• Previous Article
    Extension of Littlewood's rule to the multi-period static revenue management model with standby customers
  • JIMO Home
  • This Issue
  • Next Article
    Mean-variance investment and contribution decisions for defined benefit pension plans in a stochastic framework
doi: 10.3934/jimo.2020156

Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

3. 

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong

* Corresponding author: Zhibin Liang

Received  February 2019 Revised  June 2020 Published  November 2020

Fund Project: This research is supported by National Natural Science Foundation of China (Grant No.12071224 and Grant No.11771079), the Research Grants Council of the Hong Kong Special Administrative Region (Project No. HKU17306220), the Philosophy and Social Science Foundation for Colleges and Universities in Jiangsu Province (Grant No.2020SJA0261), and the MOE Project of Humanities and Social Sciences (Grant No.19YJCZH083)

In this paper, an optimal portfolio selection problem with mean-variance utility is considered for a financial market consisting of one risk-free asset and two risky assets, whose price processes are modulated by jump-diffusion model, the two jump number processes are correlated through a common shock, and the Brownian motions are supposed to be dependent. Moreover, it is assumed that not only the risk aversion coefficient but also the market parameters such as the appreciation and volatility rates as well as the jump amplitude depend on a Markov chain with finite states. In addition, short selling is supposed to be prohibited. Using the technique of stochastic control theory and the corresponding extended Hamilton-Jacobi-Bellman equation, the explicit expressions of the optimal strategies and value function are obtained within a game theoretic framework, and the existence and uniqueness of the solutions are proved as well. In the end, some numerical examples are presented to show the impact of the parameters on the optimal strategies, and some further discussions on the case of $ n\geq 3 $ risky assets are given to demonstrate the important effect of the correlation coefficient of the Brownian motions on the optimal results.

Citation: Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020156
References:
[1]

N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.  doi: 10.1007/s00186-005-0446-1.  Google Scholar

[2]

A. BensoussanK. C. WongS. C. P. Yam and S. P. Yung, Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM Journal on Financial Mathematics, 5 (2014), 153-190.  doi: 10.1137/130914139.  Google Scholar

[3]

A. BensoussanK. C. Wong and S. C. P. Yam, A paradox in time-consistency in the mean-variance problem, Finance and Stochastics, 23 (2019), 173-207.  doi: 10.1007/s00780-018-00381-0.  Google Scholar

[4]

J. Bi and J. Cai, Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance: Mathematics and Economics, 85 (2019), 1-14.  doi: 10.1016/j.insmatheco.2018.11.007.  Google Scholar

[5]

J. Bi and J. Guo, Optimal mean-variance problem with constrained controls in a jump-diffusion financial market for an insurer, Journal of Optimization Theory and Applications, 157 (2013), 252-275.  doi: 10.1007/s10957-012-0138-y.  Google Scholar

[6]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance: Mathematics and Economics, 70 (2016), 245-258.  doi: 10.1016/j.insmatheco.2016.06.012.  Google Scholar

[7]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working Paper, Stockholm School of Economics, Sweden, 2010. Google Scholar

[8]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[9]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[10]

R. J. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems, Finance and Stochastics, 1 (1997), 229-238.   Google Scholar

[11]

P. A. Forsyth and J. Wang, Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.  doi: 10.1016/j.ejor.2010.09.038.  Google Scholar

[12]

D. Li and W. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

Z. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.  Google Scholar

[14]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Mathematical Methods of Operations Research, 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[15]

Z. Liang and K. C. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.  Google Scholar

[16]

Z. LiangK. C. Yuen and C. Zhang, Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence, Journal of Applied Mathematics and Computing, 56 (2018), 637-664.  doi: 10.1007/s12190-017-1119-y.  Google Scholar

[17]

A. E. B. Lim and X. Y. Zhou, Quadratic hedging and mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[18]

H. M. Markowitz, Portfolio Selection, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1959.  Google Scholar

[19]

Z. MingZ. Liang and C. Zhang, Optimal mean-variance reinsurance with dependent risks, ANZIAM Journal, 58 (2016), 162-181.  doi: 10.1017/S144618111600016X.  Google Scholar

[20]

J. L. Pedersen and G. Peskir, Optimal mean-variance portfolio selection, Mathematics and Financial Economics, 11 (2017), 137-160.  doi: 10.1007/s11579-016-0174-8.  Google Scholar

[21]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization, Management Science, 35 (1989), 1045-1055.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[22]

Z. Sun and J. Guo, Optimal mean-variance investment and reinsurance problem for an insurer with stochastic volatility, Mathematical Methods of Operations Research, 88 (2018), 59-79.  doi: 10.1007/s00186-017-0628-7.  Google Scholar

[23]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.  Google Scholar

[24]

J. WeiD. Li and Y. Zeng, Robust optimal consumption-investment strategy with nonexponential discounting, Journal of Industrial and Management Optimization, 16 (2020), 207-230.  doi: 10.3934/jimo.2018147.  Google Scholar

[25]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[26]

K. C. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.  doi: 10.1016/j.insmatheco.2015.04.009.  Google Scholar

[27]

