• Previous Article
    Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty
  • JIMO Home
  • This Issue
  • Next Article
    Optimal pricing, ordering, and credit period policies for deteriorating products under order-linked trade credit
doi: 10.3934/jimo.2020156
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

3. 

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong

* Corresponding author: Zhibin Liang

Received  February 2019 Revised  June 2020 Early access November 2020

Fund Project: This research is supported by National Natural Science Foundation of China (Grant No.12071224 and Grant No.11771079), the Research Grants Council of the Hong Kong Special Administrative Region (Project No. HKU17306220), the Philosophy and Social Science Foundation for Colleges and Universities in Jiangsu Province (Grant No.2020SJA0261), and the MOE Project of Humanities and Social Sciences (Grant No.19YJCZH083)

In this paper, an optimal portfolio selection problem with mean-variance utility is considered for a financial market consisting of one risk-free asset and two risky assets, whose price processes are modulated by jump-diffusion model, the two jump number processes are correlated through a common shock, and the Brownian motions are supposed to be dependent. Moreover, it is assumed that not only the risk aversion coefficient but also the market parameters such as the appreciation and volatility rates as well as the jump amplitude depend on a Markov chain with finite states. In addition, short selling is supposed to be prohibited. Using the technique of stochastic control theory and the corresponding extended Hamilton-Jacobi-Bellman equation, the explicit expressions of the optimal strategies and value function are obtained within a game theoretic framework, and the existence and uniqueness of the solutions are proved as well. In the end, some numerical examples are presented to show the impact of the parameters on the optimal strategies, and some further discussions on the case of $ n\geq 3 $ risky assets are given to demonstrate the important effect of the correlation coefficient of the Brownian motions on the optimal results.

Citation: Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020156
References:
[1]

N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.  doi: 10.1007/s00186-005-0446-1.  Google Scholar

[2]

A. BensoussanK. C. WongS. C. P. Yam and S. P. Yung, Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM Journal on Financial Mathematics, 5 (2014), 153-190.  doi: 10.1137/130914139.  Google Scholar

[3]

A. BensoussanK. C. Wong and S. C. P. Yam, A paradox in time-consistency in the mean-variance problem, Finance and Stochastics, 23 (2019), 173-207.  doi: 10.1007/s00780-018-00381-0.  Google Scholar

[4]

J. Bi and J. Cai, Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance: Mathematics and Economics, 85 (2019), 1-14.  doi: 10.1016/j.insmatheco.2018.11.007.  Google Scholar

[5]

J. Bi and J. Guo, Optimal mean-variance problem with constrained controls in a jump-diffusion financial market for an insurer, Journal of Optimization Theory and Applications, 157 (2013), 252-275.  doi: 10.1007/s10957-012-0138-y.  Google Scholar

[6]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance: Mathematics and Economics, 70 (2016), 245-258.  doi: 10.1016/j.insmatheco.2016.06.012.  Google Scholar

[7]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working Paper, Stockholm School of Economics, Sweden, 2010. Google Scholar

[8]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[9]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[10]

R. J. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems, Finance and Stochastics, 1 (1997), 229-238.   Google Scholar

[11]

P. A. Forsyth and J. Wang, Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.  doi: 10.1016/j.ejor.2010.09.038.  Google Scholar

[12]

D. Li and W. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

Z. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.  Google Scholar

[14]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Mathematical Methods of Operations Research, 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[15]

Z. Liang and K. C. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.  Google Scholar

[16]

Z. LiangK. C. Yuen and C. Zhang, Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence, Journal of Applied Mathematics and Computing, 56 (2018), 637-664.  doi: 10.1007/s12190-017-1119-y.  Google Scholar

[17]

A. E. B. Lim and X. Y. Zhou, Quadratic hedging and mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[18]

H. M. Markowitz, Portfolio Selection, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1959.  Google Scholar

[19]

Z. MingZ. Liang and C. Zhang, Optimal mean-variance reinsurance with dependent risks, ANZIAM Journal, 58 (2016), 162-181.  doi: 10.1017/S144618111600016X.  Google Scholar

[20]

J. L. Pedersen and G. Peskir, Optimal mean-variance portfolio selection, Mathematics and Financial Economics, 11 (2017), 137-160.  doi: 10.1007/s11579-016-0174-8.  Google Scholar

[21]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization, Management Science, 35 (1989), 1045-1055.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[22]

Z. Sun and J. Guo, Optimal mean-variance investment and reinsurance problem for an insurer with stochastic volatility, Mathematical Methods of Operations Research, 88 (2018), 59-79.  doi: 10.1007/s00186-017-0628-7.  Google Scholar

[23]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.  Google Scholar

[24]

J. WeiD. Li and Y. Zeng, Robust optimal consumption-investment strategy with nonexponential discounting, Journal of Industrial and Management Optimization, 16 (2020), 207-230.  doi: 10.3934/jimo.2018147.  Google Scholar

[25]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[26]

K. C. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.  doi: 10.1016/j.insmatheco.2015.04.009.  Google Scholar

[27]

Y. ZengZ. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps, Insurance: Mathematics and Economics, 52 (2013), 498-507.  doi: 10.1016/j.insmatheco.2013.02.007.  Google Scholar

[28]

C. Zhang and Z. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[29]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a Markovian regime-switching economy, Acta Mathematica Sinica English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

[30]

J. ZhouX. Yang and J. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability Letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[31]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[32]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

show all references

References:
[1]

