
-
Previous Article
A goethite process modeling method by asynchronous fuzzy cognitive Network based on an improved constrained chicken swarm optimization algorithm
- JIMO Home
- This Issue
-
Next Article
Local search algorithm for the squared metric $ k $-facility location problem with linear penalties
The joint location-transportation model based on grey bi-level programming for early post-earthquake relief
1. | Chongqing Engineering Technology Research Center for Information Management in, Development, Chongqing Technology and Business University, Chongqing, 400067, China |
2. | School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China |
3. | Research center for economy of upper researches of the Yangtze River, Chongqing Technology, and Business University, Chongqing, 400067, China |
The initial period after the earthquake is the prime time for disaster relief. During this period, it is of great value to rationally locate the transfer facilities of relief materials and effectively arrange the transportation of relief materials. Considering the characteristics of the two-level emergency logistics system including uncertain demand, uncertain transportation time, multiple varieties of relief materials, shortage of supply, multi-transportation modes and different urgencies of relief material demand, the integrated issue with the concern of transfer facility location and relief material transportation is studied. Then, this problem is formulated as a grey mixed integer bi-level nonlinear programming in which the upper-level aims at the shortest relief material transportation time and the lower-level aims at the maximum fairness of relief material distribution. According to the characteristics of the model, a hybrid genetic algorithm is designed to solve the proposed model. Finally, a numerical simulation is carried out on the background of 5.12 Wenchuan Earthquake. In addition, the validation of the proposed model and algorithm is verified.
References:
[1] |
A. Afshar and A. Haghani,
Modeling integrated supply chain logistics in real-time large-scale disaster relief operations, Socio-Economic Plan. Sci., 46 (2012), 327-338.
doi: 10.1016/j.seps.2011.12.003. |
[2] |
J. F. Bard,
Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.
doi: 10.1007/BF00941574. |
[3] |
V. Bélanger, A. Ruiz and P. Soriano,
Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles, European J. Oper. Res., 272 (2019), 1-23.
doi: 10.1016/j.ejor.2018.02.055. |
[4] |
C. Blair,
The computational complexity of multi-level linear programs, Ann. Oper. Res., 34 (1992), 13-19.
doi: 10.1007/BF02098170. |
[5] |
A. Bozorgi-Amiri and M. Khorsi, A dynamic multi-objective location-routing model for relief logistic planning under uncertainty on demand, travel time, and cost parameters, The International Journal of Advanced Manufacturing Technology, 85 (2016), 1633-1648. Google Scholar |
[6] |
C. J. Cao, C. D. Li, Q. Yang, Y. Liu and T. Qu,
A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters, J. Cleaner Production, 174 (2018), 1422-1435.
doi: 10.1016/j.jclepro.2017.11.037. |
[7] |
A. Y. Chen and T. Y. Yu,
Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response, Transport Res. B. Meth., 91 (2016), 408-423.
doi: 10.1016/j.trb.2016.06.004. |
[8] |
Y. Dai, Z. J. Ma, D. L. Zhu and T. Fang, Fuzzy dynamic location-routing problem in post-earthquake delivery of relief materials, Chinese Journal of Management Science, 15 (2012), 60-70. Google Scholar |
[9] |
X. T. Deng, Complexity issues in bi-level linear programming, in Multilevel Optimization: Algorithms and Applications, Vol. 20, Kluwer Acad. Publ., Dordrecht, 1998,149–164.
doi: 10.1007/978-1-4613-0307-7_6. |
[10] |
M. Haghi, S. M. T. F. Ghomi and F. Jolai,
Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource, J. Cleaner Production, 154 (2017), 188-202.
doi: 10.1016/j.jclepro.2017.03.102. |
[11] |
H. Hu, X. Li, Y. Y. Zhang, C. J. Shang and S. C. Zhang,
Multi-objective location-routing model for hazardous material logistics with traffic restriction constraint in inter-city roads, Comput. Ind. Eng., 128 (2019), 861-876.
doi: 10.1016/j.cie.2018.10.044. |
[12] |
J. Jian, Y. Zhang, L. Jiang and J. Su, Coordination of supply chains with competing manufacturers considering fairness concerns, Complexity, 2020 (2020), 4372603.
doi: 10.1155/2020/4372603. |
[13] |
S. Li and K. L. Teo,
Post-disaster multi-period road network repair: Work scheduling and relief logistics optimization, Ann. Oper. Res., 283 (2019), 1345-1385.
doi: 10.1007/s10479-018-3037-2. |
[14] |
S. Li, Z. J. Ma and K. L. Teo, A new model for road network repair after natural disaster: Integrating logistics support scheduling with repair crew scheduling and routing activities, Comput. Ind. Eng., 145 (2020), 106506. Google Scholar |
[15] |
S. L. Li, Z. J. Ma, B. Zheng and Y. Dai, Fuzzy multi-objective location-multimodal transportation problem for relief delivery during the initial post-earthquake period, Chinese Journal of Management Science, 21 (2013), 144-151. Google Scholar |
[16] |
C. S. Liu, L. Luo, X. C. Zhou and F. H. Huang, Collaborative decision-making of relief allocation-transportation in early post-earthquake: Considering both fairness and efficiency, Control and Decision, 33 (2018), 2057-2063. Google Scholar |
[17] |
C. S. Liu, G. Kou, Y. Peng and F. E. Alsaadi, Location-routing problem for relief distribution in the early post-earthquake stage from the perspective of fairness, Sustainability, 11 (2019), 3420.
doi: 10.3390/su11123420. |
[18] |
R. Lotfian and M. Najafi,
Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model, Injury Prevention, 25 (2019), 264-272.
doi: 10.1136/injuryprev-2017-042657. |
[19] |
H. M. Rizeei, B. Pradhan and M. A. Saharkhiz, Allocation of emergency response centres in response to pluvial flooding-prone demand points using integrated multiple layer perceptron and maximum coverage location problem models, Int. J. Disast. Risk. Red., 38 (2019), 101205.
doi: 10.1016/j.ijdrr.2019.101205. |
[20] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Robust bi-level optimization of relief logistics operations, Appl. Math. Model., 56 (2018), 359-380.
doi: 10.1016/j.apm.2017.12.003. |
[21] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Emergency logistics planning under supply risk and demand uncertainty, Oper. Res., 20 (2020), 1437-1460.
doi: 10.1007/s12351-018-0376-3. |
[22] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[23] |
J. Su, Q. Bai, S. Sindakis, X Zhang and T Yang, Vulnerability of multinational corporation knowledge network facing resource loss, Management Decision, 2020.
doi: 10.1108/MD-02-2019-0227. |
[24] |
B. Vahdani, D. Veysmoradi, N. Shekari and S. M. Mousavi,
Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair, Neural Comput. Appl., 30 (2018), 835-854.
doi: 10.1007/s00521-016-2696-7. |
[25] |
B. Vahdani, D. Veysmoradi, F. Noori and F. Mansour, Two-stage multi-objective location-routing-inventory model for humanitarian logistics network design under uncertainty, Int. J. Disast. Risk. Re., 27 (2018), 290-306. Google Scholar |
[26] |
H. J. Wang, L. J. Du and S. H. Ma,
Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake, Transport Research Part E: Logistics and Transportation Review, 69 (2014), 160-179.
doi: 10.1016/j.tre.2014.06.006. |
[27] |
J. Xu, Z. Wang, M. Zhang and Y. Tu,
A new model for a 72-h post-earthquake emergency logistics location-routing problem under a random fuzzy environment, Transportation Letters, 8 (2016), 270-285.
doi: 10.1080/19427867.2015.1126064. |
[28] |
M. Yahyaei and A. Bozorgi-Amiri,
Robust reliable humanitarian relief network design: An integration of shelter and supply facility location, Ann. Oper. Res., 283 (2019), 897-916.
doi: 10.1007/s10479-018-2758-6. |
[29] |
W. Yi and L. Özdamar,
A dynamic logistics coordination model for evacuation and support in disaster response activities, European J. Oper. Res., 179 (2007), 1177-1193.
doi: 10.1016/j.ejor.2005.03.077. |
[30] |
B. Zeng, M. Tong and X. Ma,
A new-structure grey Verhulst model: Development and performance comparison, Appl. Math. Model., 81 (2020), 522-537.
doi: 10.1016/j.apm.2020.01.014. |
[31] |
B. Zeng, M. Zhou, X. Liu and and Z. Zhang, Application of a new grey prediction model and grey average weakening buffer operator to forecast China's shale gas output, Energy Reports, 6 (2020), 1608-1618. Google Scholar |
[32] |
S. Zhang and H. Yi, Emergency material transportation considering the impact of secondary disasters, in Proceedings of the 2019 10th International Conference on E-business, Management and Economics, 2019,279–285.
doi: 10.1145/3345035.3345041. |
[33] |
S. W. Zhang, H. X. Guo, K. J. Zhu, S. W. Yu and J. L. Li,
Multistage assignment optimization for emergency rescue teams in the disaster chain, Knowledge-Based Systems, 137 (2017), 123-137.
doi: 10.1016/j.knosys.2017.09.024. |
[34] |
B. Zheng, Z. J. Ma and Y. F. Zhou, Bi-level model for dynamic location-transportation problem for post earthquake relief distribution, J. Systems & Management, 26 (2017), 326-337. Google Scholar |
[35] |
Y. Zhou and N. Chen, The LAP under facility disruptions during early post-earthquake rescue using PSO-GA hybrid algorithm, Fresen. Environ. Bull., 28 (2019), 9906-9914. Google Scholar |
[36] |
Y. F. Zhou, H. X. Yu, Z. Li and J. F. Su,
Robust optimization of a distribution network location-routing problem under carbon trading policies, IEEE Access, 8 (2020), 46288-46306.
doi: 10.1109/ACCESS.2020.2979259. |
[37] |
Y. Zhou, L. Yufeng and L. Zhi, A grey target group decision method with dual hesitant fuzzy information considering decision-maker's loss aversion, Sci. Programming, 2020 (2020), 8930387.
doi: 10.1155/2020/8930387. |
show all references
References:
[1] |
A. Afshar and A. Haghani,
Modeling integrated supply chain logistics in real-time large-scale disaster relief operations, Socio-Economic Plan. Sci., 46 (2012), 327-338.
doi: 10.1016/j.seps.2011.12.003. |
[2] |
J. F. Bard,
Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.
doi: 10.1007/BF00941574. |
[3] |
V. Bélanger, A. Ruiz and P. Soriano,
Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles, European J. Oper. Res., 272 (2019), 1-23.
doi: 10.1016/j.ejor.2018.02.055. |
[4] |
C. Blair,
The computational complexity of multi-level linear programs, Ann. Oper. Res., 34 (1992), 13-19.
doi: 10.1007/BF02098170. |
[5] |
A. Bozorgi-Amiri and M. Khorsi, A dynamic multi-objective location-routing model for relief logistic planning under uncertainty on demand, travel time, and cost parameters, The International Journal of Advanced Manufacturing Technology, 85 (2016), 1633-1648. Google Scholar |
[6] |
C. J. Cao, C. D. Li, Q. Yang, Y. Liu and T. Qu,
A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters, J. Cleaner Production, 174 (2018), 1422-1435.
doi: 10.1016/j.jclepro.2017.11.037. |
[7] |
A. Y. Chen and T. Y. Yu,
Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response, Transport Res. B. Meth., 91 (2016), 408-423.
doi: 10.1016/j.trb.2016.06.004. |
[8] |
Y. Dai, Z. J. Ma, D. L. Zhu and T. Fang, Fuzzy dynamic location-routing problem in post-earthquake delivery of relief materials, Chinese Journal of Management Science, 15 (2012), 60-70. Google Scholar |
[9] |
X. T. Deng, Complexity issues in bi-level linear programming, in Multilevel Optimization: Algorithms and Applications, Vol. 20, Kluwer Acad. Publ., Dordrecht, 1998,149–164.
