• Previous Article
    Effect of reliability on varying demand and holding cost on inventory system incorporating probabilistic deterioration
  • JIMO Home
  • This Issue
  • Next Article
    Effects of take-back legislation on pricing and coordination in a closed-loop supply chain
doi: 10.3934/jimo.2020146
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

An alternative tree method for calibration of the local volatility

1. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China

2. 

School of Mathematics, Renmin University of China, Beijing, 100872, China

* Corresponding author: Zuoliang Xu

Received  March 2019 Revised  July 2020 Early access September 2020

Fund Project: This work is supported by National Natural Science Foundation of China(11571365) and the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China(18XNH107)

In this paper, we combine the traditional binomial tree and trinomial tree to construct a new alternative tree pricing model, where the local volatility is a deterministic function of time. We then prove the convergence rates of the alternative tree method. The proposed model can price a wide range of derivatives efficiently and accurately. In addition, we research the optimization approach for the calibration of local volatility. The calibration problem can be transformed into a nonlinear unconstrained optimization problem by exterior penalty method. For the optimization problem, we use the quasi-Newton algorithm. Finally, we test our model by numerical examples and options data on the S & P 500 index. Numerical results confirm the excellent performance of the alternative tree pricing model.

Citation: Wenxiu Gong, Zuoliang Xu. An alternative tree method for calibration of the local volatility. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020146
References:
[1]

J. Ahn and M. Song, Convergence of the trinomial tree method for pricing European/American options, Appl. Math. Comput., 189 (2007), 575-582.  doi: 10.1016/j.amc.2006.11.132.  Google Scholar

[2]

K. Amin, On the computation of continuous time option prices using discrete approximations, Journal of Financial and Quantitative Analysis, 26 (1991), 477-495.  doi: 10.2307/2331407.  Google Scholar

[3]

L. Andersen and J. Andreasen, Jump-Diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Derivatives Res., 4 (2000), 231-262.  doi: 10.2139/ssrn.171438.  Google Scholar

[4]

K. Atkinson, An Introduction to Numerical Analysis, 2$^{nd}$ edition, John Wiley & Sons, New York, 1989.  Google Scholar

[5]

S. Barle and N. Cakici, How to grow a smiling tree, J. Financ. Eng., 7 (1999), 127-146.   Google Scholar

[6]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[7]

P. P. Boyle, Option valuation using a three-jump process, Int. Options J., 3 (1986), 7-12.   Google Scholar

[8]

D. M. Chance, A synthesis of binomial option pricing models for lognormally distributed asset, J. Appl. Finance, 18 (2008), 38-56.  doi: 10.2139/ssrn.969834.  Google Scholar

[9]

L. B. Chang and K. Palmer, Smooth convergence in the binomial model, Finance and Stochastics, 11 (2007), 91-105.  doi: 10.1007/s00780-006-0020-6.  Google Scholar

[10]

C. CharalambousN. ChristofidesE. Constantinide and S. Martzoukos, Implied non-recombining trees and calibration for the volatility smile, Quant. Finance, 7 (2007), 459-472.  doi: 10.1080/14697680701488692.  Google Scholar

[11]

J. C. CoxS. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[12]

S. Crépey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems, 19 (2003), 91-127.  doi: 10.1088/0266-5611/19/1/306.  Google Scholar

[13]

T. S. Dai and Y. D. Lyuu, The Bino-Trinomial tree: A simple model for efficient and accurate option pricing, J. Deriv., (2010), 7–24. Google Scholar

[14]

E. DermanI. Kani and N. Chriss, Implied trinomial trees of the volatility smile, J. Deriv., 3 (1996), 7-22.   Google Scholar

[15]

F. Diener and M. Diener, Asymptotics of the price oscillations of a European call option in a tree model, Math. Finance, 14 (2004), 271-293.  doi: 10.1111/j.0960-1627.2004.00192.x.  Google Scholar

[16]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[17]

W. X. Gong and Z. L. Xu, Non-recombining trinomial tree pricing model and calibration for the volatility smile, J. Inverse Ill-Posed Probl., 27 (2019), 353-366.  doi: 10.1515/jiip-2018-0005.  Google Scholar

[18]

D. P. J. Leisen and M. Reimer, Binomial models for option value-examining and improving convergence, Appl. Math. Finance, 3 (1996), 319-346.   Google Scholar

[19]

Y. Li, A new algorithm for constructing implied binomial trees: Does the implied model fit any volatility smile?, J. Comput. Finance, 4 (2001), 69-98.   Google Scholar

[20]

