6.67 | 5.07 | |
20.00 | 14.14 | 10.00 | 7.07 | 5.00 | 3.54 | |
20.00 | 13.37 | 8.94 | 5.98 | 4.00 | 2.67 | |
20.00 | 12.78 | 8.16 | 5.22 | 3.33 | 2.13 | |
20.00 | 12.30 | 7.56 | 4.65 | 2.86 | 1.76 | |
20.00 | 11.89 | 7.07 | 4.20 | 2.50 | 1.49 | |
20.00 | 11.55 | 6.67 | 3.85 | 2.22 | 1.28 | |
20.00 | 11.25 | 6.32 | 3.56 | 2.00 | 1.12 | |
20.00 | 10.98 | 6.03 | 3.31 | 1.82 | 1.00 |
20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 16.82 | 14.14 | 11.89 | 10.00 | 8.41 | |
20.00 | 15.20 | 11.55 | 8.77 | 6.67 | 5.07 | |
20.00 | 14.14 | 10.00 | 7.07 | 5.00 | 3.54 | |
20.00 | 13.37 | 8.94 | 5.98 | 4.00 | 2.67 | |
20.00 | 12.78 | 8.16 | 5.22 | 3.33 | 2.13 | |
20.00 | 12.30 | 7.56 | 4.65 | 2.86 | 1.76 | |
20.00 | 11.89 | 7.07 | 4.20 | 2.50 | 1.49 | |
20.00 | 11.55 | 6.67 | 3.85 | 2.22 | 1.28 | |
20.00 | 11.25 | 6.32 | 3.56 | 2.00 | 1.12 | |
20.00 | 10.98 | 6.03 | 3.31 | 1.82 | 1.00 |
0.386257 | 0.288225 | 0.209605 | |
0.309006 | 0.288225 | 0.251526 | |
0.174800 | 0.203806 | 0.213427 | |
0.080737 | 0.117668 | 0.147867 | |
0.032295 | 0.058834 | 0.088720 | |
0.011554 | 0.026311 | 0.047612 | |
0.003774 | 0.010742 | 0.023325 | |
0.001141 | 0.004060 | 0.010579 | |
0.000323 | 0.001435 | 0.004488 | |
0.000086 | 0.000478 | 0.001795 | |
0.000022 | 0.000151 | 0.000681 |
0.386257 | 0.288225 | 0.209605 | |
0.309006 | 0.288225 | 0.251526 | |
0.174800 | 0.203806 | 0.213427 | |
0.080737 | 0.117668 | 0.147867 | |
0.032295 | 0.058834 | 0.088720 | |
0.011554 | 0.026311 | 0.047612 | |
0.003774 | 0.010742 | 0.023325 | |
0.001141 | 0.004060 | 0.010579 | |
0.000323 | 0.001435 | 0.004488 | |
0.000086 | 0.000478 | 0.001795 | |
0.000022 | 0.000151 | 0.000681 |
20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 16.82 | 14.14 | 11.89 | 10.00 | 8.41 | |
20.00 | 15.20 | 11.55 | 8.77 | 6.67 | 5.07 | |
20.00 | 14.14 | 10.00 | 7.07 | 5.00 | 3.54 | |
20.00 | 13.37 | 8.94 | 5.98 | 4.00 | 2.67 | |
20.00 | 12.78 | 8.16 | 5.22 | 3.33 | 2.13 | |
20.00 | 12.30 | 7.56 | 4.65 | 2.86 | 1.76 | |
20.00 | 11.89 | 7.07 | 4.20 | 2.50 | 1.49 | |
20.00 | 11.55 | 6.67 | 3.85 | 2.22 | 1.28 |
20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | |
20.00 | 16.82 | 14.14 | 11.89 | 10.00 | 8.41 | |
20.00 | 15.20 | 11.55 | 8.77 | 6.67 | 5.07 | |
20.00 | 14.14 | 10.00 | 7.07 | 5.00 | 3.54 | |
20.00 | 13.37 | 8.94 | 5.98 | 4.00 | 2.67 | |
20.00 | 12.78 | 8.16 | 5.22 | 3.33 | 2.13 | |
20.00 | 12.30 | 7.56 | 4.65 | 2.86 | 1.76 | |
20.00 | 11.89 | 7.07 | 4.20 | 2.50 | 1.49 | |
20.00 | 11.55 | 6.67 | 3.85 | 2.22 | 1.28 |
0.092113 | 0.050987 | 0.028157 | |
0.221072 | 0.152961 | 0.101365 | |
0.265287 | 0.229442 | 0.182457 | |
0.212229 | 0.229442 | 0.218948 | |
0.120055 | 0.162240 | 0.185784 | |
0.055451 | 0.093669 | 0.128715 | |
0.022180 | 0.046835 | 0.077229 | |
0.007936 | 0.020945 | 0.041445 | |
0.002592 | 0.008551 | 0.020304 | |
0.000784 | 0.003232 | 0.009209 | |
0.000222 | 0.001143 | 0.003907 |