doi: 10.1007/978-1-4613-0307-7_6. |
[10] |
M. Haghi, S. M. T. F. Ghomi and F. Jolai,
Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource, J. Cleaner Production, 154 (2017), 188-202.
doi: 10.1016/j.jclepro.2017.03.102. |
[11] |
H. Hu, X. Li, Y. Y. Zhang, C. J. Shang and S. C. Zhang,
Multi-objective location-routing model for hazardous material logistics with traffic restriction constraint in inter-city roads, Comput. Ind. Eng., 128 (2019), 861-876.
doi: 10.1016/j.cie.2018.10.044. |
[12] |
J. Jian, Y. Zhang, L. Jiang and J. Su, Coordination of supply chains with competing manufacturers considering fairness concerns, Complexity, 2020 (2020), 4372603.
doi: 10.1155/2020/4372603. |
[13] |
S. Li and K. L. Teo,
Post-disaster multi-period road network repair: Work scheduling and relief logistics optimization, Ann. Oper. Res., 283 (2019), 1345-1385.
doi: 10.1007/s10479-018-3037-2. |
[14] |
S. Li, Z. J. Ma and K. L. Teo, A new model for road network repair after natural disaster: Integrating logistics support scheduling with repair crew scheduling and routing activities, Comput. Ind. Eng., 145 (2020), 106506. Google Scholar |
[15] |
S. L. Li, Z. J. Ma, B. Zheng and Y. Dai, Fuzzy multi-objective location-multimodal transportation problem for relief delivery during the initial post-earthquake period, Chinese Journal of Management Science, 21 (2013), 144-151. Google Scholar |
[16] |
C. S. Liu, L. Luo, X. C. Zhou and F. H. Huang, Collaborative decision-making of relief allocation-transportation in early post-earthquake: Considering both fairness and efficiency, Control and Decision, 33 (2018), 2057-2063. Google Scholar |
[17] |
C. S. Liu, G. Kou, Y. Peng and F. E. Alsaadi, Location-routing problem for relief distribution in the early post-earthquake stage from the perspective of fairness, Sustainability, 11 (2019), 3420.
doi: 10.3390/su11123420. |
[18] |
R. Lotfian and M. Najafi,
Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model, Injury Prevention, 25 (2019), 264-272.
doi: 10.1136/injuryprev-2017-042657. |
[19] |
H. M. Rizeei, B. Pradhan and M. A. Saharkhiz, Allocation of emergency response centres in response to pluvial flooding-prone demand points using integrated multiple layer perceptron and maximum coverage location problem models, Int. J. Disast. Risk. Red., 38 (2019), 101205.
doi: 10.1016/j.ijdrr.2019.101205. |
[20] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Robust bi-level optimization of relief logistics operations, Appl. Math. Model., 56 (2018), 359-380.
doi: 10.1016/j.apm.2017.12.003. |
[21] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Emergency logistics planning under supply risk and demand uncertainty, Oper. Res., 20 (2020), 1437-1460.
doi: 10.1007/s12351-018-0376-3. |
[22] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[23] |
J. Su, Q. Bai, S. Sindakis, X Zhang and T Yang, Vulnerability of multinational corporation knowledge network facing resource loss, Management Decision, 2020.
doi: 10.1108/MD-02-2019-0227. |
[24] |
B. Vahdani, D. Veysmoradi, N. Shekari and S. M. Mousavi,
Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair, Neural Comput. Appl., 30 (2018), 835-854.
doi: 10.1007/s00521-016-2696-7. |
[25] |
B. Vahdani, D. Veysmoradi, F. Noori and F. Mansour, Two-stage multi-objective location-routing-inventory model for humanitarian logistics network design under uncertainty, Int. J. Disast. Risk. Re., 27 (2018), 290-306. Google Scholar |
[26] |
H. J. Wang, L. J. Du and S. H. Ma,
Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake, Transport Research Part E: Logistics and Transportation Review, 69 (2014), 160-179.
doi: 10.1016/j.tre.2014.06.006. |
[27] |
J. Xu, Z. Wang, M. Zhang and Y. Tu,
A new model for a 72-h post-earthquake emergency logistics location-routing problem under a random fuzzy environment, Transportation Letters, 8 (2016), 270-285.
doi: 10.1080/19427867.2015.1126064. |
[28] |
M. Yahyaei and A. Bozorgi-Amiri,
Robust reliable humanitarian relief network design: An integration of shelter and supply facility location, Ann. Oper. Res., 283 (2019), 897-916.
doi: 10.1007/s10479-018-2758-6. |
[29] |
W. Yi and L. Özdamar,
A dynamic logistics coordination model for evacuation and support in disaster response activities, European J. Oper. Res., 179 (2007), 1177-1193.
doi: 10.1016/j.ejor.2005.03.077. |
[30] |
B. Zeng, M. Tong and X. Ma,
A new-structure grey Verhulst model: Development and performance comparison, Appl. Math. Model., 81 (2020), 522-537.
doi: 10.1016/j.apm.2020.01.014. |
[31] |
B. Zeng, M. Zhou, X. Liu and and Z. Zhang, Application of a new grey prediction model and grey average weakening buffer operator to forecast China's shale gas output, Energy Reports, 6 (2020), 1608-1618. Google Scholar |
[32] |
S. Zhang and H. Yi, Emergency material transportation considering the impact of secondary disasters, in Proceedings of the 2019 10th International Conference on E-business, Management and Economics, 2019,279–285.
doi: 10.1145/3345035.3345041. |
[33] |
S. W. Zhang, H. X. Guo, K. J. Zhu, S. W. Yu and J. L. Li,
Multistage assignment optimization for emergency rescue teams in the disaster chain, Knowledge-Based Systems, 137 (2017), 123-137.
doi: 10.1016/j.knosys.2017.09.024. |
[34] |
B. Zheng, Z. J. Ma and Y. F. Zhou, Bi-level model for dynamic location-transportation problem for post earthquake relief distribution, J. Systems & Management, 26 (2017), 326-337. Google Scholar |
[35] |
Y. Zhou and N. Chen, The LAP under facility disruptions during early post-earthquake rescue using PSO-GA hybrid algorithm, Fresen. Environ. Bull., 28 (2019), 9906-9914. Google Scholar |
[36] |
Y. F. Zhou, H. X. Yu, Z. Li and J. F. Su,
Robust optimization of a distribution network location-routing problem under carbon trading policies, IEEE Access, 8 (2020), 46288-46306.
doi: 10.1109/ACCESS.2020.2979259. |
[37] |
Y. Zhou, L. Yufeng and L. Zhi, A grey target group decision method with dual hesitant fuzzy information considering decision-maker's loss aversion, Sci. Programming, 2020 (2020), 8930387.
doi: 10.1155/2020/8930387. |










Num. | Collection centers | Food(Units) | Daily necessities(Units) |
Ⅰ | Chengdu Military Airport | 200000 | 90000 |
Ⅱ | Shuangliu Airport | 800000 | 100000 |
Ⅲ | Chengdu North Railway Station | 1200000 | 130000 |
Num. | Collection centers | Food(Units) | Daily necessities(Units) |
Ⅰ | Chengdu Military Airport | 200000 | 90000 |
Ⅱ | Shuangliu Airport | 800000 | 100000 |
Ⅲ | Chengdu North Railway Station | 1200000 | 130000 |
Candidate temporary transfer facilities | Num | Affected area | Candidate temporary transfer facilities | Num. | Affected area | ||
Dujiangyan | (1) | ① | 800 | Pingwu | (10) | ② | 700 |
Maoxian | (2) | ① | 800 | Jiangyou | (11) | ② | 800 |
Pengzhou | (3) | ① | 800 | Deyang | (12) | ② | 1500 |
Wenchuan | (4) | ① | 500 | Mianyang | (13) | ② | 1500 |
Jiuzhaigou | (5) | ① | 1000 | Guanghan | (14) | ② | 1300 |
Chongzhou | (6) | ① | 800 | Guangyuan | (15) | ③ | 1500 |
Dayi | (7) | ① | 1200 | Qingchuan | (16) | ③ | 1000 |
Shifang | (8) | ② | 1000 | Wangcang | (17) | ③ | 1000 |
Beichuan | (9) | ② | 800 | Jiange | (18) | ③ | 1000 |
Candidate temporary transfer facilities | Num | Affected area | Candidate temporary transfer facilities | Num. | Affected area | ||