Y. ZengZ. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps, Insurance: Mathematics and Economics, 52 (2013), 498-507.  doi: 10.1016/j.insmatheco.2013.02.007.  Google Scholar

[28]

C. Zhang and Z. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[29]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a Markovian regime-switching economy, Acta Mathematica Sinica English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

[30]

J. ZhouX. Yang and J. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability Letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[31]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[32]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

show all references

References:
[1]

N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.  doi: 10.1007/s00186-005-0446-1.  Google Scholar

[2]

A. BensoussanK. C. WongS. C. P. Yam and S. P. Yung, Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM Journal on Financial Mathematics, 5 (2014), 153-190.  doi: 10.1137/130914139.  Google Scholar

[3]

A. BensoussanK. C. Wong and S. C. P. Yam, A paradox in time-consistency in the mean-variance problem, Finance and Stochastics, 23 (2019), 173-207.  doi: 10.1007/s00780-018-00381-0.  Google Scholar

[4]

J. Bi and J. Cai, Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance: Mathematics and Economics, 85 (2019), 1-14.  doi: 10.1016/j.insmatheco.2018.11.007.  Google Scholar

[5]

J. Bi and J. Guo, Optimal mean-variance problem with constrained controls in a jump-diffusion financial market for an insurer, Journal of Optimization Theory and Applications, 157 (2013), 252-275.  doi: 10.1007/s10957-012-0138-y.  Google Scholar

[6]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance: Mathematics and Economics, 70 (2016), 245-258.  doi: 10.1016/j.insmatheco.2016.06.012.  Google Scholar

[7]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working Paper, Stockholm School of Economics, Sweden, 2010. Google Scholar

[8]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[9]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[10]

R. J. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems, Finance and Stochastics, 1 (1997), 229-238.   Google Scholar

[11]

P. A. Forsyth and J. Wang, Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.  doi: 10.1016/j.ejor.2010.09.038.  Google Scholar

[12]

D. Li and W. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

Z. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.  Google Scholar

[14]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Mathematical Methods of Operations Research, 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[15]

Z. Liang and K. C. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.  Google Scholar

[16]

Z. LiangK. C. Yuen and C. Zhang, Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence, Journal of Applied Mathematics and Computing, 56 (2018), 637-664.  doi: 10.1007/s12190-017-1119-y.  Google Scholar

[17]

A. E. B. Lim and X. Y. Zhou, Quadratic hedging and mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[18]

H. M. Markowitz, Portfolio Selection, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1959.  Google Scholar

[19]

Z. MingZ. Liang and C. Zhang, Optimal mean-variance reinsurance with dependent risks, ANZIAM Journal, 58 (2016), 162-181.  doi: 10.1017/S144618111600016X.  Google Scholar

[20]

J. L. Pedersen and G. Peskir, Optimal mean-variance portfolio selection, Mathematics and Financial Economics, 11 (2017), 137-160.  doi: 10.1007/s11579-016-0174-8.  Google Scholar

[21]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization, Management Science, 35 (1989), 1045-1055.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[22]

Z. Sun and J. Guo, Optimal mean-variance investment and reinsurance problem for an insurer with stochastic volatility, Mathematical Methods of Operations Research, 88 (2018), 59-79.  doi: 10.1007/s00186-017-0628-7.  Google Scholar

[23]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.  Google Scholar

[24]

J. WeiD. Li and Y. Zeng, Robust optimal consumption-investment strategy with nonexponential discounting, Journal of Industrial and Management Optimization, 16 (2020), 207-230.  doi: 10.3934/jimo.2018147.  Google Scholar

[25]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[26]

K. C. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.  doi: 10.1016/j.insmatheco.2015.04.009.  Google Scholar

[27]

Y. ZengZ. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps, Insurance: Mathematics and Economics, 52 (2013), 498-507.  doi: 10.1016/j.insmatheco.2013.02.007.  Google Scholar

[28]

C. Zhang and Z. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[29]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a Markovian regime-switching economy, Acta Mathematica Sinica English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

[30]

J. ZhouX. Yang and J. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability Letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[31]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[32]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

Figure 1.  The comparison of value functions with and without constraint
Figure 2.  The comparison of optimal strategies between regime 1 and regime 2
Figure 3.  The effect of parameter $ \lambda_{01} $ on optimal strategies with regime 1
Figure 4.  The effect of jump's parameters on optimal strategies with regime 1
Figure 5.  The effect of risk-free rate on optimal strategies with regime 1
Table 1.  The value of parameters
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.300.20.30.80.060.080.020.05520.51
$ e_2 $(bearish)5210.30.250.070.10.40.50.030.040.030.03210.30.6
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.300.20.30.80.060.080.020.05520.51
$ e_2 $(bearish)5210.30.250.070.10.40.50.030.040.030.03210.30.6
Table 2.  The parameters-set
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.650.20.70.80.060.080.040.04520.51
$ e_2 $(bearish)5210.30.350.370.10.40.50.030.040.030.03210.30.6
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.650.20.70.80.060.080.040.04520.51
$ e_2 $(bearish)5210.30.350.370.10.40.50.030.040.030.03210.30.6
[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[4]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[7]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[8]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[9]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[10]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[11]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[12]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[13]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[15]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[16]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[17]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (24)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]