
-
Previous Article
Optimal control and stabilization of building maintenance units based on minimum principle
- JIMO Home
- This Issue
-
Next Article
Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery
Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems
School of Mathematics and Statistics, Qingdao University, Qingdao, 266071, China |
Tensor eigenvalue complementary problems, as a special class of complementary problems, are the generalization of matrix eigenvalue complementary problems in higher-order. In recent years, tensor eigenvalue complementarity problems have been studied extensively. The research fields of tensor eigenvalue complementarity problems mainly focus on analysis of the theory and algorithms. In this paper, we investigate the solution method for four kinds of tensor eigenvalue complementarity problems with different structures. By utilizing an equivalence relation to unconstrained optimization problems, we propose a modified spectral PRP conjugate gradient method to solve the tensor eigenvalue complementarity problems. Under mild conditions, the global convergence of the given method is also established. Finally, we give related numerical experiments and numerical results compared with inexact Levenberg-Marquardt method, numerical results show the efficiency of the proposed method and also verify our theoretical results.
References:
[1] |
S. Adly and H. Rammal,
A new method for solving Pareto eigenvalue complementarity problems, Comput. Optim. Appl., 55 (2013), 703-731.
doi: 10.1007/s10589-013-9534-y. |
[2] |
M. Al-Baali, Y. Narushima and H. Yabe,
A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization, Comput. Optim. Appl., 60 (2015), 89-110.
doi: 10.1007/s10589-014-9662-z. |
[3] |
X. Bai, Z. Huang and Y. Wang,
Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.
doi: 10.1007/s10957-016-0903-4. |
[4] |
X. Bai, Z. Huang and X. Li, Stability of solutions and continuity of solution maps of tensor complementarity problems,, Asia-Pacific J. Oper. Res., 36 (2019), 1940002, 19 pp.
doi: 10.1142/S0217595919400025. |
[5] |
E. Birgin and J. Martinez,
A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim., 43 (2001), 117-128.
doi: 10.1007/s00245-001-0003-0. |
[6] |
S. Bojari and M. R. Eslahchi,
Two families of scaled three-term conjugate gradient methods with sufficient descent property for nonconvex optimization, Numer. Algorithms, 83 (2020), 901-933.
doi: 10.1007/s11075-019-00709-7. |
[7] |
K. Chang, K. Pearson and T. Zhang,
On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422.
doi: 10.1016/j.jmaa.2008.09.067. |
[8] |
M. Che, L. Qi and Y. Wei,
Positive-defifinite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475-487.
doi: 10.1007/s10957-015-0773-1. |
[9] |
Z. Chen, Q. Yang and L. Ye,
Generalized eigenvalue complementarity problem for tensors, Pacific J. Optim., 13 (2017), 527-545.
|
[10] |
Z. Chen and L. Qi,
A semismooth Newton method for tensor eigenvalue complementarity problem, Comput. Optim. Appl., 65 (2016), 109-126.
doi: 10.1007/s10589-016-9838-9. |
[11] |
Y. Dai and Y. Yuan,
A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[12] |
Y. Dai, L. Liao and D. Li,
On restart procedures for the conjugate gradient method, Numer. Algor., 35 (2004), 249-260.
doi: 10.1023/B:NUMA.0000021761.10993.6e. |
[13] |
W. Ding, L. Qi and Y. Wei,
M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.
doi: 10.1016/j.laa.2013.08.038. |
[14] |
S. Du, M. Che and Y. Wei,
Stochastic structured tensors to stochastic complementarity problems, Comput. Optim. Appl., 75 (2020), 649-668.
doi: 10.1007/s10589-019-00144-3. |
[15] |
S. Du and L. Zhang,
A mixed integer programming approach to the tensor complementarity problem, J. Global Optim., 39 (2019), 789-800.
doi: 10.1007/s10898-018-00731-4. |
[16] |
J. Fan, J. Nie and A. Zhou,
Tensor eigenvalue complementarity problems, Math. Program., 170 (2018), 507-539.
doi: 10.1007/s10107-017-1167-y. |
[17] |
Z. Huang and L. Qi,
Tensor complementarity problems-Part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.