Dujiangyan | (1) | ① | 800 | Pingwu | (10) | ② | 700 |
Maoxian | (2) | ① | 800 | Jiangyou | (11) | ② | 800 |
Pengzhou | (3) | ① | 800 | Deyang | (12) | ② | 1500 |
Wenchuan | (4) | ① | 500 | Mianyang | (13) | ② | 1500 |
Jiuzhaigou | (5) | ① | 1000 | Guanghan | (14) | ② | 1300 |
Chongzhou | (6) | ① | 800 | Guangyuan | (15) | ③ | 1500 |
Dayi | (7) | ① | 1200 | Qingchuan | (16) | ③ | 1000 |
Shifang | (8) | ② | 1000 | Wangcang | (17) | ③ | 1000 |
Beichuan | (9) | ② | 800 | Jiange | (18) | ③ | 1000 |
Affected points | Num. | Affected area | Food(units) | Daily necessities(Units) |
Dujiangyan | 1 | ① | [224000, 336000] | [22400, 33600] |
Guankou | 2 | ① | [42400, 63600] | [4240, 6360] |
Qingchengshan | 3 | ① | [38880, 58320] | [3888, 5832] |
Zipingpu | 4 | ① | [35200, 52800] | [3520, 5280] |
Hongkou | 5 | ① | [38400, 57600] | [3840, 5760] |
Maoxian | 6 | ① | [173200, 259800] | [17320, 25980] |
Fushun | 7 | ① | [28800, 43200] | [2880, 4320] |
Feihong | 8 | ① | [30400, 45600] | [3040, 4560] |
Heihu | 9 | ① | [32000, 48000] | [3200, 4800] |
Taiping | 10 | ① | [25600, 38400] | [2560, 3840] |
Lixian | 11 | ① | [171200, 256800] | [17120, 25680] |
Putouxiang | 12 | ① | [25600, 38400] | [2560, 38400] |
Mukaxiang | 13 | ① | [16000, 24000] | [1600, 2400] |
Tonghuaxiang | 14 | ① | [38400, 57600] | [3840, 5760] |
Wenchuan | 15 | ① | [246800, 370200] | [24680, 37020] |
Yingxiu | 16 | ① | [32000, 48000] | [3200, 4800] |
Shuimo | 17 | ① | [28800, 43200] | [2880, 4320] |
Wolong | 18 | ① | [27200, 40800] | [2720, 4080] |
Yanmeng | 19 | ① | [27840, 41760] | [2784, 4176] |
Sanjiang | 20 | ① | [24640, 36960] | [2464, 3696] |
Xiaojin | 21 | ① | [20000, 30000] | [2000, 3000] |
Heishui | 22 | ① | [49600, 74400] | [4960, 7440] |
Songpan | 23 | ① | [19200, 28800] | [1920, 2880] |
Anxian | 24 | ② | [191600, 287400] | [19160, 28740] |
Xiushui | 25 | ② | [28480, 42720] | [2848, 4272] |
Baolin | 26 | ② | [33600, 50400] | [3360, 5040] |
Gaochuan | 27 | ② | [18240, 27360] | [1824, 2736] |
Shifang | 28 | ② | [192000, 288000] | [19200, 28800] |
Luoshui | 29 | ② | [30400, 45600] | [3040, 4560] |
Shuangsheng | 30 | ② | [41600, 62400] | [4160, 6240] |
Yinghua | 31 | ② | [38400, 57600] | [3840, 5760] |
Mianzhu | 32 | ② | [232400, 348600] | [23240, 34860] |
Jiannan | 33 | ② | [28160, 42240] | [2816, 4224] |
Mianyuan | 34 | ② | [24960, 37440] | [2496, 3744] |
Hanwang | 35 | ② | [21760, 32640] | [2176, 3264] |
Beichuan | 36 | ② | [242800, 364200] | [24280, 36420] |
Yong'an | 37 | ② | [31040, 46560] | [3104, 4656] |
Yongchang | 38 | ② | [33600, 50400] | [3360, 5040] |
Kaiping | 39 | ② | [30400, 45600] | [3040, 4560] |
Luojiang | 40 | ② | [69600, 104400] | [6960, 10440] |
Zhongjiang | 41 | ② | [84800, 127200] | [8480, 12720] |
Santai | 42 | ② | [109600, 164400] | [10960, 16440] |
Yanting | 43 | ② | [110000, 165000] | [11000, 16500] |
Zitong | 44 | ② | [125200, 187800] | [12520, 18780] |
Deyang | 45 | ② | [173760, 260640] | [17376, 26064] |
Mianyang | 46 | ② | [184000, 276000] | [18400, 27600] |
Guangyuan | 47 | ③ | [75040, 112560] | [7504, 11256] |
Qingchuan | 48 | ③ | [216400, 324600] | [21640, 32460] |
Walixiang | 49 | ③ | [32960, 49440] | [3296, 4944] |
Banqiaoxiang | 50 | ③ | [39040, 58560] | [3904, 5856] |
Qimaxiang | 51 | ③ | [36000, 54000] | [3600, 5400] |
Yingpanxiang | 52 | ③ | [32800, 49200] | [3280, 4920] |
Lizhou | 53 | ③ | [71200, 106800] | [7120, 10680] |
Chaotian | 54 | ③ | [66400, 99600] | [6640, 9960] |
Cangxi | 55 | ③ | [125200, 187800] | [12520, 18780] |
Jiange | 56 | ③ | [62000, 93000] | [6200, 9300] |
Yuanba | 57 | ③ | [71200, 106800] | [7120, 10680] |
Affected points | Num. | Affected area | Food(units) | Daily necessities(Units) |
Dujiangyan | 1 | ① | [224000, 336000] | [22400, 33600] |
Guankou | 2 | ① | [42400, 63600] | [4240, 6360] |
Qingchengshan | 3 | ① | [38880, 58320] | [3888, 5832] |
Zipingpu | 4 | ① | [35200, 52800] | [3520, 5280] |
Hongkou | 5 | ① | [38400, 57600] | [3840, 5760] |
Maoxian | 6 | ① | [173200, 259800] | [17320, 25980] |
Fushun | 7 | ① | [28800, 43200] | [2880, 4320] |
Feihong | 8 | ① | [30400, 45600] | [3040, 4560] |
Heihu | 9 | ① | [32000, 48000] | [3200, 4800] |
Taiping | 10 | ① | [25600, 38400] | [2560, 3840] |
Lixian | 11 | ① | [171200, 256800] | [17120, 25680] |
Putouxiang | 12 | ① | [25600, 38400] | [2560, 38400] |
Mukaxiang | 13 | ① | [16000, 24000] | [1600, 2400] |
Tonghuaxiang | 14 | ① | [38400, 57600] | [3840, 5760] |
Wenchuan | 15 | ① | [246800, 370200] | [24680, 37020] |
Yingxiu | 16 | ① | [32000, 48000] | [3200, 4800] |
Shuimo | 17 | ① | [28800, 43200] | [2880, 4320] |
Wolong | 18 | ① | [27200, 40800] | [2720, 4080] |
Yanmeng | 19 | ① | [27840, 41760] | [2784, 4176] |
Sanjiang | 20 | ① | [24640, 36960] | [2464, 3696] |
Xiaojin | 21 | ① | [20000, 30000] | [2000, 3000] |
Heishui | 22 | ① | [49600, 74400] | [4960, 7440] |
Songpan | 23 | ① | [19200, 28800] | [1920, 2880] |
Anxian | 24 | ② | [191600, 287400] | [19160, 28740] |
Xiushui | 25 | ② | [28480, 42720] | [2848, 4272] |
Baolin | 26 | ② | [33600, 50400] | [3360, 5040] |
Gaochuan | 27 | ② | [18240, 27360] | [1824, 2736] |
Shifang | 28 | ② | [192000, 288000] | [19200, 28800] |
Luoshui | 29 | ② | [30400, 45600] | [3040, 4560] |
Shuangsheng | 30 | ② | [41600, 62400] | [4160, 6240] |
Yinghua | 31 | ② | [38400, 57600] | [3840, 5760] |
Mianzhu | 32 | ② | [232400, 348600] | [23240, 34860] |
Jiannan | 33 | ② | [28160, 42240] | [2816, 4224] |
Mianyuan | 34 | ② | [24960, 37440] | [2496, 3744] |
Hanwang | 35 | ② | [21760, 32640] | [2176, 3264] |
Beichuan | 36 | ② | [242800, 364200] | [24280, 36420] |
Yong'an | 37 | ② | [31040, 46560] | [3104, 4656] |
Yongchang | 38 | ② | [33600, 50400] | [3360, 5040] |
Kaiping | 39 | ② | [30400, 45600] | [3040, 4560] |
Luojiang | 40 | ② | [69600, 104400] | [6960, 10440] |
Zhongjiang | 41 | ② | [84800, 127200] | [8480, 12720] |
Santai | 42 | ② | [109600, 164400] | [10960, 16440] |
Yanting | 43 | ② | [110000, 165000] | [11000, 16500] |
Zitong | 44 | ② | [125200, 187800] | [12520, 18780] |
Deyang | 45 | ② | [173760, 260640] | [17376, 26064] |
Mianyang | 46 | ② | [184000, 276000] | [18400, 27600] |
Guangyuan | 47 | ③ | [75040, 112560] | [7504, 11256] |
Qingchuan | 48 | ③ | [216400, 324600] | [21640, 32460] |
Walixiang | 49 | ③ | [32960, 49440] | [3296, 4944] |
Banqiaoxiang | 50 | ③ | [39040, 58560] | [3904, 5856] |
Qimaxiang | 51 | ③ | [36000, 54000] | [3600, 5400] |
Yingpanxiang | 52 | ③ | [32800, 49200] | [3280, 4920] |
Lizhou | 53 | ③ | [71200, 106800] | [7120, 10680] |
Chaotian | 54 | ③ | [66400, 99600] | [6640, 9960] |
Cangxi | 55 | ③ | [125200, 187800] | [12520, 18780] |
Jiange | 56 | ③ | [62000, 93000] | [6200, 9300] |
Yuanba | 57 | ③ | [71200, 106800] | [7120, 10680] |
Num. | Transportation modes | Departure point( |
Destination point( |
||||
1 | HC | 8 | 2 | 2 | 0.15 | 100 | 0 |
2 | HC | 8 | 2 | 4 | 0.18 | 100 | 0 |
3 | HC | 8 | 2 | 9 | 0.43 | 100 | 0 |
4 | HC | 8 | 2 | 16 | 0.47 | 100 | 0 |
5 | R | 8.2 | 1 | 5 | 0.32 | 150 | 6 |
6 | R | 9.3 | 1 | 13 | 0.32 | 150 | 6 |
7 | R | 9 | 1 | 14 | 0.23 | 170 | 6 |
8 | R | 10.2 | 1 | 15 | 0.42 | 170 | 6 |
9 | A | 8.2 | 3 | 11 | 3 | 800 | 4 |
10 | A | 8.8 | 3 | 12 | 0.9 | 800 | 4 |
11 | A | 9 | 3 | 13 | 1.8 | 800 | 4 |
12 | A | 8.5 | 3 | 14 | 0.6 | 800 | 4 |
13 | A | 8.7 | 3 | 15 | 6.6 | 800 | 4 |
14 | HC | 8 | 1 | 1 | [1.60, 2.40] | 80 | 0 |
15 | HC | 8 | 1 | 3 | [1.50, 2.26] | 80 | 0 |