0.092113 | 0.050987 | 0.028157 | |
0.221072 | 0.152961 | 0.101365 | |
0.265287 | 0.229442 | 0.182457 | |
0.212229 | 0.229442 | 0.218948 | |
0.120055 | 0.162240 | 0.185784 | |
0.055451 | 0.093669 | 0.128715 | |
0.022180 | 0.046835 | 0.077229 | |
0.007936 | 0.020945 | 0.041445 | |
0.002592 | 0.008551 | 0.020304 | |
0.000784 | 0.003232 | 0.009209 | |
0.000222 | 0.001143 | 0.003907 |
0.044992 | 0.053333 | 0.045067 | |
0.143973 | 0.156667 | 0.144213 | |
0.230357 | 0.210000 | 0.230741 | |
0.245715 | 0.246667 | 0.246123 | |
0.196572 | 0.200000 | 0.196899 | |
0.093506 | 0.086667 | 0.093014 | |
0.032816 | 0.036667 | 0.032287 | |
0.009282 | 0.006667 | 0.009006 | |
0.002787 | 0.003333 | 0.002650 |
0.044992 | 0.053333 | 0.045067 | |
0.143973 | 0.156667 | 0.144213 | |
0.230357 | 0.210000 | 0.230741 | |
0.245715 | 0.246667 | 0.246123 | |
0.196572 | 0.200000 | 0.196899 | |
0.093506 | 0.086667 | 0.093014 | |
0.032816 | 0.036667 | 0.032287 | |
0.009282 | 0.006667 | 0.009006 | |
0.002787 | 0.003333 | 0.002650 |
0.76 | 0.60 | 0.70 | 0.76 | 0.97 |
0.94 | 0.77 | 0.79 | 0.80 | 0.64 |
0.76 | 0.73 | 0.65 | 0.64 | 0.66 |
0.66 | 0.76 | 0.66 | 0.76 | 0.61 |
0.80 | 0.84 | 0.86 | 0.75 | 0.77 |
0.94 | 0.65 | 0.72 | 0.91 | 0.76 |
0.79 | 0.82 | 0.76 | 0.93 | 0.88 |
0.70 | 0.83 | 0.76 | 0.75 | 0.74 |
0.57 | 0.75 | 0.86 | 0.58 | 0.61 |
0.73 | 0.75 | 0.67 | 0.68 | 0.68 |
0.73 | 0.93 | 0.61 | 0.84 | 0.79 |
0.63 | 0.72 | 0.77 | 1.05 | 0.59 |
0.72 | 0.80 | 0.74 | 0.70 | 0.81 |
0.93 | 0.84 | 0.77 | 0.64 | 0.97 |
0.83 | 0.65 | 0.70 | 0.72 | 0.92 |
0.76 | 0.73 | 0.84 | 0.80 | 0.86 |
0.66 | 0.73 | 0.75 | 0.69 | 0.74 |
0.64 | 0.78 | 0.88 | 0.89 | 0.70 |
0.69 | 0.52 | 0.71 | 0.75 | 0.86 |
0.83 | 0.59 | 0.62 | 0.74 | 0.65 |
0.76 | 0.60 | 0.70 | 0.76 | 0.97 |
0.94 | 0.77 | 0.79 | 0.80 | 0.64 |
0.76 | 0.73 | 0.65 | 0.64 | 0.66 |
0.66 | 0.76 | 0.66 | 0.76 | 0.61 |
0.80 | 0.84 | 0.86 | 0.75 | 0.77 |
0.94 | 0.65 | 0.72 | 0.91 | 0.76 |
0.79 | 0.82 | 0.76 | 0.93 | 0.88 |
0.70 | 0.83 | 0.76 | 0.75 | 0.74 |
0.57 | 0.75 | 0.86 | 0.58 | 0.61 |
0.73 | 0.75 | 0.67 | 0.68 | 0.68 |
0.73 | 0.93 | 0.61 | 0.84 | 0.79 |
0.63 | 0.72 | 0.77 | 1.05 | 0.59 |
0.72 | 0.80 | 0.74 | 0.70 | 0.81 |
0.93 | 0.84 | 0.77 | 0.64 | 0.97 |
0.83 | 0.65 | 0.70 | 0.72 | 0.92 |
0.76 | 0.73 | 0.84 | 0.80 | 0.86 |
0.66 | 0.73 | 0.75 | 0.69 | 0.74 |
0.64 | 0.78 | 0.88 | 0.89 | 0.70 |
0.69 | 0.52 | 0.71 | 0.75 | 0.86 |
0.83 | 0.59 | 0.62 | 0.74 | 0.65 |
average | 0.7527 |
standard deviation | 0.1021 |
average | 0.7527 |
standard deviation | 0.1021 |
the number of observation | 300 | 500 | 1000 | 10000 |
average | 0.7527 | 0.7446 | 0.7477 | 0.7516 |
standard deviation | 0.1021 | 0.0909 | 0.0466 | 0.0188 |
the number of observation | 300 | 500 | 1000 | 10000 |
average | 0.7527 | 0.7446 | 0.7477 | 0.7516 |
standard deviation | 0.1021 | 0.0909 | 0.0466 | 0.0188 |
1611.263 | 67.04209 | |
1696.563 | 73.21876 | |
1713.902 | 77.13008 | |
1659.655 | 78.65517 | |