U. H. Lok and Y. D. Lyuu, The waterline tree for separable local-volatility models, Comput. Math. Appl., 73 (2017), 537-559.  doi: 10.1016/j.camwa.2016.12.008.  Google Scholar

[21]

J. T. Ma and T. F. Zhu, Convergence rates of trinomial tree methods for option pricing under regime-switching models, Appl. Math. Lett., 39 (2015), 13-18.  doi: 10.1016/j.aml.2014.07.020.  Google Scholar

[22]

J. RendlemanJ. Richard and B. J. Bartter, Two-state option pricing, J. Finance, 34 (1979), 1093-1110.  doi: 10.1111/j.1540-6261.1979.tb00058.x.  Google Scholar

[23]

K. Talias, Implied Binomial Trees and Genetic Algorithms, Ph.D thesis, Imperial College, 2005. Google Scholar

[24]

J. B. Walsh, The rate of convergence of the binomial tree scheme, Finance Stoch., 7 (2003), 337-361.  doi: 10.1007/s007800200094.  Google Scholar

show all references

References:
[1]

J. Ahn and M. Song, Convergence of the trinomial tree method for pricing European/American options, Appl. Math. Comput., 189 (2007), 575-582.  doi: 10.1016/j.amc.2006.11.132.  Google Scholar

[2]

K. Amin, On the computation of continuous time option prices using discrete approximations, Journal of Financial and Quantitative Analysis, 26 (1991), 477-495.  doi: 10.2307/2331407.  Google Scholar

[3]

L. Andersen and J. Andreasen, Jump-Diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Derivatives Res., 4 (2000), 231-262.  doi: 10.2139/ssrn.171438.  Google Scholar

[4]

K. Atkinson, An Introduction to Numerical Analysis, 2$^{nd}$ edition, John Wiley & Sons, New York, 1989.  Google Scholar

[5]

S. Barle and N. Cakici, How to grow a smiling tree, J. Financ. Eng., 7 (1999), 127-146.   Google Scholar

[6]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[7]

P. P. Boyle, Option valuation using a three-jump process, Int. Options J., 3 (1986), 7-12.   Google Scholar

[8]

D. M. Chance, A synthesis of binomial option pricing models for lognormally distributed asset, J. Appl. Finance, 18 (2008), 38-56.  doi: 10.2139/ssrn.969834.  Google Scholar

[9]

L. B. Chang and K. Palmer, Smooth convergence in the binomial model, Finance and Stochastics, 11 (2007), 91-105.  doi: 10.1007/s00780-006-0020-6.  Google Scholar

[10]

C. CharalambousN. ChristofidesE. Constantinide and S. Martzoukos, Implied non-recombining trees and calibration for the volatility smile, Quant. Finance, 7 (2007), 459-472.  doi: 10.1080/14697680701488692.  Google Scholar

[11]

J. C. CoxS. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[12]

S. Crépey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems, 19 (2003), 91-127.  doi: 10.1088/0266-5611/19/1/306.  Google Scholar

[13]

T. S. Dai and Y. D. Lyuu, The Bino-Trinomial tree: A simple model for efficient and accurate option pricing, J. Deriv., (2010), 7–24. Google Scholar

[14]

E. DermanI. Kani and N. Chriss, Implied trinomial trees of the volatility smile, J. Deriv., 3 (1996), 7-22.   Google Scholar

[15]

F. Diener and M. Diener, Asymptotics of the price oscillations of a European call option in a tree model, Math. Finance, 14 (2004), 271-293.  doi: 10.1111/j.0960-1627.2004.00192.x.  Google Scholar

[16]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[17]

W. X. Gong and Z. L. Xu, Non-recombining trinomial tree pricing model and calibration for the volatility smile, J. Inverse Ill-Posed Probl., 27 (2019), 353-366.  doi: 10.1515/jiip-2018-0005.  Google Scholar

[18]

D. P. J. Leisen and M. Reimer, Binomial models for option value-examining and improving convergence, Appl. Math. Finance, 3 (1996), 319-346.   Google Scholar

[19]

Y. Li, A new algorithm for constructing implied binomial trees: Does the implied model fit any volatility smile?, J. Comput. Finance, 4 (2001), 69-98.   Google Scholar

[20]

U. H. Lok and Y. D. Lyuu, The waterline tree for separable local-volatility models, Comput. Math. Appl., 73 (2017), 537-559.  doi: 10.1016/j.camwa.2016.12.008.  Google Scholar

[21]

J. T. Ma and T. F. Zhu, Convergence rates of trinomial tree methods for option pricing under regime-switching models, Appl. Math. Lett., 39 (2015), 13-18.  doi: 10.1016/j.aml.2014.07.020.  Google Scholar