16 | HC | 8 | 1 | 12 | [1.95, 2.93] | 80 | 0 |
17 | HC | 8 | 1 | 13 | [3.01, 4.51] | 80 | 0 |
18 | HC | 8 | 1 | 11 | [5.09, 7.63] | 80 | 0 |
19 | HC | 8 | 1 | 8 | [1.95, 2.93] | 80 | 0 |
20 | HC | 8 | 1 | 14 | [2.45, 3.67] | 90 | 0 |
21 | HC | 8 | 1 | 15 | [6.77, 10.15] | 90 | 0 |
22 | HC | 8 | 1 | 16 | [9.92, 14.88] | 90 | 0 |
23 | HC | 8 | 1 | 18 | [6.53, 9.79] | 90 | 0 |
24 | HC | 8 | 1 | 5 | [18.88, 28.32] | 90 | 0 |
25 | HC | 8 | 1 | 6 | [2.08, 3.12] | 90 | 0 |
26 | HC | 8 | 1 | 7 | [2.08, 3.12] | 90 | 0 |
27 | HC | 8 | 1 | 10 | [13.44, 20.16] | 90 | 0 |
28 | HC | 8 | 1 | 17 | [9.68, 14.52] | 85 | 0 |
29 | HC | 8 | 2 | 1 | [1.60, 2.40] | 85 | 0 |
30 | HC | 8 | 2 | 3 | [1.52, 2.28] | 85 | 0 |
31 | HC | 8 | 2 | 12 | [1.92, 2.88] | 85 | 0 |
32 | HC | 8 | 2 | 13 | [3.04, 4.56] | 85 | 0 |
33 | HC | 8 | 2 | 11 | [5.28, 7.92] | 85 | 0 |
34 | HC | 8 | 2 | 8 | [2.27, 3.41] | 85 | 0 |
35 | HC | 8 | 2 | 14 | [2.77, 4.15] | 85 | 0 |
36 | HC | 8 | 2 | 15 | [7.09, 10.63] | 85 | 0 |
37 | HC | 8 | 2 | 16 | [10.24, 15.36] | 85 | 0 |
38 | HC | 8 | 2 | 18 | [6.85, 10.27] | 85 | 0 |
39 | HC | 8 | 2 | 5 | [19.20, 28.80] | 80 | 0 |
40 | HC | 8 | 2 | 6 | [2.40, 3.60] | 80 | 0 |
41 | HC | 8 | 2 | 7 | [2.40, 3.60] | 80 | 0 |
42 | HC | 8 | 2 | 10 | [13.76, 20.64] | 80 | 0 |
43 | HC | 8 | 2 | 17 | [10.00, 15.00] | 80 | 0 |
44 | HC | 8 | 3 | 1 | [1.36, 2.04] | 90 | 0 |
45 | HC | 8 | 3 | 3 | [1.26, 1.90] | 90 | 0 |
46 | HC | 8 | 3 | 12 | [1.71, 2.57] | 90 | 0 |
47 | HC | 8 | 3 | 13 | [2.77, 4.15] | 90 | 0 |
48 | HC | 8 | 3 | 11 | [4.85, 7.27] | 90 | 0 |
49 | HC | 8 | 3 | 8 | [1.71, 2.57] | 90 | 0 |
50 | HC | 8 | 3 | 14 | [2.21, 3.31] | 90 | 0 |
51 | HC | 8 | 3 | 15 | [6.53, 9.79] | 90 | 0 |
52 | HC | 8 | 3 | 16 | [9.68, 14.52] | 90 | 0 |
53 | HC | 8 | 3 | 18 | [6.29, 9.43] | 85 | 0 |
54 | HC | 8 | 3 | 5 | [18.64, 27.96] | 85 | 0 |
55 | HC | 8 | 3 | 6 | [1.84, 2.76] | 85 | 0 |
56 | HC | 8 | 3 | 7 | [1.84, 2.76] | 85 | 0 |
57 | HC | 8 | 3 | 10 | [13.20, 19.80] | 85 | 0 |
58 | HC | 8 | 3 | 17 | [9.44, 14.16] | 85 | 0 |
Num. | Transportation modes | Departure point( |
Destination point( |
||||
1 | HC | 8 | 2 | 2 | 0.15 | 100 | 0 |
2 | HC | 8 | 2 | 4 | 0.18 | 100 | 0 |
3 | HC | 8 | 2 | 9 | 0.43 | 100 | 0 |
4 | HC | 8 | 2 | 16 | 0.47 | 100 | 0 |
5 | R | 8.2 | 1 | 5 | 0.32 | 150 | 6 |
6 | R | 9.3 | 1 | 13 | 0.32 | 150 | 6 |
7 | R | 9 | 1 | 14 | 0.23 | 170 | 6 |
8 | R | 10.2 | 1 | 15 | 0.42 | 170 | 6 |
9 | A | 8.2 | 3 | 11 | 3 | 800 | 4 |
10 | A | 8.8 | 3 | 12 | 0.9 | 800 | 4 |
11 | A | 9 | 3 | 13 | 1.8 | 800 | 4 |
12 | A | 8.5 | 3 | 14 | 0.6 | 800 | 4 |
13 | A | 8.7 | 3 | 15 | 6.6 | 800 | 4 |
14 | HC | 8 | 1 | 1 | [1.60, 2.40] | 80 | 0 |
15 | HC | 8 | 1 | 3 | [1.50, 2.26] | 80 | 0 |
16 | HC | 8 | 1 | 12 | [1.95, 2.93] | 80 | 0 |
17 | HC | 8 | 1 | 13 | [3.01, 4.51] | 80 | 0 |
18 | HC | 8 | 1 | 11 | [5.09, 7.63] | 80 | 0 |
19 | HC | 8 | 1 | 8 | [1.95, 2.93] | 80 | 0 |
20 | HC | 8 | 1 | 14 | [2.45, 3.67] | 90 | 0 |
21 | HC | 8 | 1 | 15 | [6.77, 10.15] | 90 | 0 |
22 | HC | 8 | 1 | 16 | [9.92, 14.88] | 90 | 0 |
23 | HC | 8 | 1 | 18 | [6.53, 9.79] | 90 | 0 |
24 | HC | 8 | 1 | 5 | [18.88, 28.32] | 90 | 0 |
25 | HC | 8 | 1 | 6 | [2.08, 3.12] | 90 | 0 |
26 | HC | 8 | 1 | 7 | [2.08, 3.12] | 90 | 0 |
27 | HC | 8 | 1 | 10 | [13.44, 20.16] | 90 | 0 |
28 | HC | 8 | 1 | 17 | [9.68, 14.52] | 85 | 0 |
29 | HC | 8 | 2 | 1 | [1.60, 2.40] | 85 | 0 |
30 | HC | 8 | 2 | 3 | [1.52, 2.28] | 85 | 0 |
31 | HC | 8 | 2 | 12 | [1.92, 2.88] | 85 | 0 |
32 | HC | 8 | 2 | 13 | [3.04, 4.56] | 85 | 0 |
33 | HC | 8 | 2 | 11 | [5.28, 7.92] | 85 | 0 |
34 | HC | 8 | 2 | 8 | [2.27, 3.41] | 85 | 0 |
35 | HC | 8 | 2 | 14 | [2.77, 4.15] | 85 | 0 |
36 | HC | 8 | 2 | 15 | [7.09, 10.63] | 85 | 0 |
37 | HC | 8 | 2 | 16 | [10.24, 15.36] | 85 | 0 |
38 | HC | 8 | 2 | 18 | [6.85, 10.27] | 85 | 0 |
39 | HC | 8 | 2 | 5 | [19.20, 28.80] | 80 | 0 |
40 | HC | 8 | 2 | 6 | [2.40, 3.60] | 80 | 0 |
41 | HC | 8 | 2 | 7 | [2.40, 3.60] | 80 | 0 |
42 | HC | 8 | 2 | 10 | [13.76, 20.64] | 80 | 0 |
43 | HC | 8 | 2 | 17 | [10.00, 15.00] | 80 | 0 |
44 | HC | 8 | 3 | 1 | [1.36, 2.04] | 90 | 0 |
45 | HC | 8 | 3 | 3 | [1.26, 1.90] | 90 | 0 |
46 | HC | 8 | 3 | 12 | [1.71, 2.57] | 90 | 0 |
47 | HC | 8 | 3 | 13 | [2.77, 4.15] | 90 | 0 |
48 | HC | 8 | 3 | 11 | [4.85, 7.27] | 90 | 0 |
49 | HC | 8 | 3 | 8 | [1.71, 2.57] | 90 | 0 |
50 | HC | 8 | 3 | 14 | [2.21, 3.31] | 90 | 0 |
51 | HC | 8 | 3 | 15 | [6.53, 9.79] | 90 | 0 |
52 | HC | 8 | 3 | 16 | [9.68, 14.52] | 90 | 0 |
53 | HC | 8 | 3 | 18 | [6.29, 9.43] | 85 | 0 |
54 | HC | 8 | 3 | 5 | [18.64, 27.96] | 85 | 0 |
55 | HC | 8 | 3 | 6 | [1.84, 2.76] | 85 | 0 |
56 | HC | 8 | 3 | 7 | [1.84, 2.76] | 85 | 0 |
57 | HC | 8 | 3 | 10 | [13.20, 19.80] | 85 | 0 |
58 | HC | 8 | 3 | 17 | [9.44, 14.16] | 85 | 0 |
Depart | Destin | Depart | Destin | ||||||
ure | ation | ure | ation | ||||||
Num. | point | point | Num. | point | point | ||||
( |
( |
( |
( |
||||||
1 | 1 | 1 | 0 | 40 | 124 | 10 | 45 | [9.36, 14.04] | 38 |
2 | 1 | 2 | [0.32, 0.48] | 40 | 125 | 10 | 46 | [8.69, 13.03] | 38 |
3 | 1 | 3 | [0.70, 1.06] | 40 | 126 | 11 | 24 | [1.89, 2.83] | 38 |
4 | 1 | 4 | [0.96, 1.44] | 40 | 127 | 11 | 25 | [2.45, 3.67] | 38 |
5 | 1 | 5 | [1.41, 2.11] | 40 | 128 | 11 | 26 | [1.89, 2.83] | 39 |
6 | 1 | 21 | [10.40, 15.60] | 38 | 129 | 11 | 27 | [3.81, 5.71] | 39 |
7 | 2 | 6 | [0.00, 0.00] | 38 | 130 | 11 | 28 | [2.77, 4.15] | 39 |
8 | 2 | 7 | [0.22, 0.34] | 38 | 131 | 11 | 29 | [3.01, 4.51] | 39 |
9 | 2 | 8 | [0.29, 0.43] | 38 | 132 | 11 | 30 | [2.64, 3.96] | 39 |
10 | 2 | 9 | [0.42, 0.62] | 38 | 133 | 11 | 31 | [3.36, 5.04] | 39 |
11 | 2 | 10 | [0.18, 0.26] | 38 | 134 | 11 | 32 | [2.48, 3.72] | 39 |
12 | 2 | 11 | [6.56, 9.84] | 35 | 135 | 11 | 33 | [2.56, 3.84] | 39 |
13 | 2 | 12 | [7.01, 10.51] | 35 | 136 | 11 | 34 | [2.75, 4.13] | 39 |
14 | 2 | 13 | [4.96, 7.44] | 35 | 137 | 11 | 35 | [2.88, 4.32] | 39 |
15 | 2 | 14 | [4.16, 6.24] | 35 | 138 | 11 | 40 | [2.40, 3.60] | 39 |
16 | 2 | 15 | [11.06, 16.58] | 35 | 139 | 11 | 41 | [4.00, 6.00] | 40 |
17 | 2 | 16 | [7.86, 11.78] | 35 | 140 | 11 | 42 | [2.48, 3.72] | 40 |
18 | 2 | 17 | [9.78, 14.66] | 35 | 141 | 11 | 43 | [4.19, 6.29] | 40 |
19 | 2 | 18 | [9.58, 14.38] | 43 | 142 | 11 | 44 | [3.01, 4.51] | 40 |
20 | 2 | 19 | [11.38, 17.06] | 43 | 143 | 11 | 45 | [2.40, 3.60] | 40 |
21 | 2 | 20 | [10.69, 16.03] | 43 | 144 | 11 | 46 | [1.65, 2.47] | 38 |
22 | 2 | 22 | [7.52, 11.28] | 43 | 145 | 12 | 24 | [1.63, 2.45] | 38 |
23 | 2 | 23 | [7.22, 10.82] | 43 | 146 | 12 | 25 | [2.24, 3.36] | 38 |
24 | 3 | 1 | [1.33, 1.99] | 43 | 147 | 12 | 26 | [1.63, 2.45] | 38 |
25 | 3 | 2 | [1.65, 2.47] | 43 | 148 | 12 | 27 | [3.60, 5.40] | 38 |
26 | 3 | 3 | [2.13, 3.19] | 43 | 149 | 12 | 28 | [1.09, 1.63] | 38 |
27 | 3 | 4 | [2.13, 3.19] | 43 | 150 | 12 | 29 | [1.60, 2.40] | 35 |
28 | 3 | 5 | [2.67, 4.01] | 43 | 151 | 12 | 30 | [1.12, 1.68] | 35 |
29 | 3 | 21 | [11.36, 17.04] | 38 | 152 | 12 | 31 | [2.00, 3.00] | 35 |
30 | 4 | 6 | [2.61, 3.91] | 38 | 153 | 12 | 32 | [1.44, 2.16] | 35 |
31 | 4 | 7 | [10.61, 15.91] | 38 | 154 | 12 | 33 | [1.60, 2.40] | 35 |
32 | 4 | 8 | [4.16, 6.24] | 38 | 155 | 12 | 34 | [2.08, 3.12] | 35 |
33 | 4 | 9 | [4.53, 6.79] | 38 | 156 | 12 | 35 | [1.84, 2.76] | 35 |
34 | 4 | 10 | [4.35, 6.53] | 38 | 157 | 12 | 40 | [0.93, 1.39] | 43 |
35 | 4 | 11 | [5.04, 7.56] | 38 | 158 | 12 | 41 | [2.03, 3.05] | 43 |