doi: 10.1007/s10957-019-01566-z. |
[18] |
Z. Huang and L. Qi,
Tensor complementarity problems-Part III: Applications, J. Optim. Theory Appl., 183 (2019), 771-791.
doi: 10.1007/s10957-019-01573-0. |
[19] |
T. Kolda and J. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[20] |
H. Li, S. Du, Y. Wang and M. Chen, An inexact Levenberg-Marquardt method for tensor eigenvalue complementarity problem, Pacific J. Optim., 16 (2020), 87-99. Google Scholar |
[21] |
C. Ling, H. He and L. Qi,
On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 63 (2016), 143-168.
doi: 10.1007/s10589-015-9767-z. |
[22] |
C. Ling, H. He and L. Qi,
Higher-degree eigenvalue complementarity problems for tensors, Comput. Optim. Appl., 64 (2016), 149-176.
doi: 10.1007/s10589-015-9805-x. |
[23] |
Y. Liu and Q. Yang, A New Eigenvalue Complementarity Problem for Tensor and Matrix, Nankai University, 2018. Google Scholar |
[24] |
G. Meurant,
On prescribing the convergence behavior of the conjugate gradient algorithm, Numer. Algorithms, 84 (2020), 1353-1380.
doi: 10.1007/s11075-019-00851-2. |
[25] |
M. Ng, L. Qi and G. Zhou,
Finding the largest eigenvalue of a non-negative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[26] |
Q. Ni and L. Qi,
A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map, J. Global Optim., 61 (2015), 627-641.
doi: 10.1007/s10898-014-0209-8. |
[27] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[28] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
doi: 10.1137/1.9781611974751.ch1. |
[29] |
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018.
doi: 10.1007/978-981-10-8058-6. |
[30] |
L. Qi,
Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.
doi: 10.1016/j.laa.2013.03.015. |
[31] |
L. Qi and Z. Huang,
Tensor complementarity problems-Part II: Solution methods, J. Optim. Theory Appl., 183 (2019), 365-385.
doi: 10.1007/s10957-019-01568-x. |
[32] |
A. Seeger,
Quadratic eigenvalue problems under conic constraints, SIAM J. Matrix Anal. Appl., 32 (2011), 700-721.
doi: 10.1137/100801780. |
[33] |
Y. Song and L. Qi,
Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33 (2017), 308-323.
|
[34] |
Y. Song and L. Qi,
Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
doi: 10.1007/s10957-014-0616-5. |
[35] |
Y. Song and L. Qi,
Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169 (2016), 1069-1078.
doi: 10.1007/s10957-015-0800-2. |
[36] |
Y. Song and G. Yu,
Properties of solution set of tensor complementarity problem, J. Optim. Theory Appl., 170 (2016), 85-96.
doi: 10.1007/s10957-016-0907-0. |
[37] |
Z. Wan, Z. Yang and Y. Wang,
New spectral PRP conjugate gradient method for unconstrained optimization, Appl. Math. Lett., 24 (2011), 16-22.
doi: 10.1016/j.aml.2010.08.002. |
[38] |
X. Wang, M. Che and Y. Wei,
Global uniqueness and solvability of tensor complementarity problems for $\mathcal {H}_{+}$-tensors, Numer. Algorithms, 84 (2020), 567-590.
doi: 10.1007/s11075-019-00769-9. |
[39] |
Y. Wang, Z. Huang and X. Bai,
Exceptionally regular tensors and tensor complementarity problems, Optim. Methods Softw., 31 (2016), 815-828.
doi: 10.1080/10556788.2016.1180386. |
[40] |
Y. Wei and W. Ding, Theory and Computation of Tensors: Multi-Dimensional Arrays, Academic Press, London, 2016.
![]() |
[41] |
F. Xu and C. Ling,
Some properties on Pareto-eigenvalues of higher-order tensors, Oper. Res. Trans., 19 (2015), 34-41.
|
[42] |
W. Yan and C. Ling, Quadratic eigenvalue complememtarity problem for tensor on second-order cone, Journal of Hangzhou Dianzi University., 38 (2018), 90-93. Google Scholar |
[43] | Y. Yang and Q. Yang, A Study on Eigenvalues of Higher-Order Tensors and Related Polynomial Optimization Problems, Science Press, Beijing, 2015. Google Scholar |
[44] |
G. Yu, Y. Song, Y. Xu and Z. Yu,
Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems, Numer. Algorithms, 80 (2019), 1181-1201.
