
-
Previous Article
Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition
- JIMO Home
- This Issue
-
Next Article
Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking
The joint location-transportation model based on grey bi-level programming for early post-earthquake relief
1. | Chongqing Engineering Technology Research Center for Information Management in, Development, Chongqing Technology and Business University, Chongqing, 400067, China |
2. | School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China |
3. | Research center for economy of upper researches of the Yangtze River, Chongqing Technology, and Business University, Chongqing, 400067, China |
The initial period after the earthquake is the prime time for disaster relief. During this period, it is of great value to rationally locate the transfer facilities of relief materials and effectively arrange the transportation of relief materials. Considering the characteristics of the two-level emergency logistics system including uncertain demand, uncertain transportation time, multiple varieties of relief materials, shortage of supply, multi-transportation modes and different urgencies of relief material demand, the integrated issue with the concern of transfer facility location and relief material transportation is studied. Then, this problem is formulated as a grey mixed integer bi-level nonlinear programming in which the upper-level aims at the shortest relief material transportation time and the lower-level aims at the maximum fairness of relief material distribution. According to the characteristics of the model, a hybrid genetic algorithm is designed to solve the proposed model. Finally, a numerical simulation is carried out on the background of 5.12 Wenchuan Earthquake. In addition, the validation of the proposed model and algorithm is verified.
References:
[1] |
A. Afshar and A. Haghani,
Modeling integrated supply chain logistics in real-time large-scale disaster relief operations, Socio-Economic Plan. Sci., 46 (2012), 327-338.
doi: 10.1016/j.seps.2011.12.003. |
[2] |
J. F. Bard,
Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.
doi: 10.1007/BF00941574. |
[3] |
V. Bélanger, A. Ruiz and P. Soriano,
Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles, European J. Oper. Res., 272 (2019), 1-23.
doi: 10.1016/j.ejor.2018.02.055. |
[4] |
C. Blair,
The computational complexity of multi-level linear programs, Ann. Oper. Res., 34 (1992), 13-19.
doi: 10.1007/BF02098170. |
[5] |
A. Bozorgi-Amiri and M. Khorsi,
A dynamic multi-objective location-routing model for relief logistic planning under uncertainty on demand, travel time, and cost parameters, The International Journal of Advanced Manufacturing Technology, 85 (2016), 1633-1648.
|
[6] |
C. J. Cao, C. D. Li, Q. Yang, Y. Liu and T. Qu,
A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters, J. Cleaner Production, 174 (2018), 1422-1435.
doi: 10.1016/j.jclepro.2017.11.037. |
[7] |
A. Y. Chen and T. Y. Yu,
Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response, Transport Res. B. Meth., 91 (2016), 408-423.
doi: 10.1016/j.trb.2016.06.004. |
[8] |
Y. Dai, Z. J. Ma, D. L. Zhu and T. Fang,
Fuzzy dynamic location-routing problem in post-earthquake delivery of relief materials, Chinese Journal of Management Science, 15 (2012), 60-70.
|
[9] |
X. T. Deng, Complexity issues in bi-level linear programming, in Multilevel Optimization: Algorithms and Applications, Vol. 20, Kluwer Acad. Publ., Dordrecht, 1998,149–164.
doi: 10.1007/978-1-4613-0307-7_6. |
[10] |
M. Haghi, S. M. T. F. Ghomi and F. Jolai,
Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource, J. Cleaner Production, 154 (2017), 188-202.
doi: 10.1016/j.jclepro.2017.03.102. |
[11] |
H. Hu, X. Li, Y. Y. Zhang, C. J. Shang and S. C. Zhang,
Multi-objective location-routing model for hazardous material logistics with traffic restriction constraint in inter-city roads, Comput. Ind. Eng., 128 (2019), 861-876.
doi: 10.1016/j.cie.2018.10.044. |
[12] |
J. Jian, Y. Zhang, L. Jiang and J. Su, Coordination of supply chains with competing manufacturers considering fairness concerns, Complexity, 2020 (2020), 4372603.
doi: 10.1155/2020/4372603. |
[13] |
S. Li and K. L. Teo,
Post-disaster multi-period road network repair: Work scheduling and relief logistics optimization, Ann. Oper. Res., 283 (2019), 1345-1385.
doi: 10.1007/s10479-018-3037-2. |
[14] |
S. Li, Z. J. Ma and K. L. Teo, A new model for road network repair after natural disaster: Integrating logistics support scheduling with repair crew scheduling and routing activities, Comput. Ind. Eng., 145 (2020), 106506. |
[15] |
S. L. Li, Z. J. Ma, B. Zheng and Y. Dai,
Fuzzy multi-objective location-multimodal transportation problem for relief delivery during the initial post-earthquake period, Chinese Journal of Management Science, 21 (2013), 144-151.
|
[16] |
C. S. Liu, L. Luo, X. C. Zhou and F. H. Huang,
Collaborative decision-making of relief allocation-transportation in early post-earthquake: Considering both fairness and efficiency, Control and Decision, 33 (2018), 2057-2063.
|
[17] |
C. S. Liu, G. Kou, Y. Peng and F. E. Alsaadi, Location-routing problem for relief distribution in the early post-earthquake stage from the perspective of fairness, Sustainability, 11 (2019), 3420.
doi: 10.3390/su11123420. |
[18] |
R. Lotfian and M. Najafi,
Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model, Injury Prevention, 25 (2019), 264-272.
doi: 10.1136/injuryprev-2017-042657. |
[19] |
H. M. Rizeei, B. Pradhan and M. A. Saharkhiz, Allocation of emergency response centres in response to pluvial flooding-prone demand points using integrated multiple layer perceptron and maximum coverage location problem models, Int. J. Disast. Risk. Red., 38 (2019), 101205.
doi: 10.1016/j.ijdrr.2019.101205. |
[20] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Robust bi-level optimization of relief logistics operations, Appl. Math. Model., 56 (2018), 359-380.
doi: 10.1016/j.apm.2017.12.003. |
[21] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Emergency logistics planning under supply risk and demand uncertainty, Oper. Res., 20 (2020), 1437-1460.
doi: 10.1007/s12351-018-0376-3. |
[22] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[23] |
J. Su, Q. Bai, S. Sindakis, X Zhang and T Yang, Vulnerability of multinational corporation knowledge network facing resource loss, Management Decision, 2020.
doi: 10.1108/MD-02-2019-0227. |
[24] |
B. Vahdani, D. Veysmoradi, N. Shekari and S. M. Mousavi,
Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair, Neural Comput. Appl., 30 (2018), 835-854.
doi: 10.1007/s00521-016-2696-7. |
[25] |
B. Vahdani, D. Veysmoradi, F. Noori and F. Mansour,
Two-stage multi-objective location-routing-inventory model for humanitarian logistics network design under uncertainty, Int. J. Disast. Risk. Re., 27 (2018), 290-306.
|
[26] |
H. J. Wang, L. J. Du and S. H. Ma,
Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake, Transport Research Part E: Logistics and Transportation Review, 69 (2014), 160-179.
doi: 10.1016/j.tre.2014.06.006. |
[27] |
J. Xu, Z. Wang, M. Zhang and Y. Tu,
A new model for a 72-h post-earthquake emergency logistics location-routing problem under a random fuzzy environment, Transportation Letters, 8 (2016), 270-285.
doi: 10.1080/19427867.2015.1126064. |
[28] |
M. Yahyaei and A. Bozorgi-Amiri,
Robust reliable humanitarian relief network design: An integration of shelter and supply facility location, Ann. Oper. Res., 283 (2019), 897-916.
doi: 10.1007/s10479-018-2758-6. |
[29] |
W. Yi and L. Özdamar,
A dynamic logistics coordination model for evacuation and support in disaster response activities, European J. Oper. Res., 179 (2007), 1177-1193.
doi: 10.1016/j.ejor.2005.03.077. |
[30] |
B. Zeng, M. Tong and X. Ma,
A new-structure grey Verhulst model: Development and performance comparison, Appl. Math. Model., 81 (2020), 522-537.
doi: 10.1016/j.apm.2020.01.014. |
[31] |
B. Zeng, M. Zhou, X. Liu and and Z. Zhang,
Application of a new grey prediction model and grey average weakening buffer operator to forecast China's shale gas output, Energy Reports, 6 (2020), 1608-1618.
|
[32] |
S. Zhang and H. Yi, Emergency material transportation considering the impact of secondary disasters, in Proceedings of the 2019 10th International Conference on E-business, Management and Economics, 2019,279–285.
doi: 10.1145/3345035.3345041. |
[33] |
S. W. Zhang, H. X. Guo, K. J. Zhu, S. W. Yu and J. L. Li,
Multistage assignment optimization for emergency rescue teams in the disaster chain, Knowledge-Based Systems, 137 (2017), 123-137.
doi: 10.1016/j.knosys.2017.09.024. |
[34] |
B. Zheng, Z. J. Ma and Y. F. Zhou,
Bi-level model for dynamic location-transportation problem for post earthquake relief distribution, J. Systems & Management, 26 (2017), 326-337.
|
[35] |
Y. Zhou and N. Chen,
The LAP under facility disruptions during early post-earthquake rescue using PSO-GA hybrid algorithm, Fresen. Environ. Bull., 28 (2019), 9906-9914.
|
[36] |
Y. F. Zhou, H. X. Yu, Z. Li and J. F. Su,
Robust optimization of a distribution network location-routing problem under carbon trading policies, IEEE Access, 8 (2020), 46288-46306.
doi: 10.1109/ACCESS.2020.2979259. |
[37] |
Y. Zhou, L. Yufeng and L. Zhi, A grey target group decision method with dual hesitant fuzzy information considering decision-maker's loss aversion, Sci. Programming, 2020 (2020), 8930387.
doi: 10.1155/2020/8930387. |
show all references
References:
[1] |
A. Afshar and A. Haghani,
Modeling integrated supply chain logistics in real-time large-scale disaster relief operations, Socio-Economic Plan. Sci., 46 (2012), 327-338.
doi: 10.1016/j.seps.2011.12.003. |
[2] |
J. F. Bard,
Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68 (1991), 371-378.
doi: 10.1007/BF00941574. |
[3] |
V. Bélanger, A. Ruiz and P. Soriano,
Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles, European J. Oper. Res., 272 (2019), 1-23.
doi: 10.1016/j.ejor.2018.02.055. |
[4] |
C. Blair,
The computational complexity of multi-level linear programs, Ann. Oper. Res., 34 (1992), 13-19.
doi: 10.1007/BF02098170. |
[5] |
A. Bozorgi-Amiri and M. Khorsi,
A dynamic multi-objective location-routing model for relief logistic planning under uncertainty on demand, travel time, and cost parameters, The International Journal of Advanced Manufacturing Technology, 85 (2016), 1633-1648.
|
[6] |
C. J. Cao, C. D. Li, Q. Yang, Y. Liu and T. Qu,
A novel multi-objective programming model of relief distribution for sustainable disaster supply chain in large-scale natural disasters, J. Cleaner Production, 174 (2018), 1422-1435.
doi: 10.1016/j.jclepro.2017.11.037. |
[7] |
A. Y. Chen and T. Y. Yu,
Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response, Transport Res. B. Meth., 91 (2016), 408-423.
doi: 10.1016/j.trb.2016.06.004. |
[8] |
Y. Dai, Z. J. Ma, D. L. Zhu and T. Fang,
Fuzzy dynamic location-routing problem in post-earthquake delivery of relief materials, Chinese Journal of Management Science, 15 (2012), 60-70.
|
[9] |
X. T. Deng, Complexity issues in bi-level linear programming, in Multilevel Optimization: Algorithms and Applications, Vol. 20, Kluwer Acad. Publ., Dordrecht, 1998,149–164.
doi: 10.1007/978-1-4613-0307-7_6. |
[10] |
M. Haghi, S. M. T. F. Ghomi and F. Jolai,
Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource, J. Cleaner Production, 154 (2017), 188-202.
doi: 10.1016/j.jclepro.2017.03.102. |
[11] |
H. Hu, X. Li, Y. Y. Zhang, C. J. Shang and S. C. Zhang,
Multi-objective location-routing model for hazardous material logistics with traffic restriction constraint in inter-city roads, Comput. Ind. Eng., 128 (2019), 861-876.