36 | 4 | 12 | [5.20, 7.80] | 39 | 159 | 12 | 42 | [2.85, 4.27] | 43 |
37 | 4 | 13 | [3.60, 5.40] | 39 | 160 | 12 | 43 | [4.67, 7.01] | 43 |
38 | 4 | 14 | [3.76, 5.64] | 39 | 161 | 12 | 44 | [3.52, 5.28] | 43 |
39 | 4 | 15 | 0 | 39 | 162 | 12 | 45 | 0 | 43 |
40 | 4 | 16 | [4.24, 6.36] | 39 | 163 | 12 | 46 | [1.55, 2.33] | 43 |
41 | 4 | 17 | [5.12, 7.68] | 39 | 164 | 13 | 24 | [0.67, 1.01] | 43 |
42 | 4 | 18 | [5.28, 7.92] | 39 | 165 | 13 | 25 | [1.23, 1.85] | 43 |
43 | 4 | 19 | [0.32, 0.48] | 39 | 166 | 13 | 26 | [1.01, 1.51] | 43 |
44 | 4 | 20 | [5.76, 8.64] | 39 | 167 | 13 | 27 | [2.59, 3.89] | 38 |
45 | 4 | 22 | [9.84, 14.76] | 39 | 168 | 13 | 28 | [1.81, 2.71] | 38 |
46 | 4 | 23 | [9.60, 14.40] | 39 | 169 | 13 | 29 | [2.08, 3.12] | 38 |
47 | 5 | 1 | [18.61, 27.91] | 40 | 170 | 13 | 30 | [1.68, 2.52] | 38 |
48 | 5 | 2 | [18.85, 28.27] | 40 | 171 | 13 | 31 | [2.40, 3.60] | 38 |
49 | 5 | 3 | [18.99, 28.49] | 40 | 172 | 13 | 32 | [1.52, 2.28] | 38 |
50 | 5 | 4 | [19.73, 29.59] | 40 | 173 | 13 | 33 | [1.68, 2.52] | 38 |
51 | 5 | 5 | [19.78, 29.66] | 40 | 174 | 13 | 34 | [1.52, 2.28] | 39 |
52 | 5 | 6 | [15.20, 22.80] | 38 | 175 | 13 | 35 | [1.95, 2.93] | 39 |
53 | 5 | 7 | [22.21, 33.31] | 38 | 176 | 13 | 40 | [0.99, 1.49] | 39 |
54 | 5 | 8 | [13.38, 20.06] | 38 | 177 | 13 | 41 | [2.88, 4.32] | 39 |
55 | 5 | 9 | [13.20, 19.80] | 38 | 178 | 13 | 42 | [2.08, 3.12] | 39 |
56 | 5 | 10 | [13.14, 19.70] | 38 | 179 | 13 | 43 | [3.81, 5.71] | 39 |
57 | 5 | 11 | [21.44, 32.16] | 38 | 180 | 13 | 44 | [2.56, 3.84] | 39 |
58 | 5 | 12 | [22.72, 34.08] | 35 | 181 | 13 | 45 | [1.55, 2.33] | 39 |
59 | 5 | 13 | [22.56, 33.84] | 35 | 182 | 13 | 46 | 0 | 39 |
60 | 5 | 14 | [22.72, 34.08] | 35 | 183 | 14 | 24 | [2.08, 3.12] | 39 |
61 | 5 | 15 | [17.60, 26.40] | 35 | 184 | 14 | 25 | [2.64, 3.96] | 39 |
62 | 5 | 16 | [21.12, 31.68] | 35 | 185 | 14 | 26 | [2.00, 3.00] | 40 |
63 | 5 | 17 | [22.72, 34.08] | 35 | 186 | 14 | 27 | [4.00, 6.00] | 40 |
64 | 5 | 18 | [22.56, 33.84] | 35 | 187 | 14 | 28 | [1.04, 1.56] | 40 |
65 | 5 | 19 | [19.04, 28.56] | 43 | 188 | 14 | 29 | [1.49, 2.23] | 40 |
66 | 5 | 20 | [24.32, 36.48] | 43 | 189 | 14 | 30 | [1.15, 1.73] | 40 |
67 | 5 | 21 | [16.00, 24.00] | 43 | 190 | 14 | 31 | [1.87, 2.81] | 38 |
68 | 5 | 22 | [17.92, 26.88] | 43 | 191 | 14 | 32 | [1.68, 2.52] | 38 |
69 | 5 | 23 | [8.00, 12.00] | 43 | 192 | 14 | 33 | [1.84, 2.76] | 38 |
70 | 6 | 1 | [1.81, 2.71] | 43 | 193 | 14 | 34 | [2.53, 3.79] | 38 |
71 | 6 | 2 | [1.92, 2.88] | 43 | 194 | 14 | 35 | [2.11, 3.17] | 38 |
72 | 6 | 3 | [1.39, 2.09] | 43 | 195 | 14 | 40 | [1.55, 2.33] | 38 |
73 | 6 | 4 | [2.40, 3.60] | 43 | 196 | 14 | 41 | [2.61, 3.91] | 35 |
74 | 6 | 5 | [2.99, 4.49] | 43 | 197 | 14 | 42 | [3.20, 4.80] | 35 |
75 | 6 | 21 | [11.44, 17.16] | 38 | 198 | 14 | 43 | [5.04, 7.56] | 35 |
76 | 6 | 22 | [16.00, 24.00] | 38 | 199 | 14 | 44 | [3.89, 5.83] | 35 |
77 | 6 | 23 | [16.00, 24.00] | 38 | 200 | 14 | 45 | [0.91, 1.37] | 35 |
78 | 7 | 1 | [2.03, 3.05] | 38 | 201 | 14 | 46 | [1.92, 2.88] | 35 |
79 | 7 | 2 | [2.16, 3.24] | 38 | 202 | 15 | 47 | 0 | 35 |
80 | 7 | 3 | [1.60, 2.40] | 38 | 203 | 15 | 48 | [5.12, 7.68] | 43 |
81 | 7 | 4 | [2.67, 4.01] | 38 | 204 | 15 | 49 | [5.39, 8.09] | 43 |
82 | 7 | 5 | [3.20, 4.80] | 39 | 205 | 15 | 50 | [4.40, 6.60] | 43 |
83 | 7 | 21 | [11.68, 17.52] | 39 | 206 | 15 | 51 | [4.59, 6.89] | 43 |
84 | 8 | 24 | [1.92, 2.88] | 39 | 207 | 15 | 52 | [3.63, 5.45] | 43 |
85 | 8 | 25 | [2.26, 3.38] | 39 | 208 | 15 | 53 | [0.08, 0.12] | 43 |
86 | 8 | 26 | [1.33, 1.99] | 39 | 209 | 15 | 54 | [1.84, 2.76] | 43 |
87 | 8 | 27 | [3.30, 4.94] | 39 | 210 | 15 | 55 | [3.57, 5.35] | 43 |
88 | 8 | 28 | 0 | 39 | 211 | 15 | 56 | [1.28, 1.92] | 43 |
89 | 8 | 29 | [0.83, 1.25] | 39 | 212 | 15 | 57 | [1.17, 1.75] | 43 |
90 | 8 | 30 | [0.48, 0.72] | 39 | 213 | 16 | 47 | [0.37, 0.55] | 38 |
91 | 8 | 31 | [1.20, 1.80] | 39 | 214 | 16 | 48 | 0 | 38 |
92 | 8 | 32 | [1.01, 1.51] | 39 | 215 | 16 | 49 | [0.88, 1.32] | 38 |
93 | 8 | 33 | [1.17, 1.75] | 40 | 216 | 16 | 50 | [0.72, 1.08] | 38 |
94 | 8 | 34 | [1.79, 2.69] | 40 | 217 | 16 | 51 | [1.01, 1.51] | 38 |
95 | 8 | 35 | [1.41, 2.11] | 40 | 218 | 16 | 52 | [1.60, 2.40] | 38 |
96 | 8 | 40 | [1.94, 2.90] | 40 | 219 | 16 | 53 | [5.09, 7.63] | 38 |
97 | 8 | 41 | [3.31, 4.97] | 40 | 220 | 16 | 54 | [6.66, 9.98] | 39 |
98 | 8 | 42 | [3.07, 4.61] | 38 | 221 | 16 | 55 | [6.75, 10.13] | 39 |
99 | 8 | 43 | [4.88, 7.32] | 38 | 222 | 16 | 56 | [4.53, 6.79] | 39 |
100 | 8 | 44 | [3.73, 5.59] | 38 | 223 | 16 | 57 | [5.60, 8.40] | 39 |
101 | 8 | 45 | [1.36, 2.04] | 38 | 224 | 17 | 47 | [2.16, 3.24] | 39 |
102 | 8 | 46 | [1.76, 2.64] | 38 | 225 | 17 | 48 | [6.48, 9.72] | 39 |
103 | 9 | 36 | [1.60, 2.40] | 38 | 226 | 17 | 49 | [6.56, 9.84] | 39 |
104 | 9 | 37 | [0.93, 1.39] | 35 | 227 | 17 | 50 | [5.79, 8.69] | 39 |
105 | 9 | 38 | [1.55, 2.33] | 35 | 228 | 17 | 51 | [5.97, 8.95] | 39 |
106 | 9 | 39 | [2.03, 3.05] | 35 | 229 | 17 | 52 | [5.01, 7.51] | 39 |
107 | 10 | 24 | [8.67, 13.01] | 35 | 230 | 17 | 53 | [2.29, 3.43] | 39 |
108 | 10 | 25 | [9.44, 14.16] | 35 | 231 | 17 | 54 | [4.00, 6.00] | 40 |
109 | 10 | 26 | [8.85, 13.27] | 35 | 232 | 17 | 55 | [3.55, 5.33] | 40 |
110 | 10 | 27 | [10.80, 16.20] | 35 | 233 | 17 | 56 | [2.83, 4.25] | 40 |
111 | 10 | 28 | [9.68, 14.52] | 43 | 234 | 17 | 57 | [1.20, 1.80] | 40 |
112 | 10 | 28 | [9.92, 14.88] | 43 | 235 | 18 | 47 | [1.49, 2.23] | 40 |
113 | 10 | 30 | [9.55, 14.33] | 43 | 236 | 18 | 48 | [4.53, 6.79] | 38 |
114 | 10 | 31 | [10.27, 15.41] | 43 | 237 | 18 | 49 | [4.40, 6.60] | 38 |
115 | 10 | 32 | [9.39, 14.09] | 43 | 238 | 18 | 50 | [4.13, 6.19] | 38 |
116 | 10 | 33 | [9.52, 14.28] | 43 | 239 | 18 | 51 | [4.32, 6.48] | 38 |
117 | 10 | 34 | [9.71, 14.57] | 43 | 240 | 18 | 52 | [3.36, 5.04] | 38 |
118 | 10 | 35 | [9.79, 14.69] | 43 | 241 | 18 | 53 | [1.47, 2.21] | 38 |
119 | 10 | 40 | [8.80, 13.20] | 43 | 242 | 18 | 54 | [2.82, 4.22] | 35 |
120 | 10 | 41 | [11.01, 16.51] | 43 | 243 | 18 | 55 | [2.69, 4.03] | 35 |
121 | 10 | 42 | [9.33, 13.99] | 38 | 244 | 18 | 56 | 0 | 35 |
122 | 10 | 43 | [11.15, 16.73] | 38 | 245 | 18 | 57 | [1.55, 2.33] | 35 |
123 | 10 | 44 | [9.89, 14.83] | 38 | - | - | - | - | - |
Depart | Destin | Depart | Destin | ||||||
ure | ation | ure | ation | ||||||
Num. | point | point | Num. | point | point | ||||
( |
( |
( |
( |
||||||
1 | 1 | 1 | 0 | 40 | 124 | 10 | 45 | [9.36, 14.04] | 38 |
2 | 1 | 2 | [0.32, 0.48] | 40 | 125 | 10 | 46 | [8.69, 13.03] | 38 |
3 | 1 | 3 | [0.70, 1.06] | 40 | 126 | 11 | 24 | [1.89, 2.83] | 38 |
4 | 1 | 4 | [0.96, 1.44] | 40 | 127 | 11 | 25 | [2.45, 3.67] | 38 |
5 | 1 | 5 | [1.41, 2.11] | 40 | 128 | 11 | 26 | [1.89, 2.83] | 39 |
6 | 1 | 21 | [10.40, 15.60] | 38 | 129 | 11 | 27 | [3.81, 5.71] | 39 |
7 | 2 | 6 | [0.00, 0.00] | 38 | 130 | 11 | 28 | [2.77, 4.15] | 39 |
8 | 2 | 7 | [0.22, 0.34] | 38 | 131 | 11 | 29 | [3.01, 4.51] | 39 |
9 | 2 | 8 | [0.29, 0.43] | 38 | 132 | 11 | 30 | [2.64, 3.96] | 39 |
10 | 2 | 9 | [0.42, 0.62] | 38 | 133 | 11 | 31 | [3.36, 5.04] | 39 |
11 | 2 | 10 | [0.18, 0.26] | 38 | 134 | 11 | 32 | [2.48, 3.72] | 39 |
12 | 2 | 11 | [6.56, 9.84] | 35 | 135 | 11 | 33 | [2.56, 3.84] | 39 |
13 | 2 | 12 | [7.01, 10.51] | 35 | 136 | 11 | 34 | [2.75, 4.13] | 39 |
14 | 2 | 13 | [4.96, 7.44] | 35 | 137 | 11 | 35 | [2.88, 4.32] | 39 |