1584.739 | 79.49130 | |
1494.792 | 79.82639 |
1611.263 | 67.04209 | |
1696.563 | 73.21876 | |
1713.902 | 77.13008 | |
1659.655 | 78.65517 | |
1584.739 | 79.49130 | |
1494.792 | 79.82639 |
[1] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the MAP/M/s+G queueing model with generally distributed patience times. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2505-2532. doi: 10.3934/jimo.2021078 |
[2] |
Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial and Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811 |
[3] |
Dequan Yue, Wuyi Yue. Block-partitioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns. Journal of Industrial and Management Optimization, 2009, 5 (3) : 417-430. doi: 10.3934/jimo.2009.5.417 |
[4] |
Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial and Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715 |
[5] |
Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial and Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89 |
[6] |
Hsin-Yi Liu, Hsing Paul Luh. Kronecker product-forms of steady-state probabilities with $C_k$/$C_m$/$1$ by matrix polynomial approaches. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 691-711. doi: 10.3934/naco.2011.1.691 |
[7] |
Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial and Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653 |
[8] |
Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations and Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135 |
[9] |
Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135 |
[10] |
Shihe Xu, Fangwei Zhang, Meng Bai. Stability of positive steady-state solutions to a time-delayed system with some applications. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021286 |
[11] |
Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463 |
[12] |
Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial and Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1 |
[13] |
Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks and Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011 |
[14] |
Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147 |
[15] |
Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895 |
[16] |
Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026 |
[17] |
Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. State-dependent M/M/c/c + r retrial queues with Bernoulli abandonment. Journal of Industrial and Management Optimization, 2010, 6 (3) : 517-540. doi: 10.3934/jimo.2010.6.517 |
[18] |
Yutaka Sakuma, Atsushi Inoie, Ken’ichi Kawanishi, Masakiyo Miyazawa. Tail asymptotics for waiting time distribution of an M/M/s queue with general impatient time. Journal of Industrial and Management Optimization, 2011, 7 (3) : 593-606. doi: 10.3934/jimo.2011.7.593 |
[19] |
Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113 |
[20] |
Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]