doi: 10.1016/j.cie.2018.10.044. |
[12] |
J. Jian, Y. Zhang, L. Jiang and J. Su, Coordination of supply chains with competing manufacturers considering fairness concerns, Complexity, 2020 (2020), 4372603.
doi: 10.1155/2020/4372603. |
[13] |
S. Li and K. L. Teo,
Post-disaster multi-period road network repair: Work scheduling and relief logistics optimization, Ann. Oper. Res., 283 (2019), 1345-1385.
doi: 10.1007/s10479-018-3037-2. |
[14] |
S. Li, Z. J. Ma and K. L. Teo, A new model for road network repair after natural disaster: Integrating logistics support scheduling with repair crew scheduling and routing activities, Comput. Ind. Eng., 145 (2020), 106506. |
[15] |
S. L. Li, Z. J. Ma, B. Zheng and Y. Dai,
Fuzzy multi-objective location-multimodal transportation problem for relief delivery during the initial post-earthquake period, Chinese Journal of Management Science, 21 (2013), 144-151.
|
[16] |
C. S. Liu, L. Luo, X. C. Zhou and F. H. Huang,
Collaborative decision-making of relief allocation-transportation in early post-earthquake: Considering both fairness and efficiency, Control and Decision, 33 (2018), 2057-2063.
|
[17] |
C. S. Liu, G. Kou, Y. Peng and F. E. Alsaadi, Location-routing problem for relief distribution in the early post-earthquake stage from the perspective of fairness, Sustainability, 11 (2019), 3420.
doi: 10.3390/su11123420. |
[18] |
R. Lotfian and M. Najafi,
Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model, Injury Prevention, 25 (2019), 264-272.
doi: 10.1136/injuryprev-2017-042657. |
[19] |
H. M. Rizeei, B. Pradhan and M. A. Saharkhiz, Allocation of emergency response centres in response to pluvial flooding-prone demand points using integrated multiple layer perceptron and maximum coverage location problem models, Int. J. Disast. Risk. Red., 38 (2019), 101205.
doi: 10.1016/j.ijdrr.2019.101205. |
[20] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Robust bi-level optimization of relief logistics operations, Appl. Math. Model., 56 (2018), 359-380.
doi: 10.1016/j.apm.2017.12.003. |
[21] |
A. S. Safaei, S. Farsad and M. M. Paydar,
Emergency logistics planning under supply risk and demand uncertainty, Oper. Res., 20 (2020), 1437-1460.
doi: 10.1007/s12351-018-0376-3. |
[22] |
F. S. Salman and E. Yücel,
Emergency facility location under random network damage: Insights from the Istanbul case, Comput. Oper. Res., 62 (2015), 266-281.
doi: 10.1016/j.cor.2014.07.015. |
[23] |
J. Su, Q. Bai, S. Sindakis, X Zhang and T Yang, Vulnerability of multinational corporation knowledge network facing resource loss, Management Decision, 2020.
doi: 10.1108/MD-02-2019-0227. |
[24] |
B. Vahdani, D. Veysmoradi, N. Shekari and S. M. Mousavi,
Multi-objective, multi-period location-routing model to distribute relief after earthquake by considering emergency roadway repair, Neural Comput. Appl., 30 (2018), 835-854.
doi: 10.1007/s00521-016-2696-7. |
[25] |
B. Vahdani, D. Veysmoradi, F. Noori and F. Mansour,
Two-stage multi-objective location-routing-inventory model for humanitarian logistics network design under uncertainty, Int. J. Disast. Risk. Re., 27 (2018), 290-306.
|
[26] |
H. J. Wang, L. J. Du and S. H. Ma,
Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake, Transport Research Part E: Logistics and Transportation Review, 69 (2014), 160-179.
doi: 10.1016/j.tre.2014.06.006. |
[27] |
J. Xu, Z. Wang, M. Zhang and Y. Tu,
A new model for a 72-h post-earthquake emergency logistics location-routing problem under a random fuzzy environment, Transportation Letters, 8 (2016), 270-285.
doi: 10.1080/19427867.2015.1126064. |
[28] |
M. Yahyaei and A. Bozorgi-Amiri,
Robust reliable humanitarian relief network design: An integration of shelter and supply facility location, Ann. Oper. Res., 283 (2019), 897-916.
doi: 10.1007/s10479-018-2758-6. |
[29] |
W. Yi and L. Özdamar,
A dynamic logistics coordination model for evacuation and support in disaster response activities, European J. Oper. Res., 179 (2007), 1177-1193.
doi: 10.1016/j.ejor.2005.03.077. |
[30] |
B. Zeng, M. Tong and X. Ma,
A new-structure grey Verhulst model: Development and performance comparison, Appl. Math. Model., 81 (2020), 522-537.
doi: 10.1016/j.apm.2020.01.014. |
[31] |
B. Zeng, M. Zhou, X. Liu and and Z. Zhang,
Application of a new grey prediction model and grey average weakening buffer operator to forecast China's shale gas output, Energy Reports, 6 (2020), 1608-1618.
|
[32] |
S. Zhang and H. Yi, Emergency material transportation considering the impact of secondary disasters, in Proceedings of the 2019 10th International Conference on E-business, Management and Economics, 2019,279–285.
doi: 10.1145/3345035.3345041. |
[33] |
S. W. Zhang, H. X. Guo, K. J. Zhu, S. W. Yu and J. L. Li,
Multistage assignment optimization for emergency rescue teams in the disaster chain, Knowledge-Based Systems, 137 (2017), 123-137.
doi: 10.1016/j.knosys.2017.09.024. |
[34] |
B. Zheng, Z. J. Ma and Y. F. Zhou,
Bi-level model for dynamic location-transportation problem for post earthquake relief distribution, J. Systems & Management, 26 (2017), 326-337.
|
[35] |
Y. Zhou and N. Chen,
The LAP under facility disruptions during early post-earthquake rescue using PSO-GA hybrid algorithm, Fresen. Environ. Bull., 28 (2019), 9906-9914.
|
[36] |
Y. F. Zhou, H. X. Yu, Z. Li and J. F. Su,
Robust optimization of a distribution network location-routing problem under carbon trading policies, IEEE Access, 8 (2020), 46288-46306.
doi: 10.1109/ACCESS.2020.2979259. |
[37] |
Y. Zhou, L. Yufeng and L. Zhi, A grey target group decision method with dual hesitant fuzzy information considering decision-maker's loss aversion, Sci. Programming, 2020 (2020), 8930387.
doi: 10.1155/2020/8930387. |










Num. | Collection centers | Food(Units) | Daily necessities(Units) |
Ⅰ | Chengdu Military Airport | 200000 | 90000 |
Ⅱ | Shuangliu Airport | 800000 | 100000 |
Ⅲ | Chengdu North Railway Station | 1200000 | 130000 |
Num. | Collection centers | Food(Units) | Daily necessities(Units) |
Ⅰ | Chengdu Military Airport | 200000 | 90000 |
Ⅱ | Shuangliu Airport | 800000 | 100000 |
Ⅲ | Chengdu North Railway Station | 1200000 | 130000 |
Candidate temporary transfer facilities | Num | Affected area | Candidate temporary transfer facilities | Num. | Affected area | ||
Dujiangyan | (1) | ① | 800 | Pingwu | (10) | ② | 700 |
Maoxian | (2) | ① | 800 | Jiangyou | (11) | ② | 800 |
Pengzhou | (3) | ① | 800 | Deyang | (12) | ② | 1500 |
Wenchuan | (4) | ① | 500 | Mianyang | (13) | ② | 1500 |
Jiuzhaigou | (5) | ① | 1000 | Guanghan | (14) | ② | 1300 |
Chongzhou | (6) | ① | 800 | Guangyuan | (15) | ③ | 1500 |
Dayi | (7) | ① | 1200 | Qingchuan | (16) | ③ | 1000 |
Shifang | (8) | ② | 1000 | Wangcang | (17) | ③ | 1000 |
Beichuan | (9) | ② | 800 | Jiange | (18) | ③ | 1000 |
Candidate temporary transfer facilities | Num | Affected area | Candidate temporary transfer facilities | Num. | Affected area | ||
Dujiangyan | (1) | ① | 800 | Pingwu | (10) | ② | 700 |
Maoxian | (2) | ① | 800 | Jiangyou | (11) | ② | 800 |
Pengzhou | (3) | ① | 800 | Deyang | (12) | ② | 1500 |
Wenchuan | (4) | ① | 500 | Mianyang | (13) | ② | 1500 |
Jiuzhaigou | (5) | ① | 1000 | Guanghan | (14) | ② | 1300 |
Chongzhou | (6) | ① | 800 | Guangyuan | (15) | ③ | 1500 |
Dayi | (7) | ① | 1200 | Qingchuan | (16) | ③ | 1000 |
Shifang | (8) | ② | 1000 | Wangcang | (17) | ③ | 1000 |
Beichuan | (9) | ② | 800 | Jiange | (18) | ③ | 1000 |
Affected points | Num. | Affected area | Food(units) | Daily necessities(Units) |
Dujiangyan | 1 | ① | [224000, 336000] | [22400, 33600] |
