• Previous Article
    Incentive contract design for supplier switching with considering learning effect
  • JIMO Home
  • This Issue
  • Next Article
    Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy
doi: 10.3934/jimo.2020141

Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking

1. 

Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan

2. 

Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan

* Corresponding author: Ikuo Arizono

Received  January 2020 Revised  June 2020 Published  September 2020

Fund Project: The authors are supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 18K04611: "Evaluation of system performance and reliability under incomplete information environment"

Behavior that a customer who has just arrived at a crowded queueing system leaves without joining the queue is known as the phenomenon of balking. Queueing systems with balking have been studied continually as one of significant subjects. In this paper, the theoretical approach for the steady-state analysis of the Markovian queueing systems with balking is considered based on the concept of the statistical mechanics. Here, it can be easily seen that the strength of balking is not constant but various in each queueing systems. Note that the strength of balking means how degree a customer who has just arrived at a crowded queueing system leaves without joining the queue. In our approach, under considering the difference of the strength of balking for each queueing systems, we have proposed a statistical mechanics model for analyzing the M/M/$ s $ queueing system with balking by introducing a parameter influencing the strength of balking. Further, we define a procedure for estimating the model parameter influencing the strength of balking. In addition, we consider a method of improving the performance of the M/M/$ s $ queueing system with balking by utilizing the statistical mechanics approach.

Citation: Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020141
References:
[1]

M. O. Abou-El-Ata and A. M. A. Hariri, The M/M/c/N queue with balking and reneging, Computers & Operations Research, 19 (1992), 713-716.  doi: 10.1016/0305-0548(92)90010-3.  Google Scholar

[2]

I. ArizonoY. Cui and H. Ohta, An analysis of M/M/$ s $ queueing systems based on the maximum entropy principle, Journal of the Operational Research Society, 42 (1991), 69-73.  doi: 10.1057/jors.1991.8.  Google Scholar

[3] D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford, England, UK, 1987.   Google Scholar
[4]

C. ChenZ. Jia and P. Varaiya, Causes and cures of highway congestion, IEEE Control Systems Magazine, 21 (2001), 26-32.  doi: 10.1109/37.969132.  Google Scholar

[5]

A. A. El-Sherbiny, The truncated heterogeneous two-server queue: M/M/2/N with reneging and general balk function, International Journal of Mathematical Archive, 3 (2012), 2745-2754.   Google Scholar

[6]

W. Greiner, L. Neise and H. St{ö}cker, Thermodynamics and Statistical Mechanics, Springer-Verlag, New York, 1995. Google Scholar

[7]

N. K. JainR. Kumar and B. Kumar Som, An M/M/1/N queuing system with reverse balking, American Journal of Operational Research, 4 (2014), 17-20.   Google Scholar

[8]

A. Montazer-HaghighiJ. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging, Computers & Operations Research, 13 (1986), 421-425.  doi: 10.1016/0305-0548(86)90029-8.  Google Scholar

[9]

B. Natvig, On the transient state probabilities for a queueing model where potential customers are discouraged by queue length, Journal of Applied Probability, 11 (1974), 345-354.  doi: 10.2307/3212755.  Google Scholar

[10] C. Preston, Gibbs States on Countable Sets, Cambridge University Press, London, England, UK, 1974.   Google Scholar
[11]

J. Sztrik, Basic Queueing Theory, Faculty of Informatics, University of Debrecen, Hungary, 2012. Google Scholar

show all references

References:
[1]

M. O. Abou-El-Ata and A. M. A. Hariri, The M/M/c/N queue with balking and reneging, Computers & Operations Research, 19 (1992), 713-716.  doi: 10.1016/0305-0548(92)90010-3.  Google Scholar

[2]

I. ArizonoY. Cui and H. Ohta, An analysis of M/M/$ s $ queueing systems based on the maximum entropy principle, Journal of the Operational Research Society, 42 (1991), 69-73.  doi: 10.1057/jors.1991.8.  Google Scholar

[3] D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford, England, UK, 1987.   Google Scholar
[4]

C. ChenZ. Jia and P. Varaiya, Causes and cures of highway congestion, IEEE Control Systems Magazine, 21 (2001), 26-32.  doi: 10.1109/37.969132.  Google Scholar

[5]

A. A. El-Sherbiny, The truncated heterogeneous two-server queue: M/M/2/N with reneging and general balk function, International Journal of Mathematical Archive, 3 (2012), 2745-2754.   Google Scholar

[6]

W. Greiner, L. Neise and H. St{ö}cker, Thermodynamics and Statistical Mechanics, Springer-Verlag, New York, 1995. Google Scholar

[7]

N. K. JainR. Kumar and B. Kumar Som, An M/M/1/N queuing system with reverse balking, American Journal of Operational Research, 4 (2014), 17-20.   Google Scholar

[8]

A. Montazer-HaghighiJ. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging, Computers & Operations Research, 13 (1986), 421-425.  doi: 10.1016/0305-0548(86)90029-8.  Google Scholar