15 | 2 | 14 | [4.16, 6.24] | 35 | 138 | 11 | 40 | [2.40, 3.60] | 39 |
16 | 2 | 15 | [11.06, 16.58] | 35 | 139 | 11 | 41 | [4.00, 6.00] | 40 |
17 | 2 | 16 | [7.86, 11.78] | 35 | 140 | 11 | 42 | [2.48, 3.72] | 40 |
18 | 2 | 17 | [9.78, 14.66] | 35 | 141 | 11 | 43 | [4.19, 6.29] | 40 |
19 | 2 | 18 | [9.58, 14.38] | 43 | 142 | 11 | 44 | [3.01, 4.51] | 40 |
20 | 2 | 19 | [11.38, 17.06] | 43 | 143 | 11 | 45 | [2.40, 3.60] | 40 |
21 | 2 | 20 | [10.69, 16.03] | 43 | 144 | 11 | 46 | [1.65, 2.47] | 38 |
22 | 2 | 22 | [7.52, 11.28] | 43 | 145 | 12 | 24 | [1.63, 2.45] | 38 |
23 | 2 | 23 | [7.22, 10.82] | 43 | 146 | 12 | 25 | [2.24, 3.36] | 38 |
24 | 3 | 1 | [1.33, 1.99] | 43 | 147 | 12 | 26 | [1.63, 2.45] | 38 |
25 | 3 | 2 | [1.65, 2.47] | 43 | 148 | 12 | 27 | [3.60, 5.40] | 38 |
26 | 3 | 3 | [2.13, 3.19] | 43 | 149 | 12 | 28 | [1.09, 1.63] | 38 |
27 | 3 | 4 | [2.13, 3.19] | 43 | 150 | 12 | 29 | [1.60, 2.40] | 35 |
28 | 3 | 5 | [2.67, 4.01] | 43 | 151 | 12 | 30 | [1.12, 1.68] | 35 |
29 | 3 | 21 | [11.36, 17.04] | 38 | 152 | 12 | 31 | [2.00, 3.00] | 35 |
30 | 4 | 6 | [2.61, 3.91] | 38 | 153 | 12 | 32 | [1.44, 2.16] | 35 |
31 | 4 | 7 | [10.61, 15.91] | 38 | 154 | 12 | 33 | [1.60, 2.40] | 35 |
32 | 4 | 8 | [4.16, 6.24] | 38 | 155 | 12 | 34 | [2.08, 3.12] | 35 |
33 | 4 | 9 | [4.53, 6.79] | 38 | 156 | 12 | 35 | [1.84, 2.76] | 35 |
34 | 4 | 10 | [4.35, 6.53] | 38 | 157 | 12 | 40 | [0.93, 1.39] | 43 |
35 | 4 | 11 | [5.04, 7.56] | 38 | 158 | 12 | 41 | [2.03, 3.05] | 43 |
36 | 4 | 12 | [5.20, 7.80] | 39 | 159 | 12 | 42 | [2.85, 4.27] | 43 |
37 | 4 | 13 | [3.60, 5.40] | 39 | 160 | 12 | 43 | [4.67, 7.01] | 43 |
38 | 4 | 14 | [3.76, 5.64] | 39 | 161 | 12 | 44 | [3.52, 5.28] | 43 |
39 | 4 | 15 | 0 | 39 | 162 | 12 | 45 | 0 | 43 |
40 | 4 | 16 | [4.24, 6.36] | 39 | 163 | 12 | 46 | [1.55, 2.33] | 43 |
41 | 4 | 17 | [5.12, 7.68] | 39 | 164 | 13 | 24 | [0.67, 1.01] | 43 |
42 | 4 | 18 | [5.28, 7.92] | 39 | 165 | 13 | 25 | [1.23, 1.85] | 43 |
43 | 4 | 19 | [0.32, 0.48] | 39 | 166 | 13 | 26 | [1.01, 1.51] | 43 |
44 | 4 | 20 | [5.76, 8.64] | 39 | 167 | 13 | 27 | [2.59, 3.89] | 38 |
45 | 4 | 22 | [9.84, 14.76] | 39 | 168 | 13 | 28 | [1.81, 2.71] | 38 |
46 | 4 | 23 | [9.60, 14.40] | 39 | 169 | 13 | 29 | [2.08, 3.12] | 38 |
47 | 5 | 1 | [18.61, 27.91] | 40 | 170 | 13 | 30 | [1.68, 2.52] | 38 |
48 | 5 | 2 | [18.85, 28.27] | 40 | 171 | 13 | 31 | [2.40, 3.60] | 38 |
49 | 5 | 3 | [18.99, 28.49] | 40 | 172 | 13 | 32 | [1.52, 2.28] | 38 |
50 | 5 | 4 | [19.73, 29.59] | 40 | 173 | 13 | 33 | [1.68, 2.52] | 38 |
51 | 5 | 5 | [19.78, 29.66] | 40 | 174 | 13 | 34 | [1.52, 2.28] | 39 |
52 | 5 | 6 | [15.20, 22.80] | 38 | 175 | 13 | 35 | [1.95, 2.93] | 39 |
53 | 5 | 7 | [22.21, 33.31] | 38 | 176 | 13 | 40 | [0.99, 1.49] | 39 |
54 | 5 | 8 | [13.38, 20.06] | 38 | 177 | 13 | 41 | [2.88, 4.32] | 39 |
55 | 5 | 9 | [13.20, 19.80] | 38 | 178 | 13 | 42 | [2.08, 3.12] | 39 |
56 | 5 | 10 | [13.14, 19.70] | 38 | 179 | 13 | 43 | [3.81, 5.71] | 39 |
57 | 5 | 11 | [21.44, 32.16] | 38 | 180 | 13 | 44 | [2.56, 3.84] | 39 |
58 | 5 | 12 | [22.72, 34.08] | 35 | 181 | 13 | 45 | [1.55, 2.33] | 39 |
59 | 5 | 13 | [22.56, 33.84] | 35 | 182 | 13 | 46 | 0 | 39 |
60 | 5 | 14 | [22.72, 34.08] | 35 | 183 | 14 | 24 | [2.08, 3.12] | 39 |
61 | 5 | 15 | [17.60, 26.40] | 35 | 184 | 14 | 25 | [2.64, 3.96] | 39 |
62 | 5 | 16 | [21.12, 31.68] | 35 | 185 | 14 | 26 | [2.00, 3.00] | 40 |
63 | 5 | 17 | [22.72, 34.08] | 35 | 186 | 14 | 27 | [4.00, 6.00] | 40 |
64 | 5 | 18 | [22.56, 33.84] | 35 | 187 | 14 | 28 | [1.04, 1.56] | 40 |
65 | 5 | 19 | [19.04, 28.56] | 43 | 188 | 14 | 29 | [1.49, 2.23] | 40 |
66 | 5 | 20 | [24.32, 36.48] | 43 | 189 | 14 | 30 | [1.15, 1.73] | 40 |
67 | 5 | 21 | [16.00, 24.00] | 43 | 190 | 14 | 31 | [1.87, 2.81] | 38 |
68 | 5 | 22 | [17.92, 26.88] | 43 | 191 | 14 | 32 | [1.68, 2.52] | 38 |
69 | 5 | 23 | [8.00, 12.00] | 43 | 192 | 14 | 33 | [1.84, 2.76] | 38 |
70 | 6 | 1 | [1.81, 2.71] | 43 | 193 | 14 | 34 | [2.53, 3.79] | 38 |
71 | 6 | 2 | [1.92, 2.88] | 43 | 194 | 14 | 35 | [2.11, 3.17] | 38 |
72 | 6 | 3 | [1.39, 2.09] | 43 | 195 | 14 | 40 | [1.55, 2.33] | 38 |
73 | 6 | 4 | [2.40, 3.60] | 43 | 196 | 14 | 41 | [2.61, 3.91] | 35 |
74 | 6 | 5 | [2.99, 4.49] | 43 | 197 | 14 | 42 | [3.20, 4.80] | 35 |
75 | 6 | 21 | [11.44, 17.16] | 38 | 198 | 14 | 43 | [5.04, 7.56] | 35 |
76 | 6 | 22 | [16.00, 24.00] | 38 | 199 | 14 | 44 | [3.89, 5.83] | 35 |
77 | 6 | 23 | [16.00, 24.00] | 38 | 200 | 14 | 45 | [0.91, 1.37] | 35 |
78 | 7 | 1 | [2.03, 3.05] | 38 | 201 | 14 | 46 | [1.92, 2.88] | 35 |
79 | 7 | 2 | [2.16, 3.24] | 38 | 202 | 15 | 47 | 0 | 35 |
80 | 7 | 3 | [1.60, 2.40] | 38 | 203 | 15 | 48 | [5.12, 7.68] | 43 |
81 | 7 | 4 | [2.67, 4.01] | 38 | 204 | 15 | 49 | [5.39, 8.09] | 43 |
82 | 7 | 5 | [3.20, 4.80] | 39 | 205 | 15 | 50 | [4.40, 6.60] | 43 |
83 | 7 | 21 | [11.68, 17.52] | 39 | 206 | 15 | 51 | [4.59, 6.89] | 43 |
84 | 8 | 24 | [1.92, 2.88] | 39 | 207 | 15 | 52 | [3.63, 5.45] | 43 |
85 | 8 | 25 | [2.26, 3.38] | 39 | 208 | 15 | 53 | [0.08, 0.12] | 43 |
86 | 8 | 26 | [1.33, 1.99] | 39 | 209 | 15 | 54 | [1.84, 2.76] | 43 |
87 | 8 | 27 | [3.30, 4.94] | 39 | 210 | 15 | 55 | [3.57, 5.35] | 43 |
88 | 8 | 28 | 0 | 39 | 211 | 15 | 56 | [1.28, 1.92] | 43 |
89 | 8 | 29 | [0.83, 1.25] | 39 | 212 | 15 | 57 | [1.17, 1.75] | 43 |
90 | 8 | 30 | [0.48, 0.72] | 39 | 213 | 16 | 47 | [0.37, 0.55] | 38 |
91 | 8 | 31 | [1.20, 1.80] | 39 | 214 | 16 | 48 | 0 | 38 |
92 | 8 | 32 | [1.01, 1.51] | 39 | 215 | 16 | 49 | [0.88, 1.32] | 38 |
93 | 8 | 33 | [1.17, 1.75] | 40 | 216 | 16 | 50 | [0.72, 1.08] | 38 |
94 | 8 | 34 | [1.79, 2.69] | 40 | 217 | 16 | 51 | [1.01, 1.51] | 38 |
95 | 8 | 35 | [1.41, 2.11] | 40 | 218 | 16 | 52 | [1.60, 2.40] | 38 |
96 | 8 | 40 | [1.94, 2.90] | 40 | 219 | 16 | 53 | [5.09, 7.63] | 38 |
97 | 8 | 41 | [3.31, 4.97] | 40 | 220 | 16 | 54 | [6.66, 9.98] | 39 |
98 | 8 | 42 | [3.07, 4.61] | 38 | 221 | 16 | 55 | [6.75, 10.13] | 39 |
99 | 8 | 43 | [4.88, 7.32] | 38 | 222 | 16 | 56 | [4.53, 6.79] | 39 |
100 | 8 | 44 | [3.73, 5.59] | 38 | 223 | 16 | 57 | [5.60, 8.40] | 39 |
101 | 8 | 45 | [1.36, 2.04] | 38 | 224 | 17 | 47 | [2.16, 3.24] | 39 |
102 | 8 | 46 | [1.76, 2.64] | 38 | 225 | 17 | 48 | [6.48, 9.72] | 39 |
103 | 9 | 36 | [1.60, 2.40] | 38 | 226 | 17 | 49 | [6.56, 9.84] | 39 |
104 | 9 | 37 | [0.93, 1.39] | 35 | 227 | 17 | 50 | [5.79, 8.69] | 39 |
105 | 9 | 38 | [1.55, 2.33] | 35 | 228 | 17 | 51 | [5.97, 8.95] | 39 |
106 | 9 | 39 | [2.03, 3.05] | 35 | 229 | 17 | 52 | [5.01, 7.51] | 39 |
107 | 10 | 24 | [8.67, 13.01] | 35 | 230 | 17 | 53 | [2.29, 3.43] | 39 |
108 | 10 | 25 | [9.44, 14.16] | 35 | 231 | 17 | 54 | [4.00, 6.00] | 40 |
109 | 10 | 26 | [8.85, 13.27] | 35 | 232 | 17 | 55 | [3.55, 5.33] | 40 |
110 | 10 | 27 | [10.80, 16.20] | 35 | 233 | 17 | 56 | [2.83, 4.25] | 40 |
111 | 10 | 28 | [9.68, 14.52] | 43 | 234 | 17 | 57 | [1.20, 1.80] | 40 |
112 | 10 | 28 | [9.92, 14.88] | 43 | 235 | 18 | 47 | [1.49, 2.23] | 40 |
113 | 10 | 30 | [9.55, 14.33] | 43 | 236 | 18 | 48 | [4.53, 6.79] | 38 |
114 | 10 | 31 | [10.27, 15.41] | 43 | 237 | 18 | 49 | [4.40, 6.60] | 38 |
115 | 10 | 32 | [9.39, 14.09] | 43 | 238 | 18 | 50 | [4.13, 6.19] | 38 |
116 | 10 | 33 | [9.52, 14.28] | 43 | 239 | 18 | 51 | [4.32, 6.48] | 38 |
117 | 10 | 34 | [9.71, 14.57] | 43 | 240 | 18 | 52 | [3.36, 5.04] | 38 |
118 | 10 | 35 | [9.79, 14.69] | 43 | 241 | 18 | 53 | [1.47, 2.21] | 38 |