Guankou | 2 | ① | [42400, 63600] | [4240, 6360] |
Qingchengshan | 3 | ① | [38880, 58320] | [3888, 5832] |
Zipingpu | 4 | ① | [35200, 52800] | [3520, 5280] |
Hongkou | 5 | ① | [38400, 57600] | [3840, 5760] |
Maoxian | 6 | ① | [173200, 259800] | [17320, 25980] |
Fushun | 7 | ① | [28800, 43200] | [2880, 4320] |
Feihong | 8 | ① | [30400, 45600] | [3040, 4560] |
Heihu | 9 | ① | [32000, 48000] | [3200, 4800] |
Taiping | 10 | ① | [25600, 38400] | [2560, 3840] |
Lixian | 11 | ① | [171200, 256800] | [17120, 25680] |
Putouxiang | 12 | ① | [25600, 38400] | [2560, 38400] |
Mukaxiang | 13 | ① | [16000, 24000] | [1600, 2400] |
Tonghuaxiang | 14 | ① | [38400, 57600] | [3840, 5760] |
Wenchuan | 15 | ① | [246800, 370200] | [24680, 37020] |
Yingxiu | 16 | ① | [32000, 48000] | [3200, 4800] |
Shuimo | 17 | ① | [28800, 43200] | [2880, 4320] |
Wolong | 18 | ① | [27200, 40800] | [2720, 4080] |
Yanmeng | 19 | ① | [27840, 41760] | [2784, 4176] |
Sanjiang | 20 | ① | [24640, 36960] | [2464, 3696] |
Xiaojin | 21 | ① | [20000, 30000] | [2000, 3000] |
Heishui | 22 | ① | [49600, 74400] | [4960, 7440] |
Songpan | 23 | ① | [19200, 28800] | [1920, 2880] |
Anxian | 24 | ② | [191600, 287400] | [19160, 28740] |
Xiushui | 25 | ② | [28480, 42720] | [2848, 4272] |
Baolin | 26 | ② | [33600, 50400] | [3360, 5040] |
Gaochuan | 27 | ② | [18240, 27360] | [1824, 2736] |
Shifang | 28 | ② | [192000, 288000] | [19200, 28800] |
Luoshui | 29 | ② | [30400, 45600] | [3040, 4560] |
Shuangsheng | 30 | ② | [41600, 62400] | [4160, 6240] |
Yinghua | 31 | ② | [38400, 57600] | [3840, 5760] |
Mianzhu | 32 | ② | [232400, 348600] | [23240, 34860] |
Jiannan | 33 | ② | [28160, 42240] | [2816, 4224] |
Mianyuan | 34 | ② | [24960, 37440] | [2496, 3744] |
Hanwang | 35 | ② | [21760, 32640] | [2176, 3264] |
Beichuan | 36 | ② | [242800, 364200] | [24280, 36420] |
Yong'an | 37 | ② | [31040, 46560] | [3104, 4656] |
Yongchang | 38 | ② | [33600, 50400] | [3360, 5040] |
Kaiping | 39 | ② | [30400, 45600] | [3040, 4560] |
Luojiang | 40 | ② | [69600, 104400] | [6960, 10440] |
Zhongjiang | 41 | ② | [84800, 127200] | [8480, 12720] |
Santai | 42 | ② | [109600, 164400] | [10960, 16440] |
Yanting | 43 | ② | [110000, 165000] | [11000, 16500] |
Zitong | 44 | ② | [125200, 187800] | [12520, 18780] |
Deyang | 45 | ② | [173760, 260640] | [17376, 26064] |
Mianyang | 46 | ② | [184000, 276000] | [18400, 27600] |
Guangyuan | 47 | ③ | [75040, 112560] | [7504, 11256] |
Qingchuan | 48 | ③ | [216400, 324600] | [21640, 32460] |
Walixiang | 49 | ③ | [32960, 49440] | [3296, 4944] |
Banqiaoxiang | 50 | ③ | [39040, 58560] | [3904, 5856] |
Qimaxiang | 51 | ③ | [36000, 54000] | [3600, 5400] |
Yingpanxiang | 52 | ③ | [32800, 49200] | [3280, 4920] |
Lizhou | 53 | ③ | [71200, 106800] | [7120, 10680] |
Chaotian | 54 | ③ | [66400, 99600] | [6640, 9960] |
Cangxi | 55 | ③ | [125200, 187800] | [12520, 18780] |
Jiange | 56 | ③ | [62000, 93000] | [6200, 9300] |
Yuanba | 57 | ③ | [71200, 106800] | [7120, 10680] |
Affected points | Num. | Affected area | Food(units) | Daily necessities(Units) |
Dujiangyan | 1 | ① | [224000, 336000] | [22400, 33600] |
Guankou | 2 | ① | [42400, 63600] | [4240, 6360] |
Qingchengshan | 3 | ① | [38880, 58320] | [3888, 5832] |
Zipingpu | 4 | ① | [35200, 52800] | [3520, 5280] |
Hongkou | 5 | ① | [38400, 57600] | [3840, 5760] |
Maoxian | 6 | ① | [173200, 259800] | [17320, 25980] |
Fushun | 7 | ① | [28800, 43200] | [2880, 4320] |
Feihong | 8 | ① | [30400, 45600] | [3040, 4560] |
Heihu | 9 | ① | [32000, 48000] | [3200, 4800] |
Taiping | 10 | ① | [25600, 38400] | [2560, 3840] |
Lixian | 11 | ① | [171200, 256800] | [17120, 25680] |
Putouxiang | 12 | ① | [25600, 38400] | [2560, 38400] |
Mukaxiang | 13 | ① | [16000, 24000] | [1600, 2400] |
Tonghuaxiang | 14 | ① | [38400, 57600] | [3840, 5760] |
Wenchuan | 15 | ① | [246800, 370200] | [24680, 37020] |
Yingxiu | 16 | ① | [32000, 48000] | [3200, 4800] |
Shuimo | 17 | ① | [28800, 43200] | [2880, 4320] |
Wolong | 18 | ① | [27200, 40800] | [2720, 4080] |
Yanmeng | 19 | ① | [27840, 41760] | [2784, 4176] |
Sanjiang | 20 | ① | [24640, 36960] | [2464, 3696] |
Xiaojin | 21 | ① | [20000, 30000] | [2000, 3000] |
Heishui | 22 | ① | [49600, 74400] | [4960, 7440] |
Songpan | 23 | ① | [19200, 28800] | [1920, 2880] |
Anxian | 24 | ② | [191600, 287400] | [19160, 28740] |
Xiushui | 25 | ② | [28480, 42720] | [2848, 4272] |
Baolin | 26 | ② | [33600, 50400] | [3360, 5040] |
Gaochuan | 27 | ② | [18240, 27360] | [1824, 2736] |
Shifang | 28 | ② | [192000, 288000] | [19200, 28800] |
Luoshui | 29 | ② | [30400, 45600] | [3040, 4560] |
Shuangsheng | 30 | ② | [41600, 62400] | [4160, 6240] |
Yinghua | 31 | ② | [38400, 57600] | [3840, 5760] |
Mianzhu | 32 | ② | [232400, 348600] | [23240, 34860] |
Jiannan | 33 | ② | [28160, 42240] | [2816, 4224] |
Mianyuan | 34 | ② | [24960, 37440] | [2496, 3744] |
Hanwang | 35 | ② | [21760, 32640] | [2176, 3264] |
Beichuan | 36 | ② | [242800, 364200] | [24280, 36420] |
Yong'an | 37 | ② | [31040, 46560] | [3104, 4656] |
Yongchang | 38 | ② | [33600, 50400] | [3360, 5040] |
Kaiping | 39 | ② | [30400, 45600] | [3040, 4560] |
Luojiang | 40 | ② | [69600, 104400] | [6960, 10440] |
Zhongjiang | 41 | ② | [84800, 127200] | [8480, 12720] |
Santai | 42 | ② | [109600, 164400] | [10960, 16440] |
Yanting | 43 | ② | [110000, 165000] | [11000, 16500] |
Zitong | 44 | ② | [125200, 187800] | [12520, 18780] |
Deyang | 45 | ② | [173760, 260640] | [17376, 26064] |
Mianyang | 46 | ② | [184000, 276000] | [18400, 27600] |
Guangyuan | 47 | ③ | [75040, 112560] | [7504, 11256] |
Qingchuan | 48 | ③ | [216400, 324600] | [21640, 32460] |
Walixiang | 49 | ③ | [32960, 49440] | [3296, 4944] |
Banqiaoxiang | 50 | ③ | [39040, 58560] | [3904, 5856] |
Qimaxiang | 51 | ③ | [36000, 54000] | [3600, 5400] |
Yingpanxiang | 52 | ③ | [32800, 49200] | [3280, 4920] |
Lizhou | 53 | ③ | [71200, 106800] | [7120, 10680] |
Chaotian | 54 | ③ | [66400, 99600] | [6640, 9960] |
Cangxi | 55 | ③ | [125200, 187800] | [12520, 18780] |
Jiange | 56 | ③ | [62000, 93000] | [6200, 9300] |
Yuanba | 57 | ③ | [71200, 106800] | [7120, 10680] |
Num. | Transportation modes | Departure point( |
Destination point( |
||||
1 | HC | 8 | 2 | 2 | 0.15 | 100 | 0 |
2 | HC | 8 | 2 | 4 | 0.18 | 100 | 0 |
3 | HC | 8 | 2 | 9 | 0.43 | 100 | 0 |
4 | HC | 8 | 2 | 16 | 0.47 | 100 | 0 |
5 | R | 8.2 | 1 | 5 | 0.32 | 150 | 6 |
6 | R | 9.3 | 1 | 13 | 0.32 | 150 | 6 |
7 | R | 9 | 1 | 14 | 0.23 | 170 | 6 |
8 | R | 10.2 | 1 | 15 | 0.42 | 170 | 6 |
9 | A | 8.2 | 3 | 11 | 3 | 800 | 4 |
10 | A | 8.8 | 3 | 12 | 0.9 | 800 | 4 |
11 | A | 9 | 3 | 13 | 1.8 | 800 | 4 |
12 | A | 8.5 | 3 | 14 | 0.6 | 800 | 4 |
13 | A | 8.7 | 3 | 15 | 6.6 | 800 | 4 |
14 | HC | 8 | 1 | 1 | [1.60, 2.40] | 80 | 0 |
15 | HC | 8 | 1 | 3 | [1.50, 2.26] | 80 | 0 |
16 | HC | 8 | 1 | 12 | [1.95, 2.93] | 80 | 0 |
17 | HC | 8 | 1 | 13 | [3.01, 4.51] | 80 | 0 |
18 | HC | 8 | 1 | 11 | [5.09, 7.63] | 80 | 0 |
19 | HC | 8 | 1 | 8 | [1.95, 2.93] | 80 | 0 |
20 | HC | 8 | 1 | 14 | [2.45, 3.67] | 90 | 0 |
21 | HC | 8 | 1 | 15 | [6.77, 10.15] | 90 | 0 |
22 | HC | 8 | 1 | 16 | [9.92, 14.88] | 90 | 0 |
23 | HC | 8 | 1 | 18 | [6.53, 9.79] | 90 | 0 |
24 | HC | 8 | 1 | 5 | [18.88, 28.32] | 90 | 0 |
25 | HC | 8 | 1 | 6 | [2.08, 3.12] | 90 | 0 |
26 | HC | 8 | 1 | 7 | [2.08, 3.12] | 90 | 0 |
27 | HC | 8 | 1 | 10 | [13.44, 20.16] | 90 | 0 |
28 | HC | 8 | 1 | 17 | [9.68, 14.52] | 85 | 0 |
29 | HC | 8 | 2 | 1 | [1.60, 2.40] | 85 | 0 |
30 | HC | 8 | 2 | 3 | [1.52, 2.28] | 85 | 0 |
31 | HC | 8 | 2 | 12 | [1.92, 2.88] | 85 | 0 |
32 | HC | 8 | 2 | 13 | [3.04, 4.56] | 85 | 0 |
33 | HC | 8 | 2 | 11 | [5.28, 7.92] | 85 | 0 |