[22]

J. RendlemanJ. Richard and B. J. Bartter, Two-state option pricing, J. Finance, 34 (1979), 1093-1110.  doi: 10.1111/j.1540-6261.1979.tb00058.x.  Google Scholar

[23]

K. Talias, Implied Binomial Trees and Genetic Algorithms, Ph.D thesis, Imperial College, 2005. Google Scholar

[24]

J. B. Walsh, The rate of convergence of the binomial tree scheme, Finance Stoch., 7 (2003), 337-361.  doi: 10.1007/s007800200094.  Google Scholar

Figure 1.  The left figure presents CRR method and steps while the right figure presents TTM and steps. The blue line denotes the BS price. The red line denotes the CRR and TTM price. The green line denotes CRR price with odd steps while the black line denotes CRR price with even steps
Figure 2.  The alternative tree
Figure 3.  CRR and TTM price with different time steps
Figure 4.  Volatility function $ \sigma_{ex}(t) $ and volatility estimation for $ n = 7 $
Figure 5.  Stability analysis of the algorithm
Figure 6.  Comparison of the exact value and the optimal with alternative tree, TTM and CRR tree
Figure 7.  Volatility calibrated by linear and quadratic penalty method
Figure 8.  Local volatility and calibrated volatility with $ \frac{K}{S_0} = 100\%, 110\% $
Table 1.  Some tree methods for calibration of the local volatility
Auther Tree method volatility function
Derman(1996), Barle(1999) Recombining TTM $ \sigma=\sigma(S, t) $
Li(2001) Recombining BTM $ \sigma=\sigma(S, t) $
Crépey (2003) TTM with regularization $ \sigma=\sigma(S, t) $
Charalambous et al. (2007) Nonrecombining BTM $ \sigma=\sigma(t) $
Lok and Lyuu (2017) Recombining waterline tree $ \sigma=\sigma(S)\sigma(t) $
Gong and Xu (2019) Nonrecombining TTM $ \sigma=\sigma(t) $
Auther Tree method volatility function
Derman(1996), Barle(1999) Recombining TTM $ \sigma=\sigma(S, t) $
Li(2001) Recombining BTM $ \sigma=\sigma(S, t) $
Crépey (2003) TTM with regularization $ \sigma=\sigma(S, t) $
Charalambous et al. (2007) Nonrecombining BTM $ \sigma=\sigma(t) $
Lok and Lyuu (2017) Recombining waterline tree $ \sigma=\sigma(S)\sigma(t) $
Gong and Xu (2019) Nonrecombining TTM $ \sigma=\sigma(t) $
[1]

Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, , () : -. doi: 10.3934/fmf.2021005

[2]

Laurent Devineau, Pierre-Edouard Arrouy, Paul Bonnefoy, Alexandre Boumezoued. Fast calibration of the Libor market model with stochastic volatility and displaced diffusion. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1699-1729. doi: 10.3934/jimo.2019025

[3]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[4]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

[5]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158

[6]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[7]

Lishang Jiang, Baojun Bian. The regularized implied local volatility equations -A new model to recover the volatility of underlying asset from observed market option price. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2017-2046. doi: 10.3934/dcdsb.2012.17.2017

[8]

Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435

[9]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[10]

Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial & Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177

[11]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[12]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2021, 16 (1) : 1-29. doi: 10.3934/nhm.2020031

[14]

Boshi Tian, Xiaoqi Yang, Kaiwen Meng. An interior-point $l_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization. Journal of Industrial & Management Optimization, 2016, 12 (3) : 949-973. doi: 10.3934/jimo.2016.12.949

[15]

Xiaodi Bai, Xiaojin Zheng, Xiaoling Sun. A survey on probabilistically constrained optimization problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 767-778. doi: 10.3934/naco.2012.2.767

[16]

Lorella Fatone, Francesca Mariani, Maria Cristina Recchioni, Francesco Zirilli. Pricing realized variance options using integrated stochastic variance options in the Heston stochastic volatility model. Conference Publications, 2007, 2007 (Special) : 354-363. doi: 10.3934/proc.2007.2007.354

[17]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[18]

Miao Tian, Xiangfeng Yang, Yi Zhang. Lookback option pricing problem of mean-reverting stock model in uncertain environment. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2703-2714. doi: 10.3934/jimo.2020090

[19]

Benyong Hu, Xu Chen, Felix T. S. Chan, Chao Meng. Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1105-1122. doi: 10.3934/jimo.2018001

[20]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (95)
  • HTML views (345)
  • Cited by (0)

Other articles
by authors

[Back to Top]