N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.  doi: 10.1007/s00186-005-0446-1.  Google Scholar

[2]

A. BensoussanK. C. WongS. C. P. Yam and S. P. Yung, Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM Journal on Financial Mathematics, 5 (2014), 153-190.  doi: 10.1137/130914139.  Google Scholar

[3]

A. BensoussanK. C. Wong and S. C. P. Yam, A paradox in time-consistency in the mean-variance problem, Finance and Stochastics, 23 (2019), 173-207.  doi: 10.1007/s00780-018-00381-0.  Google Scholar

[4]

J. Bi and J. Cai, Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance: Mathematics and Economics, 85 (2019), 1-14.  doi: 10.1016/j.insmatheco.2018.11.007.  Google Scholar

[5]

J. Bi and J. Guo, Optimal mean-variance problem with constrained controls in a jump-diffusion financial market for an insurer, Journal of Optimization Theory and Applications, 157 (2013), 252-275.  doi: 10.1007/s10957-012-0138-y.  Google Scholar

[6]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance: Mathematics and Economics, 70 (2016), 245-258.  doi: 10.1016/j.insmatheco.2016.06.012.  Google Scholar

[7]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working Paper, Stockholm School of Economics, Sweden, 2010. Google Scholar

[8]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[9]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[10]

R. J. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems, Finance and Stochastics, 1 (1997), 229-238.   Google Scholar

[11]

P. A. Forsyth and J. Wang, Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.  doi: 10.1016/j.ejor.2010.09.038.  Google Scholar

[12]

D. Li and W. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

Z. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.  Google Scholar

[14]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Mathematical Methods of Operations Research, 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[15]

Z. Liang and K. C. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.  Google Scholar

[16]

Z. LiangK. C. Yuen and C. Zhang, Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence, Journal of Applied Mathematics and Computing, 56 (2018), 637-664.  doi: 10.1007/s12190-017-1119-y.  Google Scholar

[17]

A. E. B. Lim and X. Y. Zhou, Quadratic hedging and mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[18]

H. M. Markowitz, Portfolio Selection, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1959.  Google Scholar

[19]

Z. MingZ. Liang and C. Zhang, Optimal mean-variance reinsurance with dependent risks, ANZIAM Journal, 58 (2016), 162-181.  doi: 10.1017/S144618111600016X.  Google Scholar

[20]

J. L. Pedersen and G. Peskir, Optimal mean-variance portfolio selection, Mathematics and Financial Economics, 11 (2017), 137-160.  doi: 10.1007/s11579-016-0174-8.  Google Scholar

[21]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization, Management Science, 35 (1989), 1045-1055.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[22]

Z. Sun and J. Guo, Optimal mean-variance investment and reinsurance problem for an insurer with stochastic volatility, Mathematical Methods of Operations Research, 88 (2018), 59-79.  doi: 10.1007/s00186-017-0628-7.  Google Scholar

[23]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.  Google Scholar

[24]

J. WeiD. Li and Y. Zeng, Robust optimal consumption-investment strategy with nonexponential discounting, Journal of Industrial and Management Optimization, 16 (2020), 207-230.  doi: 10.3934/jimo.2018147.  Google Scholar

[25]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[26]

K. C. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.  doi: 10.1016/j.insmatheco.2015.04.009.  Google Scholar

[27]

Y. ZengZ. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps, Insurance: Mathematics and Economics, 52 (2013), 498-507.  doi: 10.1016/j.insmatheco.2013.02.007.  Google Scholar

[28]

C. Zhang and Z. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[29]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a Markovian regime-switching economy, Acta Mathematica Sinica English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

[30]

J. ZhouX. Yang and J. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability Letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[31]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[32]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

Figure 1.  The comparison of value functions with and without constraint
Figure 2.  The comparison of optimal strategies between regime 1 and regime 2
Figure 3.  The effect of parameter $ \lambda_{01} $ on optimal strategies with regime 1
Figure 4.  The effect of jump's parameters on optimal strategies with regime 1
Figure 5.  The effect of risk-free rate on optimal strategies with regime 1
Table 1.  The value of parameters
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.300.20.30.80.060.080.020.05520.51
$ e_2 $(bearish)5210.30.250.070.10.40.50.030.040.030.03210.30.6
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.300.20.30.80.060.080.020.05520.51
$ e_2 $(bearish)5210.30.250.070.10.40.50.030.040.030.03210.30.6
Table 2.  The parameters-set
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.650.20.70.80.060.080.040.04520.51
$ e_2 $(bearish)5210.30.350.370.10.40.50.030.040.030.03210.30.6
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.650.20.70.80.060.080.040.04520.51
$ e_2 $(bearish)5210.30.350.370.10.40.50.030.040.030.03210.30.6
[1]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[2]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[3]

Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021130

[4]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[5]

Xuhui Wang, Lei Hu. A new method to solve the Hamilton-Jacobi-Bellman equation for a stochastic portfolio optimization model with boundary memory. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021137

[6]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control & Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[7]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[8]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[9]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[10]

Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483

[11]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[12]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[13]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021046

[14]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[15]

Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643-656. doi: 10.3934/jimo.2013.9.643

[16]

Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2020, 16 (2) : 991-1008. doi: 10.3934/jimo.2018189

[17]

Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045

[18]

Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021034

[19]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[20]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (147)
  • HTML views (391)
  • Cited by (0)

Other articles
by authors

[Back to Top]