34 | HC | 8 | 2 | 8 | [2.27, 3.41] | 85 | 0 |
35 | HC | 8 | 2 | 14 | [2.77, 4.15] | 85 | 0 |
36 | HC | 8 | 2 | 15 | [7.09, 10.63] | 85 | 0 |
37 | HC | 8 | 2 | 16 | [10.24, 15.36] | 85 | 0 |
38 | HC | 8 | 2 | 18 | [6.85, 10.27] | 85 | 0 |
39 | HC | 8 | 2 | 5 | [19.20, 28.80] | 80 | 0 |
40 | HC | 8 | 2 | 6 | [2.40, 3.60] | 80 | 0 |
41 | HC | 8 | 2 | 7 | [2.40, 3.60] | 80 | 0 |
42 | HC | 8 | 2 | 10 | [13.76, 20.64] | 80 | 0 |
43 | HC | 8 | 2 | 17 | [10.00, 15.00] | 80 | 0 |
44 | HC | 8 | 3 | 1 | [1.36, 2.04] | 90 | 0 |
45 | HC | 8 | 3 | 3 | [1.26, 1.90] | 90 | 0 |
46 | HC | 8 | 3 | 12 | [1.71, 2.57] | 90 | 0 |
47 | HC | 8 | 3 | 13 | [2.77, 4.15] | 90 | 0 |
48 | HC | 8 | 3 | 11 | [4.85, 7.27] | 90 | 0 |
49 | HC | 8 | 3 | 8 | [1.71, 2.57] | 90 | 0 |
50 | HC | 8 | 3 | 14 | [2.21, 3.31] | 90 | 0 |
51 | HC | 8 | 3 | 15 | [6.53, 9.79] | 90 | 0 |
52 | HC | 8 | 3 | 16 | [9.68, 14.52] | 90 | 0 |
53 | HC | 8 | 3 | 18 | [6.29, 9.43] | 85 | 0 |
54 | HC | 8 | 3 | 5 | [18.64, 27.96] | 85 | 0 |
55 | HC | 8 | 3 | 6 | [1.84, 2.76] | 85 | 0 |
56 | HC | 8 | 3 | 7 | [1.84, 2.76] | 85 | 0 |
57 | HC | 8 | 3 | 10 | [13.20, 19.80] | 85 | 0 |
58 | HC | 8 | 3 | 17 | [9.44, 14.16] | 85 | 0 |
Num. | Transportation modes | Departure point( |
Destination point( |
||||
1 | HC | 8 | 2 | 2 | 0.15 | 100 | 0 |
2 | HC | 8 | 2 | 4 | 0.18 | 100 | 0 |
3 | HC | 8 | 2 | 9 | 0.43 | 100 | 0 |
4 | HC | 8 | 2 | 16 | 0.47 | 100 | 0 |
5 | R | 8.2 | 1 | 5 | 0.32 | 150 | 6 |
6 | R | 9.3 | 1 | 13 | 0.32 | 150 | 6 |
7 | R | 9 | 1 | 14 | 0.23 | 170 | 6 |
8 | R | 10.2 | 1 | 15 | 0.42 | 170 | 6 |
9 | A | 8.2 | 3 | 11 | 3 | 800 | 4 |
10 | A | 8.8 | 3 | 12 | 0.9 | 800 | 4 |
11 | A | 9 | 3 | 13 | 1.8 | 800 | 4 |
12 | A | 8.5 | 3 | 14 | 0.6 | 800 | 4 |
13 | A | 8.7 | 3 | 15 | 6.6 | 800 | 4 |
14 | HC | 8 | 1 | 1 | [1.60, 2.40] | 80 | 0 |
15 | HC | 8 | 1 | 3 | [1.50, 2.26] | 80 | 0 |
16 | HC | 8 | 1 | 12 | [1.95, 2.93] | 80 | 0 |
17 | HC | 8 | 1 | 13 | [3.01, 4.51] | 80 | 0 |
18 | HC | 8 | 1 | 11 | [5.09, 7.63] | 80 | 0 |
19 | HC | 8 | 1 | 8 | [1.95, 2.93] | 80 | 0 |
20 | HC | 8 | 1 | 14 | [2.45, 3.67] | 90 | 0 |
21 | HC | 8 | 1 | 15 | [6.77, 10.15] | 90 | 0 |
22 | HC | 8 | 1 | 16 | [9.92, 14.88] | 90 | 0 |
23 | HC | 8 | 1 | 18 | [6.53, 9.79] | 90 | 0 |
24 | HC | 8 | 1 | 5 | [18.88, 28.32] | 90 | 0 |
25 | HC | 8 | 1 | 6 | [2.08, 3.12] | 90 | 0 |
26 | HC | 8 | 1 | 7 | [2.08, 3.12] | 90 | 0 |
27 | HC | 8 | 1 | 10 | [13.44, 20.16] | 90 | 0 |
28 | HC | 8 | 1 | 17 | [9.68, 14.52] | 85 | 0 |
29 | HC | 8 | 2 | 1 | [1.60, 2.40] | 85 | 0 |
30 | HC | 8 | 2 | 3 | [1.52, 2.28] | 85 | 0 |
31 | HC | 8 | 2 | 12 | [1.92, 2.88] | 85 | 0 |
32 | HC | 8 | 2 | 13 | [3.04, 4.56] | 85 | 0 |
33 | HC | 8 | 2 | 11 | [5.28, 7.92] | 85 | 0 |
34 | HC | 8 | 2 | 8 | [2.27, 3.41] | 85 | 0 |
35 | HC | 8 | 2 | 14 | [2.77, 4.15] | 85 | 0 |
36 | HC | 8 | 2 | 15 | [7.09, 10.63] | 85 | 0 |
37 | HC | 8 | 2 | 16 | [10.24, 15.36] | 85 | 0 |
38 | HC | 8 | 2 | 18 | [6.85, 10.27] | 85 | 0 |
39 | HC | 8 | 2 | 5 | [19.20, 28.80] | 80 | 0 |
40 | HC | 8 | 2 | 6 | [2.40, 3.60] | 80 | 0 |
41 | HC | 8 | 2 | 7 | [2.40, 3.60] | 80 | 0 |
42 | HC | 8 | 2 | 10 | [13.76, 20.64] | 80 | 0 |
43 | HC | 8 | 2 | 17 | [10.00, 15.00] | 80 | 0 |
44 | HC | 8 | 3 | 1 | [1.36, 2.04] | 90 | 0 |
45 | HC | 8 | 3 | 3 | [1.26, 1.90] | 90 | 0 |
46 | HC | 8 | 3 | 12 | [1.71, 2.57] | 90 | 0 |
47 | HC | 8 | 3 | 13 | [2.77, 4.15] | 90 | 0 |
48 | HC | 8 | 3 | 11 | [4.85, 7.27] | 90 | 0 |
49 | HC | 8 | 3 | 8 | [1.71, 2.57] | 90 | 0 |
50 | HC | 8 | 3 | 14 | [2.21, 3.31] | 90 | 0 |
51 | HC | 8 | 3 | 15 | [6.53, 9.79] | 90 | 0 |
52 | HC | 8 | 3 | 16 | [9.68, 14.52] | 90 | 0 |
53 | HC | 8 | 3 | 18 | [6.29, 9.43] | 85 | 0 |
54 | HC | 8 | 3 | 5 | [18.64, 27.96] | 85 | 0 |
55 | HC | 8 | 3 | 6 | [1.84, 2.76] | 85 | 0 |
56 | HC | 8 | 3 | 7 | [1.84, 2.76] | 85 | 0 |
57 | HC | 8 | 3 | 10 | [13.20, 19.80] | 85 | 0 |
58 | HC | 8 | 3 | 17 | [9.44, 14.16] | 85 | 0 |
Depart | Destin | Depart | Destin | ||||||
ure | ation | ure | ation | ||||||
Num. | point | point | Num. | point | point | ||||
( |
( |
( |
( |
||||||
1 | 1 | 1 | 0 | 40 | 124 | 10 | 45 | [9.36, 14.04] | 38 |
2 | 1 | 2 | [0.32, 0.48] | 40 | 125 | 10 | 46 | [8.69, 13.03] | 38 |
3 | 1 | 3 | [0.70, 1.06] | 40 | 126 | 11 | 24 | [1.89, 2.83] | 38 |
4 | 1 | 4 | [0.96, 1.44] | 40 | 127 | 11 | 25 | [2.45, 3.67] | 38 |
5 | 1 | 5 | [1.41, 2.11] | 40 | 128 | 11 | 26 | [1.89, 2.83] | 39 |
6 | 1 | 21 | [10.40, 15.60] | 38 | 129 | 11 | 27 | [3.81, 5.71] | 39 |
7 | 2 | 6 | [0.00, 0.00] | 38 | 130 | 11 | 28 | [2.77, 4.15] | 39 |
8 | 2 | 7 | [0.22, 0.34] | 38 | 131 | 11 | 29 | [3.01, 4.51] | 39 |
9 | 2 | 8 | [0.29, 0.43] | 38 | 132 | 11 | 30 | [2.64, 3.96] | 39 |
10 | 2 | 9 | [0.42, 0.62] | 38 | 133 | 11 | 31 | [3.36, 5.04] | 39 |
11 | 2 | 10 | [0.18, 0.26] | 38 | 134 | 11 | 32 | [2.48, 3.72] | 39 |
12 | 2 | 11 | [6.56, 9.84] | 35 | 135 | 11 | 33 | [2.56, 3.84] | 39 |
13 | 2 | 12 | [7.01, 10.51] | 35 | 136 | 11 | 34 | [2.75, 4.13] | 39 |
14 | 2 | 13 | [4.96, 7.44] | 35 | 137 | 11 | 35 | [2.88, 4.32] | 39 |
15 | 2 | 14 | [4.16, 6.24] | 35 | 138 | 11 | 40 | [2.40, 3.60] | 39 |
16 | 2 | 15 | [11.06, 16.58] | 35 | 139 | 11 | 41 | [4.00, 6.00] | 40 |
17 | 2 | 16 | [7.86, 11.78] | 35 | 140 | 11 | 42 | [2.48, 3.72] | 40 |
18 | 2 | 17 | [9.78, 14.66] | 35 | 141 | 11 | 43 | [4.19, 6.29] | 40 |
19 | 2 | 18 | [9.58, 14.38] | 43 | 142 | 11 | 44 | [3.01, 4.51] | 40 |
20 | 2 | 19 | [11.38, 17.06] | 43 | 143 | 11 | 45 | [2.40, 3.60] | 40 |
21 | 2 | 20 | [10.69, 16.03] | 43 | 144 | 11 | 46 | [1.65, 2.47] | 38 |
22 | 2 | 22 | [7.52, 11.28] | 43 | 145 | 12 | 24 | [1.63, 2.45] | 38 |
23 | 2 | 23 | [7.22, 10.82] | 43 | 146 | 12 | 25 | [2.24, 3.36] | 38 |
24 | 3 | 1 | [1.33, 1.99] | 43 | 147 | 12 | 26 | [1.63, 2.45] | 38 |
25 | 3 | 2 | [1.65, 2.47] | 43 | 148 | 12 | 27 | [3.60, 5.40] | 38 |
26 | 3 | 3 | [2.13, 3.19] | 43 | 149 | 12 | 28 | [1.09, 1.63] | 38 |
27 | 3 | 4 | [2.13, 3.19] | 43 | 150 | 12 | 29 | [1.60, 2.40] | 35 |
28 | 3 | 5 | [2.67, 4.01] | 43 | 151 | 12 | 30 | [1.12, 1.68] | 35 |
29 | 3 | 21 | [11.36, 17.04] | 38 | 152 | 12 | 31 | [2.00, 3.00] | 35 |
30 | 4 | 6 | [2.61, 3.91] | 38 | 153 | 12 | 32 | [1.44, 2.16] | 35 |
31 | 4 | 7 | [10.61, 15.91] | 38 | 154 | 12 | 33 | [1.60, 2.40] | 35 |
32 | 4 | 8 | [4.16, 6.24] | 38 | 155 | 12 | 34 | [2.08, 3.12] | 35 |
33 | 4 | 9 | [4.53, 6.79] | 38 | 156 | 12 | 35 | [1.84, 2.76] | 35 |
34 | 4 | 10 | [4.35, 6.53] | 38 | 157 | 12 | 40 | [0.93, 1.39] | 43 |
35 | 4 | 11 | [5.04, 7.56] | 38 | 158 | 12 | 41 | [2.03, 3.05] | 43 |
36 | 4 | 12 | [5.20, 7.80] | 39 | 159 | 12 | 42 | [2.85, 4.27] | 43 |
37 | 4 | 13 | [3.60, 5.40] | 39 | 160 | 12 | 43 | [4.67, 7.01] | 43 |
38 | 4 | 14 | [3.76, 5.64] | 39 | 161 | 12 | 44 | [3.52, 5.28] | 43 |
39 | 4 | 15 | 0 | 39 | 162 | 12 | 45 | 0 | 43 |
40 | 4 | 16 | [4.24, 6.36] | 39 | 163 | 12 | 46 | [1.55, 2.33] | 43 |
41 | 4 | 17 | [5.12, 7.68] | 39 | 164 | 13 | 24 | [0.67, 1.01] | 43 |
42 | 4 | 18 | [5.28, 7.92] | 39 | 165 | 13 | 25 | [1.23, 1.85] | 43 |
43 | 4 | 19 | [0.32, 0.48] | 39 | 166 | 13 | 26 | [1.01, 1.51] | 43 |
44 | 4 | 20 | [5.76, 8.64] | 39 | 167 | 13 | 27 | [2.59, 3.89] | 38 |
45 | 4 | 22 | [9.84, 14.76] | 39 | 168 | 13 | 28 | [1.81, 2.71] | 38 |
46 | 4 | 23 | [9.60, 14.40] | 39 | 169 | 13 | 29 | [2.08, 3.12] | 38 |
47 | 5 | 1 | [18.61, 27.91] | 40 | 170 | 13 | 30 | [1.68, 2.52] | 38 |
48 | 5 | 2 | [18.85, 28.27] | 40 | 171 | 13 | 31 | [2.40, 3.60] | 38 |
49 | 5 | 3 | [18.99, 28.49] | 40 | 172 | 13 | 32 | [1.52, 2.28] | 38 |
50 | 5 | 4 | [19.73, 29.59] | 40 | 173 | 13 | 33 | [1.68, 2.52] | 38 |
51 | 5 | 5 | [19.78, 29.66] | 40 | 174 | 13 | 34 | [1.52, 2.28] | 39 |
