• Previous Article
    Effect of reliability on varying demand and holding cost on inventory system incorporating probabilistic deterioration
  • JIMO Home
  • This Issue
  • Next Article
    Effects of take-back legislation on pricing and coordination in a closed-loop supply chain
doi: 10.3934/jimo.2020146

An alternative tree method for calibration of the local volatility

1. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China

2. 

School of Mathematics, Renmin University of China, Beijing, 100872, China

* Corresponding author: Zuoliang Xu

Received  March 2019 Revised  July 2020 Published  September 2020

Fund Project: This work is supported by National Natural Science Foundation of China(11571365) and the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China(18XNH107)

In this paper, we combine the traditional binomial tree and trinomial tree to construct a new alternative tree pricing model, where the local volatility is a deterministic function of time. We then prove the convergence rates of the alternative tree method. The proposed model can price a wide range of derivatives efficiently and accurately. In addition, we research the optimization approach for the calibration of local volatility. The calibration problem can be transformed into a nonlinear unconstrained optimization problem by exterior penalty method. For the optimization problem, we use the quasi-Newton algorithm. Finally, we test our model by numerical examples and options data on the S & P 500 index. Numerical results confirm the excellent performance of the alternative tree pricing model.

Citation: Wenxiu Gong, Zuoliang Xu. An alternative tree method for calibration of the local volatility. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020146
References:
[1]

J. Ahn and M. Song, Convergence of the trinomial tree method for pricing European/American options, Appl. Math. Comput., 189 (2007), 575-582.  doi: 10.1016/j.amc.2006.11.132.  Google Scholar

[2]

K. Amin, On the computation of continuous time option prices using discrete approximations, Journal of Financial and Quantitative Analysis, 26 (1991), 477-495.  doi: 10.2307/2331407.  Google Scholar

[3]

L. Andersen and J. Andreasen, Jump-Diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Derivatives Res., 4 (2000), 231-262.  doi: 10.2139/ssrn.171438.  Google Scholar

[4]

K. Atkinson, An Introduction to Numerical Analysis, 2$^{nd}$ edition, John Wiley & Sons, New York, 1989.  Google Scholar

[5]

S. Barle and N. Cakici, How to grow a smiling tree, J. Financ. Eng., 7 (1999), 127-146.   Google Scholar

[6]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[7]

P. P. Boyle, Option valuation using a three-jump process, Int. Options J., 3 (1986), 7-12.   Google Scholar

[8]

D. M. Chance, A synthesis of binomial option pricing models for lognormally distributed asset, J. Appl. Finance, 18 (2008), 38-56.  doi: 10.2139/ssrn.969834.  Google Scholar

[9]

L. B. Chang and K. Palmer, Smooth convergence in the binomial model, Finance and Stochastics, 11 (2007), 91-105.  doi: 10.1007/s00780-006-0020-6.  Google Scholar

[10]

C. CharalambousN. ChristofidesE. Constantinide and S. Martzoukos, Implied non-recombining trees and calibration for the volatility smile, Quant. Finance, 7 (2007), 459-472.  doi: 10.1080/14697680701488692.  Google Scholar

[11]

J. C. CoxS. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[12]

S. Crépey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems, 19 (2003), 91-127.  doi: 10.1088/0266-5611/19/1/306.  Google Scholar

[13]

T. S. Dai and Y. D. Lyuu, The Bino-Trinomial tree: A simple model for efficient and accurate option pricing, J. Deriv., (2010), 7–24. Google Scholar

[14]

E. DermanI. Kani and N. Chriss, Implied trinomial trees of the volatility smile, J. Deriv., 3 (1996), 7-22.   Google Scholar

[15]

F. Diener and M. Diener, Asymptotics of the price oscillations of a European call option in a tree model, Math. Finance, 14 (2004), 271-293.  doi: 10.1111/j.0960-1627.2004.00192.x.  Google Scholar

[16]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[17]

W. X. Gong and Z. L. Xu, Non-recombining trinomial tree pricing model and calibration for the volatility smile, J. Inverse Ill-Posed Probl., 27 (2019), 353-366.  doi: 10.1515/jiip-2018-0005.  Google Scholar

[18]