[9]

B. Natvig, On the transient state probabilities for a queueing model where potential customers are discouraged by queue length, Journal of Applied Probability, 11 (1974), 345-354.  doi: 10.2307/3212755.  Google Scholar

[10] C. Preston, Gibbs States on Countable Sets, Cambridge University Press, London, England, UK, 1974.   Google Scholar
[11]

J. Sztrik, Basic Queueing Theory, Faculty of Informatics, University of Debrecen, Hungary, 2012. Google Scholar

Figure 1.  The relationships between the number of customers $ n $ and the arrival rate $ \lambda_{n} $ in the case of $ s = 1 $
Figure 2.  The steady-state probability distributions in the case of $ s = 1 $ and $ r = 0.5 $
Figure 3.  The relationships between the number of customers $ n $ and the arrival rate $ \lambda_{n} $ in the case of $ s = 3 $
Figure 4.  The steady-state probability distributions in the case of $ s = 3 $ and $ r = 0.5 $
Figure 5.  The relationship between the cost $ c $ and the profit $ T $
Table 1.  The arrival rate $ \lambda_{n} $ against various $ r $ in the case of $ s = 1 $
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 2 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 3 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 4 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 5 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 6 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 7 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 8 $ 20.00 11.55 6.67 3.85 2.22 1.28
$ 9 $ 20.00 11.25 6.32 3.56 2.00 1.12
$ 10 $ 20.00 10.98 6.03 3.31 1.82 1.00
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 2 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 3 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 4 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 5 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 6 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 7 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 8 $ 20.00 11.55 6.67 3.85 2.22 1.28
$ 9 $ 20.00 11.25 6.32 3.56 2.00 1.12
$ 10 $ 20.00 10.98 6.03 3.31 1.82 1.00
Table 2.  The steady-state probability $ P_{n} $ under some $ \rho $ in the case of $ s = 1 $
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.386257 0.288225 0.209605
$ 1 $ 0.309006 0.288225 0.251526
$ 2 $ 0.174800 0.203806 0.213427
$ 3 $ 0.080737 0.117668 0.147867
$ 4 $ 0.032295 0.058834 0.088720
$ 5 $ 0.011554 0.026311 0.047612
$ 6 $ 0.003774 0.010742 0.023325
$ 7 $ 0.001141 0.004060 0.010579
$ 8 $ 0.000323 0.001435 0.004488
$ 9 $ 0.000086 0.000478 0.001795
$ 10 $ 0.000022 0.000151 0.000681
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.386257 0.288225 0.209605
$ 1 $ 0.309006 0.288225 0.251526
$ 2 $ 0.174800 0.203806 0.213427
$ 3 $ 0.080737 0.117668 0.147867
$ 4 $ 0.032295 0.058834 0.088720
$ 5 $ 0.011554 0.026311 0.047612
$ 6 $ 0.003774 0.010742 0.023325
$ 7 $ 0.001141 0.004060 0.010579
$ 8 $ 0.000323 0.001435 0.004488
$ 9 $ 0.000086 0.000478 0.001795
$ 10 $ 0.000022 0.000151 0.000681
Table 3.  The arrival rate $ \lambda_{n} $ against various $ r $ in the case of $ s = 3 $
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 2 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 3 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 4 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 5 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 6 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 7 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 8 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 9 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 10 $ 20.00 11.55 6.67 3.85 2.22 1.28
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 2 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 3 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 4 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 5 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 6 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 7 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 8 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 9 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 10 $ 20.00 11.55 6.67 3.85 2.22 1.28
Table 4.  The steady-state probability $ P_{n} $ under some $ \rho $ in the case of $ s = 3 $
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.092113 0.050987 0.028157
$ 1 $ 0.221072 0.152961 0.101365
$ 2 $ 0.265287 0.229442 0.182457
$ 3 $ 0.212229 0.229442 0.218948
$ 4 $ 0.120055 0.162240 0.185784