52 | 5 | 6 | [15.20, 22.80] | 38 | 175 | 13 | 35 | [1.95, 2.93] | 39 |
53 | 5 | 7 | [22.21, 33.31] | 38 | 176 | 13 | 40 | [0.99, 1.49] | 39 |
54 | 5 | 8 | [13.38, 20.06] | 38 | 177 | 13 | 41 | [2.88, 4.32] | 39 |
55 | 5 | 9 | [13.20, 19.80] | 38 | 178 | 13 | 42 | [2.08, 3.12] | 39 |
56 | 5 | 10 | [13.14, 19.70] | 38 | 179 | 13 | 43 | [3.81, 5.71] | 39 |
57 | 5 | 11 | [21.44, 32.16] | 38 | 180 | 13 | 44 | [2.56, 3.84] | 39 |
58 | 5 | 12 | [22.72, 34.08] | 35 | 181 | 13 | 45 | [1.55, 2.33] | 39 |
59 | 5 | 13 | [22.56, 33.84] | 35 | 182 | 13 | 46 | 0 | 39 |
60 | 5 | 14 | [22.72, 34.08] | 35 | 183 | 14 | 24 | [2.08, 3.12] | 39 |
61 | 5 | 15 | [17.60, 26.40] | 35 | 184 | 14 | 25 | [2.64, 3.96] | 39 |
62 | 5 | 16 | [21.12, 31.68] | 35 | 185 | 14 | 26 | [2.00, 3.00] | 40 |
63 | 5 | 17 | [22.72, 34.08] | 35 | 186 | 14 | 27 | [4.00, 6.00] | 40 |
64 | 5 | 18 | [22.56, 33.84] | 35 | 187 | 14 | 28 | [1.04, 1.56] | 40 |
65 | 5 | 19 | [19.04, 28.56] | 43 | 188 | 14 | 29 | [1.49, 2.23] | 40 |
66 | 5 | 20 | [24.32, 36.48] | 43 | 189 | 14 | 30 | [1.15, 1.73] | 40 |
67 | 5 | 21 | [16.00, 24.00] | 43 | 190 | 14 | 31 | [1.87, 2.81] | 38 |
68 | 5 | 22 | [17.92, 26.88] | 43 | 191 | 14 | 32 | [1.68, 2.52] | 38 |
69 | 5 | 23 | [8.00, 12.00] | 43 | 192 | 14 | 33 | [1.84, 2.76] | 38 |
70 | 6 | 1 | [1.81, 2.71] | 43 | 193 | 14 | 34 | [2.53, 3.79] | 38 |
71 | 6 | 2 | [1.92, 2.88] | 43 | 194 | 14 | 35 | [2.11, 3.17] | 38 |
72 | 6 | 3 | [1.39, 2.09] | 43 | 195 | 14 | 40 | [1.55, 2.33] | 38 |
73 | 6 | 4 | [2.40, 3.60] | 43 | 196 | 14 | 41 | [2.61, 3.91] | 35 |
74 | 6 | 5 | [2.99, 4.49] | 43 | 197 | 14 | 42 | [3.20, 4.80] | 35 |
75 | 6 | 21 | [11.44, 17.16] | 38 | 198 | 14 | 43 | [5.04, 7.56] | 35 |
76 | 6 | 22 | [16.00, 24.00] | 38 | 199 | 14 | 44 | [3.89, 5.83] | 35 |
77 | 6 | 23 | [16.00, 24.00] | 38 | 200 | 14 | 45 | [0.91, 1.37] | 35 |
78 | 7 | 1 | [2.03, 3.05] | 38 | 201 | 14 | 46 | [1.92, 2.88] | 35 |
79 | 7 | 2 | [2.16, 3.24] | 38 | 202 | 15 | 47 | 0 | 35 |
80 | 7 | 3 | [1.60, 2.40] | 38 | 203 | 15 | 48 | [5.12, 7.68] | 43 |
81 | 7 | 4 | [2.67, 4.01] | 38 | 204 | 15 | 49 | [5.39, 8.09] | 43 |
82 | 7 | 5 | [3.20, 4.80] | 39 | 205 | 15 | 50 | [4.40, 6.60] | 43 |
83 | 7 | 21 | [11.68, 17.52] | 39 | 206 | 15 | 51 | [4.59, 6.89] | 43 |
84 | 8 | 24 | [1.92, 2.88] | 39 | 207 | 15 | 52 | [3.63, 5.45] | 43 |
85 | 8 | 25 | [2.26, 3.38] | 39 | 208 | 15 | 53 | [0.08, 0.12] | 43 |
86 | 8 | 26 | [1.33, 1.99] | 39 | 209 | 15 | 54 | [1.84, 2.76] | 43 |
87 | 8 | 27 | [3.30, 4.94] | 39 | 210 | 15 | 55 | [3.57, 5.35] | 43 |
88 | 8 | 28 | 0 | 39 | 211 | 15 | 56 | [1.28, 1.92] | 43 |
89 | 8 | 29 | [0.83, 1.25] | 39 | 212 | 15 | 57 | [1.17, 1.75] | 43 |
90 | 8 | 30 | [0.48, 0.72] | 39 | 213 | 16 | 47 | [0.37, 0.55] | 38 |
91 | 8 | 31 | [1.20, 1.80] | 39 | 214 | 16 | 48 | 0 | 38 |
92 | 8 | 32 | [1.01, 1.51] | 39 | 215 | 16 | 49 | [0.88, 1.32] | 38 |
93 | 8 | 33 | [1.17, 1.75] | 40 | 216 | 16 | 50 | [0.72, 1.08] | 38 |
94 | 8 | 34 | [1.79, 2.69] | 40 | 217 | 16 | 51 | [1.01, 1.51] | 38 |
95 | 8 | 35 | [1.41, 2.11] | 40 | 218 | 16 | 52 | [1.60, 2.40] | 38 |
96 | 8 | 40 | [1.94, 2.90] | 40 | 219 | 16 | 53 | [5.09, 7.63] | 38 |
97 | 8 | 41 | [3.31, 4.97] | 40 | 220 | 16 | 54 | [6.66, 9.98] | 39 |
98 | 8 | 42 | [3.07, 4.61] | 38 | 221 | 16 | 55 | [6.75, 10.13] | 39 |
99 | 8 | 43 | [4.88, 7.32] | 38 | 222 | 16 | 56 | [4.53, 6.79] | 39 |
100 | 8 | 44 | [3.73, 5.59] | 38 | 223 | 16 | 57 | [5.60, 8.40] | 39 |
101 | 8 | 45 | [1.36, 2.04] | 38 | 224 | 17 | 47 | [2.16, 3.24] | 39 |
102 | 8 | 46 | [1.76, 2.64] | 38 | 225 | 17 | 48 | [6.48, 9.72] | 39 |
103 | 9 | 36 | [1.60, 2.40] | 38 | 226 | 17 | 49 | [6.56, 9.84] | 39 |
104 | 9 | 37 | [0.93, 1.39] | 35 | 227 | 17 | 50 | [5.79, 8.69] | 39 |
105 | 9 | 38 | [1.55, 2.33] | 35 | 228 | 17 | 51 | [5.97, 8.95] | 39 |
106 | 9 | 39 | [2.03, 3.05] | 35 | 229 | 17 | 52 | [5.01, 7.51] | 39 |
107 | 10 | 24 | [8.67, 13.01] | 35 | 230 | 17 | 53 | [2.29, 3.43] | 39 |
108 | 10 | 25 | [9.44, 14.16] | 35 | 231 | 17 | 54 | [4.00, 6.00] | 40 |
109 | 10 | 26 | [8.85, 13.27] | 35 | 232 | 17 | 55 | [3.55, 5.33] | 40 |
110 | 10 | 27 | [10.80, 16.20] | 35 | 233 | 17 | 56 | [2.83, 4.25] | 40 |
111 | 10 | 28 | [9.68, 14.52] | 43 | 234 | 17 | 57 | [1.20, 1.80] | 40 |
112 | 10 | 28 | [9.92, 14.88] | 43 | 235 | 18 | 47 | [1.49, 2.23] | 40 |
113 | 10 | 30 | [9.55, 14.33] | 43 | 236 | 18 | 48 | [4.53, 6.79] | 38 |
114 | 10 | 31 | [10.27, 15.41] | 43 | 237 | 18 | 49 | [4.40, 6.60] | 38 |
115 | 10 | 32 | [9.39, 14.09] | 43 | 238 | 18 | 50 | [4.13, 6.19] | 38 |
116 | 10 | 33 | [9.52, 14.28] | 43 | 239 | 18 | 51 | [4.32, 6.48] | 38 |
117 | 10 | 34 | [9.71, 14.57] | 43 | 240 | 18 | 52 | [3.36, 5.04] | 38 |
118 | 10 | 35 | [9.79, 14.69] | 43 | 241 | 18 | 53 | [1.47, 2.21] | 38 |
119 | 10 | 40 | [8.80, 13.20] | 43 | 242 | 18 | 54 | [2.82, 4.22] | 35 |
120 | 10 | 41 | [11.01, 16.51] | 43 | 243 | 18 | 55 | [2.69, 4.03] | 35 |
121 | 10 | 42 | [9.33, 13.99] | 38 | 244 | 18 | 56 | 0 | 35 |
122 | 10 | 43 | [11.15, 16.73] | 38 | 245 | 18 | 57 | [1.55, 2.33] | 35 |
123 | 10 | 44 | [9.89, 14.83] | 38 | - | - | - | - | - |
Depart | Destin | Depart | Destin | ||||||
ure | ation | ure | ation | ||||||
Num. | point | point | Num. | point | point | ||||
( |
( |
( |
( |
||||||
1 | 1 | 1 | 0 | 40 | 124 | 10 | 45 | [9.36, 14.04] | 38 |
2 | 1 | 2 | [0.32, 0.48] | 40 | 125 | 10 | 46 | [8.69, 13.03] | 38 |
3 | 1 | 3 | [0.70, 1.06] | 40 | 126 | 11 | 24 | [1.89, 2.83] | 38 |
4 | 1 | 4 | [0.96, 1.44] | 40 | 127 | 11 | 25 | [2.45, 3.67] | 38 |
5 | 1 | 5 | [1.41, 2.11] | 40 | 128 | 11 | 26 | [1.89, 2.83] | 39 |
6 | 1 | 21 | [10.40, 15.60] | 38 | 129 | 11 | 27 | [3.81, 5.71] | 39 |
7 | 2 | 6 | [0.00, 0.00] | 38 | 130 | 11 | 28 | [2.77, 4.15] | 39 |
8 | 2 | 7 | [0.22, 0.34] | 38 | 131 | 11 | 29 | [3.01, 4.51] | 39 |
9 | 2 | 8 | [0.29, 0.43] | 38 | 132 | 11 | 30 | [2.64, 3.96] | 39 |
10 | 2 | 9 | [0.42, 0.62] | 38 | 133 | 11 | 31 | [3.36, 5.04] | 39 |
11 | 2 | 10 | [0.18, 0.26] | 38 | 134 | 11 | 32 | [2.48, 3.72] | 39 |
12 | 2 | 11 | [6.56, 9.84] | 35 | 135 | 11 | 33 | [2.56, 3.84] | 39 |
13 | 2 | 12 | [7.01, 10.51] | 35 | 136 | 11 | 34 | [2.75, 4.13] | 39 |
14 | 2 | 13 | [4.96, 7.44] | 35 | 137 | 11 | 35 | [2.88, 4.32] | 39 |
15 | 2 | 14 | [4.16, 6.24] | 35 | 138 | 11 | 40 | [2.40, 3.60] | 39 |
16 | 2 | 15 | [11.06, 16.58] | 35 | 139 | 11 | 41 | [4.00, 6.00] | 40 |
17 | 2 | 16 | [7.86, 11.78] | 35 | 140 | 11 | 42 | [2.48, 3.72] | 40 |
18 | 2 | 17 | [9.78, 14.66] | 35 | 141 | 11 | 43 | [4.19, 6.29] | 40 |
19 | 2 | 18 | [9.58, 14.38] | 43 | 142 | 11 | 44 | [3.01, 4.51] | 40 |
20 | 2 | 19 | [11.38, 17.06] | 43 | 143 | 11 | 45 | [2.40, 3.60] | 40 |
21 | 2 | 20 | [10.69, 16.03] | 43 | 144 | 11 | 46 | [1.65, 2.47] | 38 |
22 | 2 | 22 | [7.52, 11.28] | 43 | 145 | 12 | 24 | [1.63, 2.45] | 38 |
23 | 2 | 23 | [7.22, 10.82] | 43 | 146 | 12 | 25 | [2.24, 3.36] | 38 |
24 | 3 | 1 | [1.33, 1.99] | 43 | 147 | 12 | 26 | [1.63, 2.45] | 38 |
25 | 3 | 2 | [1.65, 2.47] | 43 | 148 | 12 | 27 | [3.60, 5.40] | 38 |
26 | 3 | 3 | [2.13, 3.19] | 43 | 149 | 12 | 28 | [1.09, 1.63] | 38 |
27 | 3 | 4 | [2.13, 3.19] | 43 | 150 | 12 | 29 | [1.60, 2.40] | 35 |
28 | 3 | 5 | [2.67, 4.01] | 43 | 151 | 12 | 30 | [1.12, 1.68] | 35 |
29 | 3 | 21 | [11.36, 17.04] | 38 | 152 | 12 | 31 | [2.00, 3.00] | 35 |
30 | 4 | 6 | [2.61, 3.91] | 38 | 153 | 12 | 32 | [1.44, 2.16] | 35 |
31 | 4 | 7 | [10.61, 15.91] | 38 | 154 | 12 | 33 | [1.60, 2.40] | 35 |
32 | 4 | 8 | [4.16, 6.24] | 38 | 155 | 12 | 34 | [2.08, 3.12] | 35 |
33 | 4 | 9 | [4.53, 6.79] | 38 | 156 | 12 | 35 | [1.84, 2.76] | 35 |
34 | 4 | 10 | [4.35, 6.53] | 38 | 157 | 12 | 40 | [0.93, 1.39] | 43 |
