[1]
|
J. Ahn and M. Song, Convergence of the trinomial tree method for pricing European/American options, Appl. Math. Comput., 189 (2007), 575-582.
doi: 10.1016/j.amc.2006.11.132.
|
[2]
|
K. Amin, On the computation of continuous time option prices using discrete approximations, Journal of Financial and Quantitative Analysis, 26 (1991), 477-495.
doi: 10.2307/2331407.
|
[3]
|
L. Andersen and J. Andreasen, Jump-Diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Derivatives Res., 4 (2000), 231-262.
doi: 10.2139/ssrn.171438.
|
[4]
|
K. Atkinson, An Introduction to Numerical Analysis, 2$^{nd}$ edition, John Wiley & Sons, New York, 1989.
|
[5]
|
S. Barle and N. Cakici, How to grow a smiling tree, J. Financ. Eng., 7 (1999), 127-146.
|
[6]
|
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.
doi: 10.1086/260062.
|
[7]
|
P. P. Boyle, Option valuation using a three-jump process, Int. Options J., 3 (1986), 7-12.
|
[8]
|
D. M. Chance, A synthesis of binomial option pricing models for lognormally distributed asset, J. Appl. Finance, 18 (2008), 38-56.
doi: 10.2139/ssrn.969834.
|
[9]
|
L. B. Chang and K. Palmer, Smooth convergence in the binomial model, Finance and Stochastics, 11 (2007), 91-105.
doi: 10.1007/s00780-006-0020-6.
|
[10]
|
C. Charalambous, N. Christofides, E. Constantinide and S. Martzoukos, Implied non-recombining trees and calibration for the volatility smile, Quant. Finance, 7 (2007), 459-472.
doi: 10.1080/14697680701488692.
|
[11]
|
J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.
doi: 10.1016/0304-405X(79)90015-1.
|
[12]
|
S. Crépey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems, 19 (2003), 91-127.
doi: 10.1088/0266-5611/19/1/306.
|
[13]
|
T. S. Dai and Y. D. Lyuu, The Bino-Trinomial tree: A simple model for efficient and accurate option pricing, J. Deriv., (2010), 7–24.
|
[14]
|
E. Derman, I. Kani and N. Chriss, Implied trinomial trees of the volatility smile, J. Deriv., 3 (1996), 7-22.
|
[15]
|
F. Diener and M. Diener, Asymptotics of the price oscillations of a European call option in a tree model, Math. Finance, 14 (2004), 271-293.
doi: 10.1111/j.0960-1627.2004.00192.x.
|
[16]
|
B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.
|
[17]
|
W. X. Gong and Z. L. Xu, Non-recombining trinomial tree pricing model and calibration for the volatility smile, J. Inverse Ill-Posed Probl., 27 (2019), 353-366.
doi: 10.1515/jiip-2018-0005.
|
[18]
|
D. P. J. Leisen and M. Reimer, Binomial models for option value-examining and improving convergence, Appl. Math. Finance, 3 (1996), 319-346.
|
[19]
|
Y. Li, A new algorithm for constructing implied binomial trees: Does the implied model fit any volatility smile?, J. Comput. Finance, 4 (2001), 69-98.
|
[20]
|
U. H. Lok and Y. D. Lyuu, The waterline tree for separable local-volatility models, Comput. Math. Appl., 73 (2017), 537-559.
doi: 10.1016/j.camwa.2016.12.008.
|
[21]
|
J. T. Ma and T. F. Zhu, Convergence rates of trinomial tree methods for option pricing under regime-switching models, Appl. Math. Lett., 39 (2015), 13-18.
doi: 10.1016/j.aml.2014.07.020.
|
[22]
|
J. Rendleman, J. Richard and B. J. Bartter, Two-state option pricing, J. Finance, 34 (1979), 1093-1110.
doi: 10.1111/j.1540-6261.1979.tb00058.x.
|
[23]
|
K. Talias, Implied Binomial Trees and Genetic Algorithms, Ph.D thesis, Imperial College, 2005.
|
[24]
|
J. B. Walsh, The rate of convergence of the binomial tree scheme, Finance Stoch., 7 (2003), 337-361.
doi: 10.1007/s007800200094.
|