D. P. J. Leisen and M. Reimer, Binomial models for option value-examining and improving convergence, Appl. Math. Finance, 3 (1996), 319-346.   Google Scholar

[19]

Y. Li, A new algorithm for constructing implied binomial trees: Does the implied model fit any volatility smile?, J. Comput. Finance, 4 (2001), 69-98.   Google Scholar

[20]

U. H. Lok and Y. D. Lyuu, The waterline tree for separable local-volatility models, Comput. Math. Appl., 73 (2017), 537-559.  doi: 10.1016/j.camwa.2016.12.008.  Google Scholar

[21]

J. T. Ma and T. F. Zhu, Convergence rates of trinomial tree methods for option pricing under regime-switching models, Appl. Math. Lett., 39 (2015), 13-18.  doi: 10.1016/j.aml.2014.07.020.  Google Scholar

[22]

J. RendlemanJ. Richard and B. J. Bartter, Two-state option pricing, J. Finance, 34 (1979), 1093-1110.  doi: 10.1111/j.1540-6261.1979.tb00058.x.  Google Scholar

[23]

K. Talias, Implied Binomial Trees and Genetic Algorithms, Ph.D thesis, Imperial College, 2005. Google Scholar

[24]

J. B. Walsh, The rate of convergence of the binomial tree scheme, Finance Stoch., 7 (2003), 337-361.  doi: 10.1007/s007800200094.  Google Scholar

show all references

References:
[1]

J. Ahn and M. Song, Convergence of the trinomial tree method for pricing European/American options, Appl. Math. Comput., 189 (2007), 575-582.  doi: 10.1016/j.amc.2006.11.132.  Google Scholar

[2]

K. Amin, On the computation of continuous time option prices using discrete approximations, Journal of Financial and Quantitative Analysis, 26 (1991), 477-495.  doi: 10.2307/2331407.  Google Scholar

[3]

L. Andersen and J. Andreasen, Jump-Diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Derivatives Res., 4 (2000), 231-262.  doi: 10.2139/ssrn.171438.  Google Scholar

[4]

K. Atkinson, An Introduction to Numerical Analysis, 2$^{nd}$ edition, John Wiley & Sons, New York, 1989.  Google Scholar

[5]

S. Barle and N. Cakici, How to grow a smiling tree, J. Financ. Eng., 7 (1999), 127-146.   Google Scholar

[6]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[7]

P. P. Boyle, Option valuation using a three-jump process, Int. Options J., 3 (1986), 7-12.   Google Scholar

[8]

D. M. Chance, A synthesis of binomial option pricing models for lognormally distributed asset, J. Appl. Finance, 18 (2008), 38-56.  doi: 10.2139/ssrn.969834.  Google Scholar

[9]

L. B. Chang and K. Palmer, Smooth convergence in the binomial model, Finance and Stochastics, 11 (2007), 91-105.  doi: 10.1007/s00780-006-0020-6.  Google Scholar

[10]

C. CharalambousN. ChristofidesE. Constantinide and S. Martzoukos, Implied non-recombining trees and calibration for the volatility smile, Quant. Finance, 7 (2007), 459-472.  doi: 10.1080/14697680701488692.  Google Scholar

[11]

J. C. CoxS. A. Ross and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263.  doi: 10.1016/0304-405X(79)90015-1.  Google Scholar

[12]

S. Crépey, Calibration of the local volatility in a trinomial tree using Tikhonov regularization, Inverse Problems, 19 (2003), 91-127.  doi: 10.1088/0266-5611/19/1/306.  Google Scholar

[13]

T. S. Dai and Y. D. Lyuu, The Bino-Trinomial tree: A simple model for efficient and accurate option pricing, J. Deriv., (2010), 7–24. Google Scholar

[14]

E. DermanI. Kani and N. Chriss, Implied trinomial trees of the volatility smile, J. Deriv., 3 (1996), 7-22.   Google Scholar

[15]

F. Diener and M. Diener, Asymptotics of the price oscillations of a European call option in a tree model, Math. Finance, 14 (2004), 271-293.  doi: 10.1111/j.0960-1627.2004.00192.x.  Google Scholar

[16]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[17]