35 | 4 | 11 | [5.04, 7.56] | 38 | 158 | 12 | 41 | [2.03, 3.05] | 43 |
36 | 4 | 12 | [5.20, 7.80] | 39 | 159 | 12 | 42 | [2.85, 4.27] | 43 |
37 | 4 | 13 | [3.60, 5.40] | 39 | 160 | 12 | 43 | [4.67, 7.01] | 43 |
38 | 4 | 14 | [3.76, 5.64] | 39 | 161 | 12 | 44 | [3.52, 5.28] | 43 |
39 | 4 | 15 | 0 | 39 | 162 | 12 | 45 | 0 | 43 |
40 | 4 | 16 | [4.24, 6.36] | 39 | 163 | 12 | 46 | [1.55, 2.33] | 43 |
41 | 4 | 17 | [5.12, 7.68] | 39 | 164 | 13 | 24 | [0.67, 1.01] | 43 |
42 | 4 | 18 | [5.28, 7.92] | 39 | 165 | 13 | 25 | [1.23, 1.85] | 43 |
43 | 4 | 19 | [0.32, 0.48] | 39 | 166 | 13 | 26 | [1.01, 1.51] | 43 |
44 | 4 | 20 | [5.76, 8.64] | 39 | 167 | 13 | 27 | [2.59, 3.89] | 38 |
45 | 4 | 22 | [9.84, 14.76] | 39 | 168 | 13 | 28 | [1.81, 2.71] | 38 |
46 | 4 | 23 | [9.60, 14.40] | 39 | 169 | 13 | 29 | [2.08, 3.12] | 38 |
47 | 5 | 1 | [18.61, 27.91] | 40 | 170 | 13 | 30 | [1.68, 2.52] | 38 |
48 | 5 | 2 | [18.85, 28.27] | 40 | 171 | 13 | 31 | [2.40, 3.60] | 38 |
49 | 5 | 3 | [18.99, 28.49] | 40 | 172 | 13 | 32 | [1.52, 2.28] | 38 |
50 | 5 | 4 | [19.73, 29.59] | 40 | 173 | 13 | 33 | [1.68, 2.52] | 38 |
51 | 5 | 5 | [19.78, 29.66] | 40 | 174 | 13 | 34 | [1.52, 2.28] | 39 |
52 | 5 | 6 | [15.20, 22.80] | 38 | 175 | 13 | 35 | [1.95, 2.93] | 39 |
53 | 5 | 7 | [22.21, 33.31] | 38 | 176 | 13 | 40 | [0.99, 1.49] | 39 |
54 | 5 | 8 | [13.38, 20.06] | 38 | 177 | 13 | 41 | [2.88, 4.32] | 39 |
55 | 5 | 9 | [13.20, 19.80] | 38 | 178 | 13 | 42 | [2.08, 3.12] | 39 |
56 | 5 | 10 | [13.14, 19.70] | 38 | 179 | 13 | 43 | [3.81, 5.71] | 39 |
57 | 5 | 11 | [21.44, 32.16] | 38 | 180 | 13 | 44 | [2.56, 3.84] | 39 |
58 | 5 | 12 | [22.72, 34.08] | 35 | 181 | 13 | 45 | [1.55, 2.33] | 39 |
59 | 5 | 13 | [22.56, 33.84] | 35 | 182 | 13 | 46 | 0 | 39 |
60 | 5 | 14 | [22.72, 34.08] | 35 | 183 | 14 | 24 | [2.08, 3.12] | 39 |
61 | 5 | 15 | [17.60, 26.40] | 35 | 184 | 14 | 25 | [2.64, 3.96] | 39 |
62 | 5 | 16 | [21.12, 31.68] | 35 | 185 | 14 | 26 | [2.00, 3.00] | 40 |
63 | 5 | 17 | [22.72, 34.08] | 35 | 186 | 14 | 27 | [4.00, 6.00] | 40 |
64 | 5 | 18 | [22.56, 33.84] | 35 | 187 | 14 | 28 | [1.04, 1.56] | 40 |
65 | 5 | 19 | [19.04, 28.56] | 43 | 188 | 14 | 29 | [1.49, 2.23] | 40 |
66 | 5 | 20 | [24.32, 36.48] | 43 | 189 | 14 | 30 | [1.15, 1.73] | 40 |
67 | 5 | 21 | [16.00, 24.00] | 43 | 190 | 14 | 31 | [1.87, 2.81] | 38 |
68 | 5 | 22 | [17.92, 26.88] | 43 | 191 | 14 | 32 | [1.68, 2.52] | 38 |
69 | 5 | 23 | [8.00, 12.00] | 43 | 192 | 14 | 33 | [1.84, 2.76] | 38 |
70 | 6 | 1 | [1.81, 2.71] | 43 | 193 | 14 | 34 | [2.53, 3.79] | 38 |
71 | 6 | 2 | [1.92, 2.88] | 43 | 194 | 14 | 35 | [2.11, 3.17] | 38 |
72 | 6 | 3 | [1.39, 2.09] | 43 | 195 | 14 | 40 | [1.55, 2.33] | 38 |
73 | 6 | 4 | [2.40, 3.60] | 43 | 196 | 14 | 41 | [2.61, 3.91] | 35 |
74 | 6 | 5 | [2.99, 4.49] | 43 | 197 | 14 | 42 | [3.20, 4.80] | 35 |
75 | 6 | 21 | [11.44, 17.16] | 38 | 198 | 14 | 43 | [5.04, 7.56] | 35 |
76 | 6 | 22 | [16.00, 24.00] | 38 | 199 | 14 | 44 | [3.89, 5.83] | 35 |
77 | 6 | 23 | [16.00, 24.00] | 38 | 200 | 14 | 45 | [0.91, 1.37] | 35 |
78 | 7 | 1 | [2.03, 3.05] | 38 | 201 | 14 | 46 | [1.92, 2.88] | 35 |
79 | 7 | 2 | [2.16, 3.24] | 38 | 202 | 15 | 47 | 0 | 35 |
80 | 7 | 3 | [1.60, 2.40] | 38 | 203 | 15 | 48 | [5.12, 7.68] | 43 |
81 | 7 | 4 | [2.67, 4.01] | 38 | 204 | 15 | 49 | [5.39, 8.09] | 43 |
82 | 7 | 5 | [3.20, 4.80] | 39 | 205 | 15 | 50 | [4.40, 6.60] | 43 |
83 | 7 | 21 | [11.68, 17.52] | 39 | 206 | 15 | 51 | [4.59, 6.89] | 43 |
84 | 8 | 24 | [1.92, 2.88] | 39 | 207 | 15 | 52 | [3.63, 5.45] | 43 |
85 | 8 | 25 | [2.26, 3.38] | 39 | 208 | 15 | 53 | [0.08, 0.12] | 43 |
86 | 8 | 26 | [1.33, 1.99] | 39 | 209 | 15 | 54 | [1.84, 2.76] | 43 |
87 | 8 | 27 | [3.30, 4.94] | 39 | 210 | 15 | 55 | [3.57, 5.35] | 43 |
88 | 8 | 28 | 0 | 39 | 211 | 15 | 56 | [1.28, 1.92] | 43 |
89 | 8 | 29 | [0.83, 1.25] | 39 | 212 | 15 | 57 | [1.17, 1.75] | 43 |
90 | 8 | 30 | [0.48, 0.72] | 39 | 213 | 16 | 47 | [0.37, 0.55] | 38 |
91 | 8 | 31 | [1.20, 1.80] | 39 | 214 | 16 | 48 | 0 | 38 |
92 | 8 | 32 | [1.01, 1.51] | 39 | 215 | 16 | 49 | [0.88, 1.32] | 38 |
93 | 8 | 33 | [1.17, 1.75] | 40 | 216 | 16 | 50 | [0.72, 1.08] | 38 |
94 | 8 | 34 | [1.79, 2.69] | 40 | 217 | 16 | 51 | [1.01, 1.51] | 38 |
95 | 8 | 35 | [1.41, 2.11] | 40 | 218 | 16 | 52 | [1.60, 2.40] | 38 |
96 | 8 | 40 | [1.94, 2.90] | 40 | 219 | 16 | 53 | [5.09, 7.63] | 38 |
97 | 8 | 41 | [3.31, 4.97] | 40 | 220 | 16 | 54 | [6.66, 9.98] | 39 |
98 | 8 | 42 | [3.07, 4.61] | 38 | 221 | 16 | 55 | [6.75, 10.13] | 39 |
99 | 8 | 43 | [4.88, 7.32] | 38 | 222 | 16 | 56 | [4.53, 6.79] | 39 |
100 | 8 | 44 | [3.73, 5.59] | 38 | 223 | 16 | 57 | [5.60, 8.40] | 39 |
101 | 8 | 45 | [1.36, 2.04] | 38 | 224 | 17 | 47 | [2.16, 3.24] | 39 |
102 | 8 | 46 | [1.76, 2.64] | 38 | 225 | 17 | 48 | [6.48, 9.72] | 39 |
103 | 9 | 36 | [1.60, 2.40] | 38 | 226 | 17 | 49 | [6.56, 9.84] | 39 |
104 | 9 | 37 | [0.93, 1.39] | 35 | 227 | 17 | 50 | [5.79, 8.69] | 39 |
105 | 9 | 38 | [1.55, 2.33] | 35 | 228 | 17 | 51 | [5.97, 8.95] | 39 |
106 | 9 | 39 | [2.03, 3.05] | 35 | 229 | 17 | 52 | [5.01, 7.51] | 39 |
107 | 10 | 24 | [8.67, 13.01] | 35 | 230 | 17 | 53 | [2.29, 3.43] | 39 |
108 | 10 | 25 | [9.44, 14.16] | 35 | 231 | 17 | 54 | [4.00, 6.00] | 40 |
109 | 10 | 26 | [8.85, 13.27] | 35 | 232 | 17 | 55 | [3.55, 5.33] | 40 |
110 | 10 | 27 | [10.80, 16.20] | 35 | 233 | 17 | 56 | [2.83, 4.25] | 40 |
111 | 10 | 28 | [9.68, 14.52] | 43 | 234 | 17 | 57 | [1.20, 1.80] | 40 |
112 | 10 | 28 | [9.92, 14.88] | 43 | 235 | 18 | 47 | [1.49, 2.23] | 40 |
113 | 10 | 30 | [9.55, 14.33] | 43 | 236 | 18 | 48 | [4.53, 6.79] | 38 |
114 | 10 | 31 | [10.27, 15.41] | 43 | 237 | 18 | 49 | [4.40, 6.60] | 38 |
115 | 10 | 32 | [9.39, 14.09] | 43 | 238 | 18 | 50 | [4.13, 6.19] | 38 |
116 | 10 | 33 | [9.52, 14.28] | 43 | 239 | 18 | 51 | [4.32, 6.48] | 38 |
117 | 10 | 34 | [9.71, 14.57] | 43 | 240 | 18 | 52 | [3.36, 5.04] | 38 |
118 | 10 | 35 | [9.79, 14.69] | 43 | 241 | 18 | 53 | [1.47, 2.21] | 38 |
119 | 10 | 40 | [8.80, 13.20] | 43 | 242 | 18 | 54 | [2.82, 4.22] | 35 |
120 | 10 | 41 | [11.01, 16.51] | 43 | 243 | 18 | 55 | [2.69, 4.03] | 35 |
121 | 10 | 42 | [9.33, 13.99] | 38 | 244 | 18 | 56 | 0 | 35 |
122 | 10 | 43 | [11.15, 16.73] | 38 | 245 | 18 | 57 | [1.55, 2.33] | 35 |
123 | 10 | 44 | [9.89, 14.83] | 38 | - | - | - | - | - |
Collection centers | Opened temporary transfer facility | Transportation mode | Food (units) | Collection centers | Opened temporary transfer facility | Transportation mode | Daily necessities (units) |
facility | facility | ||||||
Ⅱ | (1) | H | 54849 | Ⅰ | (1) | H | 15869 |
Ⅲ | (1) | H | 71647 | Ⅱ | (12) | H | 13904 |
Ⅲ | (17) | H | 80471 | Ⅰ | (16) | H | 13037 |
Ⅲ | (12) | A | 384669 | Ⅰ | (17) | H | 9487 |
Ⅲ | (13) | A | 304150 | Ⅲ | (12) | A | 49057 |
Ⅲ | (14) | A | 153849 | Ⅲ | (13) | A | 80943 |
Ⅲ | (15) | A | 205214 | Ⅰ | (14) | R | 25568 |
Ⅰ | (13) | R | 182926 | Ⅰ | (15) | R | 26039 |
Ⅰ | (15) | R | 17074 | Ⅱ | (2) | HC | 12652 |
Ⅱ | (2) | HC | 113786 | Ⅱ | (4) | HC | 18159 |
Ⅱ | (4) | HC | 80529 | Ⅱ | (9) | HC | 5805 |
Ⅱ | (9) | HC | 77345 | Ⅱ | (16) | HC | 11686 |
Ⅱ | (6) | HC | 107638 | - | - | - | - |
Collection centers | Opened temporary transfer facility | Transportation mode | Food (units) | Collection centers | Opened temporary transfer facility | Transportation mode | Daily necessities (units) |
facility | facility | ||||||
Ⅱ | (1) | H | 54849 | Ⅰ | (1) | H | 15869 |
Ⅲ | (1) | H | 71647 | Ⅱ | (12) | H | 13904 |
Ⅲ | (17) | H | 80471 | Ⅰ | (16) | H | 13037 |
Ⅲ | (12) | A | 384669 | Ⅰ | (17) | H | 9487 |
Ⅲ | (13) | A | 304150 | Ⅲ | (12) | A | 49057 |