119 | 10 | 40 | [8.80, 13.20] | 43 | 242 | 18 | 54 | [2.82, 4.22] | 35 |
120 | 10 | 41 | [11.01, 16.51] | 43 | 243 | 18 | 55 | [2.69, 4.03] | 35 |
121 | 10 | 42 | [9.33, 13.99] | 38 | 244 | 18 | 56 | 0 | 35 |
122 | 10 | 43 | [11.15, 16.73] | 38 | 245 | 18 | 57 | [1.55, 2.33] | 35 |
123 | 10 | 44 | [9.89, 14.83] | 38 | - | - | - | - | - |
Collection centers | Opened temporary transfer facility | Transportation mode | Food (units) | Collection centers | Opened temporary transfer facility | Transportation mode | Daily necessities (units) |
facility | facility | ||||||
Ⅱ | (1) | H | 54849 | Ⅰ | (1) | H | 15869 |
Ⅲ | (1) | H | 71647 | Ⅱ | (12) | H | 13904 |
Ⅲ | (17) | H | 80471 | Ⅰ | (16) | H | 13037 |
Ⅲ | (12) | A | 384669 | Ⅰ | (17) | H | 9487 |
Ⅲ | (13) | A | 304150 | Ⅲ | (12) | A | 49057 |
Ⅲ | (14) | A | 153849 | Ⅲ | (13) | A | 80943 |
Ⅲ | (15) | A | 205214 | Ⅰ | (14) | R | 25568 |
Ⅰ | (13) | R | 182926 | Ⅰ | (15) | R | 26039 |
Ⅰ | (15) | R | 17074 | Ⅱ | (2) | HC | 12652 |
Ⅱ | (2) | HC | 113786 | Ⅱ | (4) | HC | 18159 |
Ⅱ | (4) | HC | 80529 | Ⅱ | (9) | HC | 5805 |
Ⅱ | (9) | HC | 77345 | Ⅱ | (16) | HC | 11686 |
Ⅱ | (6) | HC | 107638 | - | - | - | - |
Collection centers | Opened temporary transfer facility | Transportation mode | Food (units) | Collection centers | Opened temporary transfer facility | Transportation mode | Daily necessities (units) |
facility | facility | ||||||
Ⅱ | (1) | H | 54849 | Ⅰ | (1) | H | 15869 |
Ⅲ | (1) | H | 71647 | Ⅱ | (12) | H | 13904 |
Ⅲ | (17) | H | 80471 | Ⅰ | (16) | H | 13037 |
Ⅲ | (12) | A | 384669 | Ⅰ | (17) | H | 9487 |
Ⅲ | (13) | A | 304150 | Ⅲ | (12) | A | 49057 |
Ⅲ | (14) | A | 153849 | Ⅲ | (13) | A | 80943 |
Ⅲ | (15) | A | 205214 | Ⅰ | (14) | R | 25568 |
Ⅰ | (13) | R | 182926 | Ⅰ | (15) | R | 26039 |
Ⅰ | (15) | R | 17074 | Ⅱ | (2) | HC | 12652 |
Ⅱ | (2) | HC | 113786 | Ⅱ | (4) | HC | 18159 |
Ⅱ | (4) | HC | 80529 | Ⅱ | (9) | HC | 5805 |
Ⅱ | (9) | HC | 77345 | Ⅱ | (16) | HC | 11686 |
Ⅱ | (6) | HC | 107638 | - | - | - | - |
Opened temporary transfer facility | Affected point | Food (units) | Opened temporary transfer facility | Affected point | Daily necessities (units) |
(1) | 1 | 71036 | (1) | 1 | 8753 |
(1) | 2 | 13446 | (1) | 2 | 1657 |
(1) | 3 | 12330 | (1) | 3 | 1519 |
(1) | 4 | 11163 | (1) | 4 | 1376 |
(1) | 5 | 12178 | (1) | 5 | 1501 |
(2) | 6 | 54926 | (2) | 6 | 6768 |
(2) | 7 | 9133 | (2) | 7 | 1126 |
(2) | 8 | 9641 | (2) | 8 | 1188 |
(2) | 9 | 10148 | (2) | 9 | 1251 |
(2) | 10 | 8119 | (2) | 10 | 1001 |
(4) | 11 | 54292 | (4) | 11 | 6690 |
(4) | 12 | 8119 | (4) | 12 | 1001 |
(4) | 13 | 5074 | (4) | 13 | 626 |
(4) | 14 | 12178 | (4) | 14 | 1501 |
(4) | 15 | 78267 | (4) | 15 | 9644 |
(4) | 16 | 10148 | (4) | 16 | 1251 |
(4) | 17 | 9133 | (4) | 17 | 1125 |
(4) | 18 | 8626 | (4) | 18 | 1063 |
(4) | 19 | 8829 | (4) | 19 | 1088 |
(4) | 20 | 7814 | (4) | 20 | 963 |
(1) | 21 | 6343 | (1) | 21 | 1063 |
(2) | 22 | 15730 | (2) | 22 | 1938 |
(2) | 23 | 6089 | (2) | 23 | 719 |
(13) | 24 | 113026 | (13) | 24 | 18783 |
(13) | 25 | 16801 | (13) | 25 | 2792 |
(13) | 26 | 19821 | (13) | 26 | 3294 |
(13) | 27 | 10760 | (13) | 27 | 1789 |
(14) | 28 | 113262 | (14) | 28 | 18822 |
(14) | 29 | 17934 | (14) | 29 | 2981 |
(12) | 30 | 24541 | (12) | 30 | 4078 |
(14) | 31 | 22653 | (14) | 31 | 3765 |
(12) | 32 | 137095 | (12) | 32 | 22782 |
(12) | 33 | 16612 | (12) | 33 | 2761 |
(13) | 34 | 14725 | (13) | 34 | 2447 |
(12) | 35 | 12837 | (12) | 35 | 2134 |
(9) | 36 | 143230 | (9) | 36 | 23802 |
(9) | 37 | 18311 | (9) | 37 | 3043 |
(9) | 38 | 19821 | (9) | 38 | 3294 |
(9) | 39 | 17934 | (9) | 39 | 2981 |
(12) | 40 | 41058 | (12) | 40 | 6643 |
(12) | 41 | 50024 | (12) | 41 | 7529 |
(13) | 42 | 64654 | (13) | 42 | 10744 |
(13) | 43 | 64890 | (13) | 43 | 10783 |
(13) | 44 | 73856 | (13) | 44 | 12273 |
(12) | 45 | 102502 | (12) | 45 | 17034 |
(13) | 46 | 108543 | (13) | 46 | 18038 |
(15) | 47 | 48232 | (15) | 47 | 5687 |
(16) | 48 | 139090 | (16) | 48 | 16399 |
(16) | 49 | 21185 | (16) | 49 | 2498 |
(16) | 50 | 25093 | (16) | 50 | 2959 |
(16) | 51 | 23139 | (16) | 51 | 2728 |
(16) | 52 | 21082 | (16) | 52 | 2486 |
(15) | 53 | 45764 | (15) | 53 | 5396 |
(15) | 54 | 42678 | (15) | 54 | 4862 |
(17) | 55 | 80471 | (17) | 55 | 9487 |
(15) | 56 | 39850 | (15) | 56 | 4698 |
(15) | 57 | 45764 | (15) | 57 | 5396 |
Opened temporary transfer facility | Affected point | Food (units) | Opened temporary transfer facility | Affected point | Daily necessities (units) |
(1) | 1 | 71036 | (1) | 1 | 8753 |
(1) | 2 | 13446 | (1) | 2 | 1657 |
(1) | 3 | 12330 | (1) | 3 | 1519 |
(1) | 4 | 11163 | (1) | 4 | 1376 |
(1) | 5 | 12178 | (1) | 5 | 1501 |
(2) | 6 | 54926 | (2) | 6 | 6768 |
(2) | 7 | 9133 | (2) | 7 | 1126 |
(2) | 8 | 9641 | (2) | 8 | 1188 |
(2) | 9 | 10148 | (2) | 9 | 1251 |
(2) | 10 | 8119 | (2) | 10 | 1001 |
(4) | 11 | 54292 | (4) | 11 | 6690 |
(4) | 12 | 8119 | (4) | 12 | 1001 |
(4) | 13 | 5074 | (4) | 13 | 626 |
(4) | 14 | 12178 | (4) | 14 | 1501 |
(4) | 15 | 78267 | (4) | 15 | 9644 |
(4) | 16 | 10148 | (4) | 16 | 1251 |
(4) | 17 | 9133 | (4) | 17 | 1125 |
(4) | 18 | 8626 | (4) | 18 | 1063 |
(4) | 19 | 8829 | (4) | 19 | 1088 |
(4) | 20 | 7814 | (4) | 20 | 963 |
(1) | 21 | 6343 | (1) | 21 | 1063 |
(2) | 22 | 15730 | (2) | 22 | 1938 |
(2) | 23 | 6089 | (2) | 23 | 719 |
(13) | 24 | 113026 | (13) | 24 | 18783 |
(13) | 25 | 16801 | (13) | 25 | 2792 |
(13) | 26 | 19821 | (13) | 26 | 3294 |
(13) | 27 | 10760 | (13) | 27 | 1789 |
(14) | 28 | 113262 | (14) | 28 | 18822 |
(14) | 29 | 17934 | (14) | 29 | 2981 |
(12) | 30 | 24541 | (12) | 30 | 4078 |
(14) | 31 | 22653 | (14) | 31 | 3765 |
(12) | 32 | 137095 | (12) | 32 | 22782 |
(12) | 33 | 16612 | (12) | 33 | 2761 |
(13) | 34 | 14725 | (13) | 34 | 2447 |
(12) | 35 | 12837 | (12) | 35 | 2134 |
(9) | 36 | 143230 | (9) | 36 | 23802 |
(9) | 37 | 18311 | (9) | 37 | 3043 |
(9) | 38 | 19821 | (9) | 38 | 3294 |
(9) | 39 | 17934 | (9) | 39 | 2981 |
(12) | 40 | 41058 | (12) | 40 | 6643 |
(12) | 41 | 50024 | (12) | 41 | 7529 |
(13) | 42 | 64654 | (13) | 42 | 10744 |
(13) | 43 | 64890 | (13) | 43 | 10783 |
(13) | 44 | 73856 | (13) | 44 | 12273 |
(12) | 45 | 102502 | (12) | 45 | 17034 |
(13) | 46 | 108543 | (13) | 46 | 18038 |
(15) | 47 | 48232 | (15) | 47 | 5687 |
(16) | 48 | 139090 | (16) | 48 | 16399 |
(16) | 49 | 21185 | (16) | 49 | 2498 |
(16) | 50 | 25093 | (16) | 50 | 2959 |
(16) | 51 | 23139 | (16) | 51 | 2728 |
(16) | 52 | 21082 | (16) | 52 | 2486 |
(15) | 53 | 45764 | (15) | 53 | 5396 |
(15) | 54 | 42678 | (15) | 54 | 4862 |
(17) | 55 | 80471 | (17) | 55 | 9487 |
(15) | 56 | 39850 | (15) | 56 | 4698 |
(15) | 57 | 45764 | (15) | 57 | 5396 |
Affected point | Affected point | ||||
food | Daily necessities | food | Daily necessities | ||
1 | 10 | 10 | 30 | 11.1 | 11.8 |
2 | 10.4 | 10.4 | 31 | 11.44 | 11.57 |
3 | 10.88 | 10.88 | 32 | 22.3 | 23 |
4 | 11.2 | 11.2 | 33 | 11.7 | 12.4 |
5 | 11.76 | 11.76 | 34 | 12.7 | 12.7 |
6 | 8.15 | 16.3 | 35 | 12 | 12.7 |
7 | 8.43 | 16.58 | 36 | 30.86 | 39.29 |
8 | 8.51 | 16.66 | 37 | 18.02 | 26.45 |
9 | 8.67 | 16.82 | 38 | 18.8 | 27.23 |
10 | 8.37 | 16.52 | 39 | 19.4 | 27.83 |
11 | 35.26 | 22.66 | 40 | 10.86 | 11.56 |
12 | 22.86 | 22.86 | 41 | 12.24 | 12.94 |
13 | 20.86 | 20.86 | 42 | 18.6 | 18.6 |
14 | 21.06 | 21.06 | 43 | 25.08 | 25.08 |
15 | 16.36 | 16.36 | 44 | 20.4 | 20.4 |
16 | 21.66 | 21.66 | 45 | 9.7 | 10.4 |