doi: 10.1007/s11075-018-0522-2. |
[45] |
G. Yuan, X. Wang and Z. Sheng,
Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions, Numer. Algorithms, 84 (2020), 935-956.
doi: 10.1007/s11075-019-00787-7. |
[46] |
L. Zhang, L. Qi and G. Zhou,
M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339. |
[47] |
K. Zhang, H. Chen and P. Zhao,
A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15 (2019), 429-443.
doi: 10.3934/jimo.2018049. |
[48] |
L. Zhang and W. Zhou,
On the global convergence of the Hager-Zhang conjugate gradient method with Armijo line search, Acta Mathematica Scientia., 28 (2008), 840-845.
|
[49] |
L. Zhang, W. Zhou and D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numerische Mathematik., 104 (2006), 561–572.
doi: 10.1007/s00211-006-0028-z. |
[50] |
M. Zheng, Y. Zhang and Z. Huang,
Global error bounds for the tensor complementarity problem with a P-tensor, J. Ind. Manag. Optim., 15 (2019), 933-946.
doi: 10.3934/jimo.2018078. |
show all references
References:
[1] |
S. Adly and H. Rammal,
A new method for solving Pareto eigenvalue complementarity problems, Comput. Optim. Appl., 55 (2013), 703-731.
doi: 10.1007/s10589-013-9534-y. |
[2] |
M. Al-Baali, Y. Narushima and H. Yabe,
A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization, Comput. Optim. Appl., 60 (2015), 89-110.
doi: 10.1007/s10589-014-9662-z. |
[3] |
X. Bai, Z. Huang and Y. Wang,
Global uniqueness and solvability for tensor complementarity problems, J. Optim. Theory Appl., 170 (2016), 72-84.
doi: 10.1007/s10957-016-0903-4. |
[4] |
X. Bai, Z. Huang and X. Li, Stability of solutions and continuity of solution maps of tensor complementarity problems,, Asia-Pacific J. Oper. Res., 36 (2019), 1940002, 19 pp.
doi: 10.1142/S0217595919400025. |
[5] |
E. Birgin and J. Martinez,
A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim., 43 (2001), 117-128.
doi: 10.1007/s00245-001-0003-0. |
[6] |
S. Bojari and M. R. Eslahchi,
Two families of scaled three-term conjugate gradient methods with sufficient descent property for nonconvex optimization, Numer. Algorithms, 83 (2020), 901-933.
doi: 10.1007/s11075-019-00709-7. |
[7] |
K. Chang, K. Pearson and T. Zhang,
On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350 (2009), 416-422.
doi: 10.1016/j.jmaa.2008.09.067. |
[8] |
M. Che, L. Qi and Y. Wei,
Positive-defifinite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475-487.
doi: 10.1007/s10957-015-0773-1. |
[9] |
Z. Chen, Q. Yang and L. Ye,
Generalized eigenvalue complementarity problem for tensors, Pacific J. Optim., 13 (2017), 527-545.
|
[10] |
Z. Chen and L. Qi,
A semismooth Newton method for tensor eigenvalue complementarity problem, Comput. Optim. Appl., 65 (2016), 109-126.
doi: 10.1007/s10589-016-9838-9. |
[11] |
Y. Dai and Y. Yuan,
A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[12] |
Y. Dai, L. Liao and D. Li,
On restart procedures for the conjugate gradient method, Numer. Algor., 35 (2004), 249-260.
doi: 10.1023/B:NUMA.0000021761.10993.6e. |
[13] |
W. Ding, L. Qi and Y. Wei,
M-tensors and nonsingular M-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.
doi: 10.1016/j.laa.2013.08.038. |
[14] |
S. Du, M. Che and Y. Wei,
Stochastic structured tensors to stochastic complementarity problems, Comput. Optim. Appl., 75 (2020), 649-668.
doi: 10.1007/s10589-019-00144-3. |
[15] |
S. Du and L. Zhang,
A mixed integer programming approach to the tensor complementarity problem, J. Global Optim., 39 (2019), 789-800.