Ⅲ | (14) | A | 153849 | Ⅲ | (13) | A | 80943 |
Ⅲ | (15) | A | 205214 | Ⅰ | (14) | R | 25568 |
Ⅰ | (13) | R | 182926 | Ⅰ | (15) | R | 26039 |
Ⅰ | (15) | R | 17074 | Ⅱ | (2) | HC | 12652 |
Ⅱ | (2) | HC | 113786 | Ⅱ | (4) | HC | 18159 |
Ⅱ | (4) | HC | 80529 | Ⅱ | (9) | HC | 5805 |
Ⅱ | (9) | HC | 77345 | Ⅱ | (16) | HC | 11686 |
Ⅱ | (6) | HC | 107638 | - | - | - | - |
Opened temporary transfer facility | Affected point | Food (units) | Opened temporary transfer facility | Affected point | Daily necessities (units) |
(1) | 1 | 71036 | (1) | 1 | 8753 |
(1) | 2 | 13446 | (1) | 2 | 1657 |
(1) | 3 | 12330 | (1) | 3 | 1519 |
(1) | 4 | 11163 | (1) | 4 | 1376 |
(1) | 5 | 12178 | (1) | 5 | 1501 |
(2) | 6 | 54926 | (2) | 6 | 6768 |
(2) | 7 | 9133 | (2) | 7 | 1126 |
(2) | 8 | 9641 | (2) | 8 | 1188 |
(2) | 9 | 10148 | (2) | 9 | 1251 |
(2) | 10 | 8119 | (2) | 10 | 1001 |
(4) | 11 | 54292 | (4) | 11 | 6690 |
(4) | 12 | 8119 | (4) | 12 | 1001 |
(4) | 13 | 5074 | (4) | 13 | 626 |
(4) | 14 | 12178 | (4) | 14 | 1501 |
(4) | 15 | 78267 | (4) | 15 | 9644 |
(4) | 16 | 10148 | (4) | 16 | 1251 |
(4) | 17 | 9133 | (4) | 17 | 1125 |
(4) | 18 | 8626 | (4) | 18 | 1063 |
(4) | 19 | 8829 | (4) | 19 | 1088 |
(4) | 20 | 7814 | (4) | 20 | 963 |
(1) | 21 | 6343 | (1) | 21 | 1063 |
(2) | 22 | 15730 | (2) | 22 | 1938 |
(2) | 23 | 6089 | (2) | 23 | 719 |
(13) | 24 | 113026 | (13) | 24 | 18783 |
(13) | 25 | 16801 | (13) | 25 | 2792 |
(13) | 26 | 19821 | (13) | 26 | 3294 |
(13) | 27 | 10760 | (13) | 27 | 1789 |
(14) | 28 | 113262 | (14) | 28 | 18822 |
(14) | 29 | 17934 | (14) | 29 | 2981 |
(12) | 30 | 24541 | (12) | 30 | 4078 |
(14) | 31 | 22653 | (14) | 31 | 3765 |
(12) | 32 | 137095 | (12) | 32 | 22782 |
(12) | 33 | 16612 | (12) | 33 | 2761 |
(13) | 34 | 14725 | (13) | 34 | 2447 |
(12) | 35 | 12837 | (12) | 35 | 2134 |
(9) | 36 | 143230 | (9) | 36 | 23802 |
(9) | 37 | 18311 | (9) | 37 | 3043 |
(9) | 38 | 19821 | (9) | 38 | 3294 |
(9) | 39 | 17934 | (9) | 39 | 2981 |
(12) | 40 | 41058 | (12) | 40 | 6643 |
(12) | 41 | 50024 | (12) | 41 | 7529 |
(13) | 42 | 64654 | (13) | 42 | 10744 |
(13) | 43 | 64890 | (13) | 43 | 10783 |
(13) | 44 | 73856 | (13) | 44 | 12273 |
(12) | 45 | 102502 | (12) | 45 | 17034 |
(13) | 46 | 108543 | (13) | 46 | 18038 |
(15) | 47 | 48232 | (15) | 47 | 5687 |
(16) | 48 | 139090 | (16) | 48 | 16399 |
(16) | 49 | 21185 | (16) | 49 | 2498 |
(16) | 50 | 25093 | (16) | 50 | 2959 |
(16) | 51 | 23139 | (16) | 51 | 2728 |
(16) | 52 | 21082 | (16) | 52 | 2486 |
(15) | 53 | 45764 | (15) | 53 | 5396 |
(15) | 54 | 42678 | (15) | 54 | 4862 |
(17) | 55 | 80471 | (17) | 55 | 9487 |
(15) | 56 | 39850 | (15) | 56 | 4698 |
(15) | 57 | 45764 | (15) | 57 | 5396 |
Opened temporary transfer facility | Affected point | Food (units) | Opened temporary transfer facility | Affected point | Daily necessities (units) |
(1) | 1 | 71036 | (1) | 1 | 8753 |
(1) | 2 | 13446 | (1) | 2 | 1657 |
(1) | 3 | 12330 | (1) | 3 | 1519 |
(1) | 4 | 11163 | (1) | 4 | 1376 |
(1) | 5 | 12178 | (1) | 5 | 1501 |
(2) | 6 | 54926 | (2) | 6 | 6768 |
(2) | 7 | 9133 | (2) | 7 | 1126 |
(2) | 8 | 9641 | (2) | 8 | 1188 |
(2) | 9 | 10148 | (2) | 9 | 1251 |
(2) | 10 | 8119 | (2) | 10 | 1001 |
(4) | 11 | 54292 | (4) | 11 | 6690 |
(4) | 12 | 8119 | (4) | 12 | 1001 |
(4) | 13 | 5074 | (4) | 13 | 626 |
(4) | 14 | 12178 | (4) | 14 | 1501 |
(4) | 15 | 78267 | (4) | 15 | 9644 |
(4) | 16 | 10148 | (4) | 16 | 1251 |
(4) | 17 | 9133 | (4) | 17 | 1125 |
(4) | 18 | 8626 | (4) | 18 | 1063 |
(4) | 19 | 8829 | (4) | 19 | 1088 |
(4) | 20 | 7814 | (4) | 20 | 963 |
(1) | 21 | 6343 | (1) | 21 | 1063 |
(2) | 22 | 15730 | (2) | 22 | 1938 |
(2) | 23 | 6089 | (2) | 23 | 719 |
(13) | 24 | 113026 | (13) | 24 | 18783 |
(13) | 25 | 16801 | (13) | 25 | 2792 |
(13) | 26 | 19821 | (13) | 26 | 3294 |
(13) | 27 | 10760 | (13) | 27 | 1789 |
(14) | 28 | 113262 | (14) | 28 | 18822 |
(14) | 29 | 17934 | (14) | 29 | 2981 |
(12) | 30 | 24541 | (12) | 30 | 4078 |
(14) | 31 | 22653 | (14) | 31 | 3765 |
(12) | 32 | 137095 | (12) | 32 | 22782 |
(12) | 33 | 16612 | (12) | 33 | 2761 |
(13) | 34 | 14725 | (13) | 34 | 2447 |
(12) | 35 | 12837 | (12) | 35 | 2134 |
(9) | 36 | 143230 | (9) | 36 | 23802 |
(9) | 37 | 18311 | (9) | 37 | 3043 |
(9) | 38 | 19821 | (9) | 38 | 3294 |
(9) | 39 | 17934 | (9) | 39 | 2981 |
(12) | 40 | 41058 | (12) | 40 | 6643 |
(12) | 41 | 50024 | (12) | 41 | 7529 |
(13) | 42 | 64654 | (13) | 42 | 10744 |
(13) | 43 | 64890 | (13) | 43 | 10783 |
(13) | 44 | 73856 | (13) | 44 | 12273 |
(12) | 45 | 102502 | (12) | 45 | 17034 |
(13) | 46 | 108543 | (13) | 46 | 18038 |
(15) | 47 | 48232 | (15) | 47 | 5687 |
(16) | 48 | 139090 | (16) | 48 | 16399 |
(16) | 49 | 21185 | (16) | 49 | 2498 |
(16) | 50 | 25093 | (16) | 50 | 2959 |
(16) | 51 | 23139 | (16) | 51 | 2728 |
(16) | 52 | 21082 | (16) | 52 | 2486 |
(15) | 53 | 45764 | (15) | 53 | 5396 |
(15) | 54 | 42678 | (15) | 54 | 4862 |
(17) | 55 | 80471 | (17) | 55 | 9487 |
(15) | 56 | 39850 | (15) | 56 | 4698 |
(15) | 57 | 45764 | (15) | 57 | 5396 |
Affected point | Affected point | ||||
food | Daily necessities | food | Daily necessities | ||
1 | 10 | 10 | 30 | 11.1 | 11.8 |
2 | 10.4 | 10.4 | 31 | 11.44 | 11.57 |
3 | 10.88 | 10.88 | 32 | 22.3 | 23 |
4 | 11.2 | 11.2 | 33 | 11.7 | 12.4 |
5 | 11.76 | 11.76 | 34 | 12.7 | 12.7 |
6 | 8.15 | 16.3 | 35 | 12 | 12.7 |
7 | 8.43 | 16.58 | 36 | 30.86 | 39.29 |
8 | 8.51 | 16.66 | 37 | 18.02 | 26.45 |
9 | 8.67 | 16.82 | 38 | 18.8 | 27.23 |
10 | 8.37 | 16.52 | 39 | 19.4 | 27.83 |
11 | 35.26 | 22.66 | 40 | 10.86 | 11.56 |
12 | 22.86 | 22.86 | 41 | 12.24 | 12.94 |
13 | 20.86 | 20.86 | 42 | 18.6 | 18.6 |
14 | 21.06 | 21.06 | 43 | 25.08 | 25.08 |
15 | 16.36 | 16.36 | 44 | 20.4 | 20.4 |
16 | 21.66 | 21.66 | 45 | 9.7 | 10.4 |
17 | 22.76 | 22.76 | 46 | 10.8 | 10.8 |
18 | 22.96 | 22.96 | 47 | 15.3 | 10.62 |
19 | 16.76 | 16.76 | 48 | 16.94 | 20.4 |
20 | 23.56 | 23.56 | 49 | 18.04 | 21.5 |
21 | 23 | 23 | 50 | 17.84 | 21.3 |
22 | 17.55 | 25.7 | 51 | 18.2 | 21.66 |
23 | 17.17 | 25.32 | 52 | 18.94 | 22.4 |
24 | 15 | 15 | 53 | 15.4 | 10.72 |
25 | 12.34 | 12.34 | 54 | 17.6 | 12.92 |
26 | 12.06 | 12.06 | 55 | 33.12 | 33.42 |
27 | 14.04 | 14.04 | 56 | 16.9 | 12.22 |
28 | 15.6 | 15.73 | 57 | 16.76 | 12.08 |
29 | 10.96 | 11.09 | - | - | - |
Affected point | Affected point | ||||
food | Daily necessities | food | Daily necessities | ||
1 | 10 | 10 | 30 | 11.1 | 11.8 |
2 | 10.4 | 10.4 | 31 | 11.44 | 11.57 |
3 | 10.88 | 10.88 | 32 | 22.3 | 23 |
4 | 11.2 | 11.2 | 33 | 11.7 | 12.4 |
5 | 11.76 | 11.76 | 34 | 12.7 | 12.7 |
6 | 8.15 | 16.3 | 35 | 12 | 12.7 |
7 | 8.43 | 16.58 | 36 | 30.86 | 39.29 |
8 | 8.51 | 16.66 | 37 | 18.02 | 26.45 |
9 | 8.67 | 16.82 | 38 | 18.8 | 27.23 |
10 | 8.37 | 16.52 | 39 | 19.4 | 27.83 |
11 | 35.26 | 22.66 | 40 | 10.86 | 11.56 |
12 | 22.86 | 22.86 | 41 | 12.24 | 12.94 |
13 | 20.86 | 20.86 | 42 | 18.6 | 18.6 |
14 | 21.06 | 21.06 | 43 | 25.08 | 25.08 |
15 | 16.36 | 16.36 | 44 | 20.4 | 20.4 |
16 | 21.66 | 21.66 | 45 | 9.7 | 10.4 |
17 | 22.76 | 22.76 | 46 | 10.8 | 10.8 |
18 | 22.96 | 22.96 | 47 | 15.3 | 10.62 |
19 | 16.76 | 16.76 | 48 | 16.94 | 20.4 |
20 | 23.56 | 23.56 | 49 | 18.04 | 21.5 |
21 | 23 | 23 | 50 | 17.84 | 21.3 |
22 | 17.55 | 25.7 | 51 | 18.2 | 21.66 |
23 | 17.17 | 25.32 | 52 | 18.94 | 22.4 |
24 | 15 | 15 | 53 | 15.4 | 10.72 |
25 | 12.34 | 12.34 | 54 | 17.6 | 12.92 |
26 | 12.06 | 12.06 | 55 | 33.12 | 33.42 |
27 | 14.04 | 14.04 | 56 | 16.9 | 12.22 |
28 | 15.6 | 15.73 | 57 | 16.76 | 12.08 |
29 | 10.96 | 11.09 | - | - | - |
P | Amount of opened facilities | Opened temporary transfer facilities (the optimal solution) | Objective function value | Running time(s) | ||||||