W. X. Gong and Z. L. Xu, Non-recombining trinomial tree pricing model and calibration for the volatility smile, J. Inverse Ill-Posed Probl., 27 (2019), 353-366.  doi: 10.1515/jiip-2018-0005.  Google Scholar

[18]

D. P. J. Leisen and M. Reimer, Binomial models for option value-examining and improving convergence, Appl. Math. Finance, 3 (1996), 319-346.   Google Scholar

[19]

Y. Li, A new algorithm for constructing implied binomial trees: Does the implied model fit any volatility smile?, J. Comput. Finance, 4 (2001), 69-98.   Google Scholar

[20]

U. H. Lok and Y. D. Lyuu, The waterline tree for separable local-volatility models, Comput. Math. Appl., 73 (2017), 537-559.  doi: 10.1016/j.camwa.2016.12.008.  Google Scholar

[21]

J. T. Ma and T. F. Zhu, Convergence rates of trinomial tree methods for option pricing under regime-switching models, Appl. Math. Lett., 39 (2015), 13-18.  doi: 10.1016/j.aml.2014.07.020.  Google Scholar

[22]

J. RendlemanJ. Richard and B. J. Bartter, Two-state option pricing, J. Finance, 34 (1979), 1093-1110.  doi: 10.1111/j.1540-6261.1979.tb00058.x.  Google Scholar

[23]

K. Talias, Implied Binomial Trees and Genetic Algorithms, Ph.D thesis, Imperial College, 2005. Google Scholar

[24]

J. B. Walsh, The rate of convergence of the binomial tree scheme, Finance Stoch., 7 (2003), 337-361.  doi: 10.1007/s007800200094.  Google Scholar

Figure 1.  The left figure presents CRR method and steps while the right figure presents TTM and steps. The blue line denotes the BS price. The red line denotes the CRR and TTM price. The green line denotes CRR price with odd steps while the black line denotes CRR price with even steps
Figure 2.  The alternative tree
Figure 3.  CRR and TTM price with different time steps
Figure 4.  Volatility function $ \sigma_{ex}(t) $ and volatility estimation for $ n = 7 $
Figure 5.  Stability analysis of the algorithm
Figure 6.  Comparison of the exact value and the optimal with alternative tree, TTM and CRR tree
Figure 7.  Volatility calibrated by linear and quadratic penalty method
Figure 8.  Local volatility and calibrated volatility with $ \frac{K}{S_0} = 100\%, 110\% $
Table 1.  Some tree methods for calibration of the local volatility
Auther Tree method volatility function
Derman(1996), Barle(1999) Recombining TTM $ \sigma=\sigma(S, t) $
Li(2001) Recombining BTM $ \sigma=\sigma(S, t) $
Crépey (2003) TTM with regularization $ \sigma=\sigma(S, t) $
Charalambous et al. (2007) Nonrecombining BTM $ \sigma=\sigma(t) $
Lok and Lyuu (2017) Recombining waterline tree $ \sigma=\sigma(S)\sigma(t) $
Gong and Xu (2019) Nonrecombining TTM $ \sigma=\sigma(t) $
Auther Tree method volatility function
Derman(1996), Barle(1999) Recombining TTM $ \sigma=\sigma(S, t) $
Li(2001) Recombining BTM $ \sigma=\sigma(S, t) $
Crépey (2003) TTM with regularization $ \sigma=\sigma(S, t) $
Charalambous et al. (2007) Nonrecombining BTM $ \sigma=\sigma(t) $
Lok and Lyuu (2017) Recombining waterline tree $ \sigma=\sigma(S)\sigma(t) $
Gong and Xu (2019) Nonrecombining TTM $ \sigma=\sigma(t) $
[1]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[2]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[3]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[4]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[5]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[6]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[7]

Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2097-2118. doi: 10.3934/jimo.2020060

[8]

Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021052

[9]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[10]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[11]

Kai Li, Tao Zhou, Bohai Liu. Pricing new and remanufactured products based on customer purchasing behavior. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021043

[12]

Peng Tong, Xiaogang Ma. Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1577-1591. doi: 10.3934/jimo.2020035

[13]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[14]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[15]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[16]

Jinsen Guo, Yongwu Zhou, Baixun Li. The optimal pricing and service strategies of a dual-channel retailer under free riding. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021056

[17]

Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021060

[18]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[19]

Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]