doi: 10.1007/s10898-018-00731-4. |
[16] |
J. Fan, J. Nie and A. Zhou,
Tensor eigenvalue complementarity problems, Math. Program., 170 (2018), 507-539.
doi: 10.1007/s10107-017-1167-y. |
[17] |
Z. Huang and L. Qi,
Tensor complementarity problems-Part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1-23.
doi: 10.1007/s10957-019-01566-z. |
[18] |
Z. Huang and L. Qi,
Tensor complementarity problems-Part III: Applications, J. Optim. Theory Appl., 183 (2019), 771-791.
doi: 10.1007/s10957-019-01573-0. |
[19] |
T. Kolda and J. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[20] |
H. Li, S. Du, Y. Wang and M. Chen, An inexact Levenberg-Marquardt method for tensor eigenvalue complementarity problem, Pacific J. Optim., 16 (2020), 87-99. Google Scholar |
[21] |
C. Ling, H. He and L. Qi,
On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 63 (2016), 143-168.
doi: 10.1007/s10589-015-9767-z. |
[22] |
C. Ling, H. He and L. Qi,
Higher-degree eigenvalue complementarity problems for tensors, Comput. Optim. Appl., 64 (2016), 149-176.
doi: 10.1007/s10589-015-9805-x. |
[23] |
Y. Liu and Q. Yang, A New Eigenvalue Complementarity Problem for Tensor and Matrix, Nankai University, 2018. Google Scholar |
[24] |
G. Meurant,
On prescribing the convergence behavior of the conjugate gradient algorithm, Numer. Algorithms, 84 (2020), 1353-1380.
doi: 10.1007/s11075-019-00851-2. |
[25] |
M. Ng, L. Qi and G. Zhou,
Finding the largest eigenvalue of a non-negative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[26] |
Q. Ni and L. Qi,
A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map, J. Global Optim., 61 (2015), 627-641.
doi: 10.1007/s10898-014-0209-8. |
[27] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[28] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
doi: 10.1137/1.9781611974751.ch1. |
[29] |
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018.
doi: 10.1007/978-981-10-8058-6. |
[30] |
L. Qi,
Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439 (2013), 228-238.
doi: 10.1016/j.laa.2013.03.015. |
[31] |
L. Qi and Z. Huang,
Tensor complementarity problems-Part II: Solution methods, J. Optim. Theory Appl., 183 (2019), 365-385.
doi: 10.1007/s10957-019-01568-x. |
[32] |
A. Seeger,
Quadratic eigenvalue problems under conic constraints, SIAM J. Matrix Anal. Appl., 32 (2011), 700-721.
doi: 10.1137/100801780. |
[33] |
Y. Song and L. Qi,
Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33 (2017), 308-323.
|
[34] |
Y. Song and L. Qi,
Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
doi: 10.1007/s10957-014-0616-5. |
[35] |
Y. Song and L. Qi,
Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169 (2016), 1069-1078.
doi: 10.1007/s10957-015-0800-2. |
[36] |
Y. Song and G. Yu,
Properties of solution set of tensor complementarity problem, J. Optim. Theory Appl., 170 (2016), 85-96.
doi: 10.1007/s10957-016-0907-0. |
[37] |
Z. Wan, Z. Yang and Y. Wang,
New spectral PRP conjugate gradient method for unconstrained optimization, Appl. Math. Lett., 24 (2011), 16-22.
doi: 10.1016/j.aml.2010.08.002. |
[38] |
X. Wang, M. Che and Y. Wei,
Global uniqueness and solvability of tensor complementarity problems for $\mathcal {H}_{+}$-tensors, Numer. Algorithms, 84 (2020), 567-590.
doi: 10.1007/s11075-019-00769-9. |
[39] |
Y. Wang, Z. Huang and X. Bai,
Exceptionally regular tensors and tensor complementarity problems, Optim. Methods Softw., 31 (2016), 815-828.
doi: 10.1080/10556788.2016.1180386. |
[40] |
Y. Wei and W. Ding, Theory and Computation of Tensors: Multi-Dimensional Arrays, Academic Press, London, 2016.
![]() |
[41] |
F. Xu and C. Ling,
Some properties on Pareto-eigenvalues of higher-order tensors, Oper. Res. Trans., 19 (2015), 34-41.