MIN | MAX | AVG | Optimal | AVG | SD | AVG | minimum | SD | ||
4 | 4 | 4 | 4 | (5), (9), (12), (15) | 13273776.83 | 14868939.06 | 1451416.62 | 53.48 | 16.16 | 42.31 |
5 | 5 | 5 | 5 | (2), (3), (9), (13), (15) | 8848462.92 | 9220754.33 | 302415.93 | 207.17 | 165.37 | 25.97 |
6 | 6 | 6 | 6 | (1), (4), (9), (12), (13), (15) | 6853198.43 | 7271162.90 | 290586.68 | 244.28 | 183.08 | 36.24 |
7 | 7 | 7 | 7 | (1), (2), (4), (9), (13), (14), (15) | 5781612.49 | 6227580.83 | 273625.21 | 257.40 | 234.93 | 12.80 |
8 | 8 | 8 | 8 | (1), (2), (4), (9), (12), (13), (15), (16) | 5072974.53 | 5295173.25 | 224424.74 | 244.43 | 178.19 | 49.48 |
9 | 9 | 9 | 9 | (1), (2), (4), (9), (13), (14), (15), (16), (17) | 4858475.72 | 5124041.30 | 150278.08 | 244.43 | 178.19 | 49.48 |
10 | 9 | 10 | 9.8 | (1), (2), (4), (9), (12), (13), (14), (15), (16), (17) | 4782950.76 | 4924828.55 | 113448.04 | 233.81 | 193.92 | 26.61 |
11 | 11 | 11 | 11 | (1), (2), (3), (4), (9), (12), (13), (14), (15), (16), (17) | 4778328.99 | 4925983.68 | 107442.10 | 228.31 | 213.40 | 16.51 |
12 | 11 | 12 | 11.2 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (18) | 4776395.25 | 4878544.65 | 110360.54 | 232.67 | 198.17 | 27.35 |
13 | 12 | 13 | 12.4 | (1), (2), (3), (4), (5), (9), (10), (12), (13), (14), (15), (16), (18) | 4783358.20 | 4892302.40 | 102522.06 | 233.92 | 221.46 | 7.82 |
14 | 11 | 14 | 12.5 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (17) | 4757147.13 | 4856777.97 | 106004.73 | 237.36 | 224.33 | 12.72 |
P | Amount of opened facilities | Opened temporary transfer facilities (the optimal solution) | Objective function value | Running time(s) | ||||||
MIN | MAX | AVG | Optimal | AVG | SD | AVG | minimum | SD | ||
4 | 4 | 4 | 4 | (5), (9), (12), (15) | 13273776.83 | 14868939.06 | 1451416.62 | 53.48 | 16.16 | 42.31 |
5 | 5 | 5 | 5 | (2), (3), (9), (13), (15) | 8848462.92 | 9220754.33 | 302415.93 | 207.17 | 165.37 | 25.97 |
6 | 6 | 6 | 6 | (1), (4), (9), (12), (13), (15) | 6853198.43 | 7271162.90 | 290586.68 | 244.28 | 183.08 | 36.24 |
7 | 7 | 7 | 7 | (1), (2), (4), (9), (13), (14), (15) | 5781612.49 | 6227580.83 | 273625.21 | 257.40 | 234.93 | 12.80 |
8 | 8 | 8 | 8 | (1), (2), (4), (9), (12), (13), (15), (16) | 5072974.53 | 5295173.25 | 224424.74 | 244.43 | 178.19 | 49.48 |
9 | 9 | 9 | 9 | (1), (2), (4), (9), (13), (14), (15), (16), (17) | 4858475.72 | 5124041.30 | 150278.08 | 244.43 | 178.19 | 49.48 |
10 | 9 | 10 | 9.8 | (1), (2), (4), (9), (12), (13), (14), (15), (16), (17) | 4782950.76 | 4924828.55 | 113448.04 | 233.81 | 193.92 | 26.61 |
11 | 11 | 11 | 11 | (1), (2), (3), (4), (9), (12), (13), (14), (15), (16), (17) | 4778328.99 | 4925983.68 | 107442.10 | 228.31 | 213.40 | 16.51 |
12 | 11 | 12 | 11.2 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (18) | 4776395.25 | 4878544.65 | 110360.54 | 232.67 | 198.17 | 27.35 |
13 | 12 | 13 | 12.4 | (1), (2), (3), (4), (5), (9), (10), (12), (13), (14), (15), (16), (18) | 4783358.20 | 4892302.40 | 102522.06 | 233.92 | 221.46 | 7.82 |
14 | 11 | 14 | 12.5 | (1), (2), (4), (6), (9), (12), (13), (14), (15), (16), (17) | 4757147.13 | 4856777.97 | 106004.73 | 237.36 | 224.33 | 12.72 |
Algorithm | Time(AVG) | |||
9 | GA | 4858475.72 | 5124041.30 | 244.43 |
IOA | 4936050.86 | 5244041.02 | 250.67 | |
10 | GA | 4782950.76 | 4924828.55 | 233.81 |
IOA | 4821963.21 | 4959828.55 | 230.14 | |
11 | GA | 4778328.99 | 4925983.68 | 228.31 |
IOA | 4790375.49 | 4965983.68 | 225.63 | |
12 | GA | 4776395.25 | 4878544.65 | 232.67 |
IOA | 4795203.36 | 4879121.35 | 229.43 | |
13 | GA | 4783358.20 | 4892302.40 | 233.92 |
IOA | 4790522.90 | 4898580.12 | 228.45 | |
16 | GA | 4757147.13 | 4856777.97 | 237.36 |
IOA | 4767658.14 | 4848676.16 | 233.97 |
Algorithm | Time(AVG) | |||
9 | GA | 4858475.72 | 5124041.30 | 244.43 |
IOA | 4936050.86 | 5244041.02 | 250.67 | |
10 | GA | 4782950.76 | 4924828.55 | 233.81 |
IOA | 4821963.21 | 4959828.55 | 230.14 | |
11 | GA | 4778328.99 | 4925983.68 | 228.31 |
IOA | 4790375.49 | 4965983.68 | 225.63 | |
12 | GA | 4776395.25 | 4878544.65 | 232.67 |
IOA | 4795203.36 | 4879121.35 | 229.43 | |
13 | GA | 4783358.20 | 4892302.40 | 233.92 |
IOA | 4790522.90 | 4898580.12 | 228.45 | |
16 | GA | 4757147.13 | 4856777.97 | 237.36 |
IOA | 4767658.14 | 4848676.16 | 233.97 |
[1] |
Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial and Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521 |
[2] |
Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034 |
[3] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial and Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[4] |
Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial and Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629 |
[5] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[6] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1247-1259. doi: 10.3934/jimo.2021017 |
[7] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[8] |
Zhe Zhang, Jiuping Xu. Bi-level multiple mode resource-constrained project scheduling problems under hybrid uncertainty. Journal of Industrial and Management Optimization, 2016, 12 (2) : 565-593. doi: 10.3934/jimo.2016.12.565 |
[9] |
Liping Zhang, Soon-Yi Wu. Robust solutions to Euclidean facility location problems with uncertain data. Journal of Industrial and Management Optimization, 2010, 6 (4) : 751-760. doi: 10.3934/jimo.2010.6.751 |
[10] |
Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks and Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441 |
[11] |
Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1801-1834. doi: 10.3934/jimo.2019030 |
[12] |
Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215 |
[13] |
Saber Shiripour, Nezam Mahdavi-Amiri. Median location problem with two probabilistic line barriers: Extending the Hook and Jeeves algorithm. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021128 |
[14] |
T. W. Leung, Chi Kin Chan, Marvin D. Troutt. A mixed simulated annealing-genetic algorithm approach to the multi-buyer multi-item joint replenishment problem: advantages of meta-heuristics. Journal of Industrial and Management Optimization, 2008, 4 (1) : 53-66. doi: 10.3934/jimo.2008.4.53 |
[15] |
Gayatri Pany, Ram N. Mohapatra. A study on vector variational-like inequalities using convexificators and application to its bi-level form. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021161 |
[16] |
Mourad Nachaoui, Lekbir Afraites, Aissam Hadri, Amine Laghrib. A non-convex non-smooth bi-level parameter learning for impulse and Gaussian noise mixture removing. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1249-1291. doi: 10.3934/cpaa.2022018 |
[17] |
Xiaowei Chen, Qianlong Liu, Dan A. Ralescu. A bi-level optimization model for the asset-liability management of insurance companies. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022074 |
[18] |
Lekbir Afraites, Aissam Hadri, Amine Laghrib, Mourad Nachaoui. A non-convex denoising model for impulse and Gaussian noise mixture removing using bi-level parameter identification. Inverse Problems and Imaging, 2022, 16 (4) : 827-870. doi: 10.3934/ipi.2022001 |
[19] |
Chuanhao Guo, Erfang Shan, Wenli Yan. A superlinearly convergent hybrid algorithm for solving nonlinear programming. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1009-1024. doi: 10.3934/jimo.2016059 |
[20] |
Abdel-Rahman Hedar, Alaa Fahim. Filter-based genetic algorithm for mixed variable programming. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 99-116. doi: 10.3934/naco.2011.1.99 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]