17 | 22.76 | 22.76 | 46 | 10.8 | 10.8 |
18 | 22.96 | 22.96 | 47 | 15.3 | 10.62 |
19 | 16.76 | 16.76 | 48 | 16.94 | 20.4 |
20 | 23.56 | 23.56 | 49 | 18.04 | 21.5 |
21 | 23 | 23 | 50 | 17.84 | 21.3 |
22 | 17.55 | 25.7 | 51 | 18.2 | 21.66 |
23 | 17.17 | 25.32 | 52 | 18.94 | 22.4 |
24 | 15 | 15 | 53 | 15.4 | 10.72 |
25 | 12.34 | 12.34 | 54 | 17.6 | 12.92 |
26 | 12.06 | 12.06 | 55 | 33.12 | 33.42 |
27 | 14.04 | 14.04 | 56 | 16.9 | 12.22 |
28 | 15.6 | 15.73 | 57 | 16.76 | 12.08 |
29 | 10.96 | 11.09 | - | - | - |
Affected point | Affected point | ||||
food | Daily necessities | food | Daily necessities | ||
1 | 10 | 10 | 30 | 11.1 | 11.8 |
2 | 10.4 | 10.4 | 31 | 11.44 | 11.57 |
3 | 10.88 | 10.88 | 32 | 22.3 | 23 |
4 | 11.2 | 11.2 | 33 | 11.7 | 12.4 |
5 | 11.76 | 11.76 | 34 | 12.7 | 12.7 |
6 | 8.15 | 16.3 | 35 | 12 | 12.7 |
7 | 8.43 | 16.58 | 36 | 30.86 | 39.29 |
8 | 8.51 | 16.66 | 37 | 18.02 | 26.45 |
9 | 8.67 | 16.82 | 38 | 18.8 | 27.23 |
10 | 8.37 | 16.52 | 39 | 19.4 | 27.83 |
11 | 35.26 | 22.66 | 40 | 10.86 | 11.56 |
12 | 22.86 | 22.86 | 41 | 12.24 | 12.94 |
13 | 20.86 | 20.86 | 42 | 18.6 | 18.6 |
14 | 21.06 | 21.06 | 43 | 25.08 | 25.08 |
15 | 16.36 | 16.36 | 44 | 20.4 | 20.4 |
16 | 21.66 | 21.66 | 45 | 9.7 | 10.4 |
17 | 22.76 | 22.76 | 46 | 10.8 | 10.8 |
18 | 22.96 | 22.96 | 47 | 15.3 | 10.62 |
19 | 16.76 | 16.76 | 48 | 16.94 | 20.4 |
20 | 23.56 | 23.56 | 49 | 18.04 | 21.5 |
21 | 23 | 23 | 50 | 17.84 | 21.3 |
22 | 17.55 | 25.7 | 51 | 18.2 | 21.66 |
23 | 17.17 | 25.32 | 52 | 18.94 | 22.4 |
24 | 15 | 15 | 53 | 15.4 | 10.72 |
25 | 12.34 | 12.34 | 54 | 17.6 | 12.92 |
26 | 12.06 | 12.06 | 55 | 33.12 | 33.42 |
27 | 14.04 | 14.04 | 56 | 16.9 | 12.22 |
28 | 15.6 | 15.73 | 57 | 16.76 | 12.08 |
29 | 10.96 | 11.09 | - | - | - |
P | Amount of opened facilities | Opened temporary transfer facilities (the optimal solution) | Objective function value | Running time(s) | ||||||
MIN | MAX | AVG | Optimal | AVG | SD | AVG | minimum | SD | ||
4 | 4 | 4 | 4 | (5), (9), (12), (15) | 13273776.83 | 14868939.06 | 1451416.62 | 53.48 | 16.16 | 42.31 |
5 | 5 | 5 | 5 | (2), (3), (9), (13), (15) | 8848462.92 | 9220754.33 | 302415.93 | 207.17 | 165.37 | 25.97 |
6 | 6 | 6 | 6 | (1), (4), (9), (12), (13), (15) | 6853198.43 | 7271162.90 | 290586.68 | 244.28 | 183.08 | 36.24 |
7 | 7 | 7 | 7 | (1), (2), (4), (9), (13), (14), (15) | 5781612.49 | 6227580.83 | 273625.21 | 257.40 | 234.93 | 12.80 |
8 | 8 | 8 | 8 | (1), (2), (4), (9), (12), (13), (15), (16) | 5072974.53 | 5295173.25 | 224424.74 | 244.43 | 178.19 | 49.48 |
9 | 9 | 9 | 9 | (1), (2), (4), (9), (13), (14), (15), (16), (17) | 4858475.72 | 5124041.30 | 150278.08 | 244.43 | 178.19 | 49.48 |
10 | 9 | 10 | 9.8 | (1), (2), (4), (9), (12), (13), (14), (15), (16), (17) | 4782950.76 | 4924828.55 | 113448.04 | 233.81 | 193.92 | 26.61 |
11 | 11 | 11 | 11 | (1), (2), (3), (4), (9), (12), (13), (14), (15), (16), (17) | 4778328.99 | 4925983.68 | 107442.10 | 228.31 | 213.40 | 16.51 |
12 | 11 | 12 | 11.2 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (18) | 4776395.25 | 4878544.65 | 110360.54 | 232.67 | 198.17 | 27.35 |
13 | 12 | 13 | 12.4 | (1), (2), (3), (4), (5), (9), (10), (12), (13), (14), (15), (16), (18) | 4783358.20 | 4892302.40 | 102522.06 | 233.92 | 221.46 | 7.82 |
14 | 11 | 14 | 12.5 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (17) | 4757147.13 | 4856777.97 | 106004.73 | 237.36 | 224.33 | 12.72 |
P | Amount of opened facilities | Opened temporary transfer facilities (the optimal solution) | Objective function value | Running time(s) | ||||||
MIN | MAX | AVG | Optimal | AVG | SD | AVG | minimum | SD | ||
4 | 4 | 4 | 4 | (5), (9), (12), (15) | 13273776.83 | 14868939.06 | 1451416.62 | 53.48 | 16.16 | 42.31 |
5 | 5 | 5 | 5 | (2), (3), (9), (13), (15) | 8848462.92 | 9220754.33 | 302415.93 | 207.17 | 165.37 | 25.97 |
6 | 6 | 6 | 6 | (1), (4), (9), (12), (13), (15) | 6853198.43 | 7271162.90 | 290586.68 | 244.28 | 183.08 | 36.24 |
7 | 7 | 7 | 7 | (1), (2), (4), (9), (13), (14), (15) | 5781612.49 | 6227580.83 | 273625.21 | 257.40 | 234.93 | 12.80 |
8 | 8 | 8 | 8 | (1), (2), (4), (9), (12), (13), (15), (16) | 5072974.53 | 5295173.25 | 224424.74 | 244.43 | 178.19 | 49.48 |
9 | 9 | 9 | 9 | (1), (2), (4), (9), (13), (14), (15), (16), (17) | 4858475.72 | 5124041.30 | 150278.08 | 244.43 | 178.19 | 49.48 |
10 | 9 | 10 | 9.8 | (1), (2), (4), (9), (12), (13), (14), (15), (16), (17) | 4782950.76 | 4924828.55 | 113448.04 | 233.81 | 193.92 | 26.61 |
11 | 11 | 11 | 11 | (1), (2), (3), (4), (9), (12), (13), (14), (15), (16), (17) | 4778328.99 | 4925983.68 | 107442.10 | 228.31 | 213.40 | 16.51 |
12 | 11 | 12 | 11.2 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (18) | 4776395.25 | 4878544.65 | 110360.54 | 232.67 | 198.17 | 27.35 |
13 | 12 | 13 | 12.4 | (1), (2), (3), (4), (5), (9), (10), (12), (13), (14), (15), (16), (18) | 4783358.20 | 4892302.40 | 102522.06 | 233.92 | 221.46 | 7.82 |
14 | 11 | 14 | 12.5 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (17) | 4757147.13 | 4856777.97 | 106004.73 | 237.36 | 224.33 | 12.72 |
Algorithm | Time(AVG) | |||
9 | GA | 4858475.72 | 5124041.30 | 244.43 |
IOA | 4936050.86 | 5244041.02 | 250.67 | |
10 | GA | 4782950.76 | 4924828.55 | 233.81 |
IOA | 4821963.21 | 4959828.55 | 230.14 | |
11 | GA | 4778328.99 | 4925983.68 | 228.31 |
IOA | 4790375.49 | 4965983.68 | 225.63 | |
12 | GA | 4776395.25 | 4878544.65 | 232.67 |
IOA | 4795203.36 | 4879121.35 | 229.43 | |
13 | GA | 4783358.20 | 4892302.40 | 233.92 |
IOA | 4790522.90 | 4898580.12 | 228.45 | |
16 | GA | 4757147.13 | 4856777.97 | 237.36 |
IOA | 4767658.14 | 4848676.16 | 233.97 |
Algorithm | Time(AVG) | |||
9 | GA | 4858475.72 | 5124041.30 | 244.43 |
IOA | 4936050.86 | 5244041.02 | 250.67 | |
10 | GA | 4782950.76 | 4924828.55 | 233.81 |
IOA | 4821963.21 | 4959828.55 | 230.14 | |
11 | GA | 4778328.99 | 4925983.68 | 228.31 |
IOA | 4790375.49 | 4965983.68 | 225.63 | |
12 | GA | 4776395.25 | 4878544.65 | 232.67 |
IOA | 4795203.36 | 4879121.35 | 229.43 | |
13 | GA | 4783358.20 | 4892302.40 | 233.92 |
IOA | 4790522.90 | 4898580.12 | 228.45 | |
16 | GA | 4757147.13 | 4856777.97 | 237.36 |
IOA | 4767658.14 | 4848676.16 | 233.97 |
[1] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[2] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[3] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[4] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[5] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[6] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[7] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[8] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[9] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[10] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[11] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[12] |
Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007 |
[13] |
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 |
[14] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[15] |
Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001 |
[16] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[17] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[18] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[19] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[20] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]