|
[42] |
W. Yan and C. Ling, Quadratic eigenvalue complememtarity problem for tensor on second-order cone, Journal of Hangzhou Dianzi University., 38 (2018), 90-93. Google Scholar |
[43] | Y. Yang and Q. Yang, A Study on Eigenvalues of Higher-Order Tensors and Related Polynomial Optimization Problems, Science Press, Beijing, 2015. Google Scholar |
[44] |
G. Yu, Y. Song, Y. Xu and Z. Yu,
Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems, Numer. Algorithms, 80 (2019), 1181-1201.
doi: 10.1007/s11075-018-0522-2. |
[45] |
G. Yuan, X. Wang and Z. Sheng,
Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions, Numer. Algorithms, 84 (2020), 935-956.
doi: 10.1007/s11075-019-00787-7. |
[46] |
L. Zhang, L. Qi and G. Zhou,
M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339. |
[47] |
K. Zhang, H. Chen and P. Zhao,
A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15 (2019), 429-443.
doi: 10.3934/jimo.2018049. |
[48] |
L. Zhang and W. Zhou,
On the global convergence of the Hager-Zhang conjugate gradient method with Armijo line search, Acta Mathematica Scientia., 28 (2008), 840-845.
|
[49] |
L. Zhang, W. Zhou and D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numerische Mathematik., 104 (2006), 561–572.
doi: 10.1007/s00211-006-0028-z. |
[50] |
M. Zheng, Y. Zhang and Z. Huang,
Global error bounds for the tensor complementarity problem with a P-tensor, J. Ind. Manag. Optim., 15 (2019), 933-946.
doi: 10.3934/jimo.2018078. |


Eigvalue | Eigvector | No |
1.9406 | 24 | |
2.0469 | 5 | |
2.6308 | 1 |
Eigvalue | Eigvector | No |
1.9406 | 24 | |
2.0469 | 5 | |
2.6308 | 1 |
Alg. | Eigvalue | Eigvector | No. | K |
Algorithm 3.1 | 0.3024 | 3 | 69 | |
Algorithm 3.1 | 0.2356 | 2 | 56 | |
Algorithm 3.1 | 0.2089 | 1 | 41 | |
Algorithm 3.1 | 0.0771 | 3 | 183 | |
Algorithm 3.1 | 1 | - | ||
ILMM | 0.2089 | 2 | 26 | |
ILMM | 0.2356 | 2 | 41 | |
ILMM | 0.3024 | 1 | 45 | |
ILMM | 0.9807 | 1 | 119 | |
ILMM | - | 4 | - |
Alg. | Eigvalue | Eigvector | No. | K |
Algorithm 3.1 | 0.3024 | 3 | 69 | |
Algorithm 3.1 | 0.2356 | 2 | 56 | |
Algorithm 3.1 | 0.2089 | 1 | 41 | |
Algorithm 3.1 | 0.0771 | 3 | 183 | |
Algorithm 3.1 | 1 | - | ||
ILMM | 0.2089 | 2 | 26 | |
ILMM | 0.2356 | 2 | 41 | |
ILMM | 0.3024 | 1 | 45 | |
ILMM | 0.9807 | 1 | 119 | |
ILMM | - | 4 | - |
Eigvalue | Eigvector | No |
0.8867 | 2 | |
0.9533 | 4 | |
0.6 | 14 |
Eigvalue | Eigvector | No |
0.8867 | 2 | |
0.9533 | 4 | |
0.6 | 14 |
Eigvalue | Eigvector | No |
2.9167 | 3 | |
2.9865 | 2 | |
0.3 | 1 | |
failure | 4 |
Eigvalue | Eigvector | No |
2.9167 | 3 | |
2.9865 | 2 | |
0.3 | 1 | |
failure | 4 |
[1] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[2] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[3] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[4] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[5] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[6] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[7] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[8] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[9] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[10] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[11] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[12] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[13] |
C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020058 |
[14] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[15] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[16] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[17] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[18] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[19] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[20] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]