$ 5 $ 0.055451 0.093669 0.128715
$ 6 $ 0.022180 0.046835 0.077229
$ 7 $ 0.007936 0.020945 0.041445
$ 8 $ 0.002592 0.008551 0.020304
$ 9 $ 0.000784 0.003232 0.009209
$ 10 $ 0.000222 0.001143 0.003907
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.092113 0.050987 0.028157
$ 1 $ 0.221072 0.152961 0.101365
$ 2 $ 0.265287 0.229442 0.182457
$ 3 $ 0.212229 0.229442 0.218948
$ 4 $ 0.120055 0.162240 0.185784
$ 5 $ 0.055451 0.093669 0.128715
$ 6 $ 0.022180 0.046835 0.077229
$ 7 $ 0.007936 0.020945 0.041445
$ 8 $ 0.002592 0.008551 0.020304
$ 9 $ 0.000784 0.003232 0.009209
$ 10 $ 0.000222 0.001143 0.003907
Table 5.  An example of the estimation as $ r^{\ast} = 0.76 $
$ n $ $ P_{n}^† $ $ P_{n}^{‡} $ $ P_{n}^{\ast} $
$ 0 $ 0.044992 0.053333 0.045067
$ 1 $ 0.143973 0.156667 0.144213
$ 2 $ 0.230357 0.210000 0.230741
$ 3 $ 0.245715 0.246667 0.246123
$ 4 $ 0.196572 0.200000 0.196899
$ 5 $ 0.093506 0.086667 0.093014
$ 6 $ 0.032816 0.036667 0.032287
$ 7 $ 0.009282 0.006667 0.009006
$ 8 $ or more 0.002787 0.003333 0.002650
$ n $ $ P_{n}^† $ $ P_{n}^{‡} $ $ P_{n}^{\ast} $
$ 0 $ 0.044992 0.053333 0.045067
$ 1 $ 0.143973 0.156667 0.144213
$ 2 $ 0.230357 0.210000 0.230741
$ 3 $ 0.245715 0.246667 0.246123
$ 4 $ 0.196572 0.200000 0.196899
$ 5 $ 0.093506 0.086667 0.093014
$ 6 $ 0.032816 0.036667 0.032287
$ 7 $ 0.009282 0.006667 0.009006
$ 8 $ or more 0.002787 0.003333 0.002650
Table 6.  The estimated results of $ r^{\ast} $
0.76 0.60 0.70 0.76 0.97
0.94 0.77 0.79 0.80 0.64
0.76 0.73 0.65 0.64 0.66
0.66 0.76 0.66 0.76 0.61
0.80 0.84 0.86 0.75 0.77
0.94 0.65 0.72 0.91 0.76
0.79 0.82 0.76 0.93 0.88
0.70 0.83 0.76 0.75 0.74
0.57 0.75 0.86 0.58 0.61
0.73 0.75 0.67 0.68 0.68
0.73 0.93 0.61 0.84 0.79
0.63 0.72 0.77 1.05 0.59
0.72 0.80 0.74 0.70 0.81
0.93 0.84 0.77 0.64 0.97
0.83 0.65 0.70 0.72 0.92
0.76 0.73 0.84 0.80 0.86
0.66 0.73 0.75 0.69 0.74
0.64 0.78 0.88 0.89 0.70
0.69 0.52 0.71 0.75 0.86
0.83 0.59 0.62 0.74 0.65
0.76 0.60 0.70 0.76 0.97
0.94 0.77 0.79 0.80 0.64
0.76 0.73 0.65 0.64 0.66
0.66 0.76 0.66 0.76 0.61
0.80 0.84 0.86 0.75 0.77
0.94 0.65 0.72 0.91 0.76
0.79 0.82 0.76 0.93 0.88
0.70 0.83 0.76 0.75 0.74
0.57 0.75 0.86 0.58 0.61
0.73 0.75 0.67 0.68 0.68
0.73 0.93 0.61 0.84 0.79
0.63 0.72 0.77 1.05 0.59
0.72 0.80 0.74 0.70 0.81
0.93 0.84 0.77 0.64 0.97
0.83 0.65 0.70 0.72 0.92
0.76 0.73 0.84 0.80 0.86
0.66 0.73 0.75 0.69 0.74
0.64 0.78 0.88 0.89 0.70
0.69 0.52 0.71 0.75 0.86
0.83 0.59 0.62 0.74 0.65
Table 7.  The basic statistics for $ r^{\ast} $ in Table \ref{Table 2}
average 0.7527
standard deviation 0.1021
average 0.7527
standard deviation 0.1021
Table 8.  The averages and standard deviations by the similar experiments
the number of observation 300 500 1000 10000
average 0.7527 0.7446 0.7477 0.7516
standard deviation 0.1021 0.0909 0.0466 0.0188
the number of observation 300 500 1000 10000
average 0.7527 0.7446 0.7477 0.7516
standard deviation 0.1021 0.0909 0.0466 0.0188
Table 9.  The profit $ T $ and average arrival rate when increasing the number of servers
$ s $ $ T $ $ \bar{\lambda} $
$ 4 $ 1611.263 67.04209
$ 5 $ 1696.563 73.21876
$ 6 $ 1713.902 77.13008
$ 7 $ 1659.655 78.65517
$ 8 $ 1584.739 79.49130
$ 9 $ 1494.792 79.82639
$ s $ $ T $ $ \bar{\lambda} $
$ 4 $ 1611.263 67.04209
$ 5 $ 1696.563 73.21876
$ 6 $ 1713.902 77.13008
$ 7 $ 1659.655 78.65517
$ 8 $ 1584.739 79.49130
$ 9 $ 1494.792 79.82639
[1]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[2]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[3]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[4]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[5]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[6]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[7]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[8]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[9]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[10]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[11]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[12]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[13]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[14]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[15]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[16]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[17]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[18]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[19]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[20]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]