• Previous Article
    Extension of Littlewood's rule to the multi-period static revenue management model with standby customers
  • JIMO Home
  • This Issue
  • Next Article
    Two-agent integrated scheduling of production and distribution operations with fixed departure times
doi: 10.3934/jimo.2020156

Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

3. 

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong

* Corresponding author: Zhibin Liang

Received  February 2019 Revised  June 2020 Published  November 2020

Fund Project: This research is supported by National Natural Science Foundation of China (Grant No.12071224 and Grant No.11771079), the Research Grants Council of the Hong Kong Special Administrative Region (Project No. HKU17306220), the Philosophy and Social Science Foundation for Colleges and Universities in Jiangsu Province (Grant No.2020SJA0261), and the MOE Project of Humanities and Social Sciences (Grant No.19YJCZH083)

In this paper, an optimal portfolio selection problem with mean-variance utility is considered for a financial market consisting of one risk-free asset and two risky assets, whose price processes are modulated by jump-diffusion model, the two jump number processes are correlated through a common shock, and the Brownian motions are supposed to be dependent. Moreover, it is assumed that not only the risk aversion coefficient but also the market parameters such as the appreciation and volatility rates as well as the jump amplitude depend on a Markov chain with finite states. In addition, short selling is supposed to be prohibited. Using the technique of stochastic control theory and the corresponding extended Hamilton-Jacobi-Bellman equation, the explicit expressions of the optimal strategies and value function are obtained within a game theoretic framework, and the existence and uniqueness of the solutions are proved as well. In the end, some numerical examples are presented to show the impact of the parameters on the optimal strategies, and some further discussions on the case of $ n\geq 3 $ risky assets are given to demonstrate the important effect of the correlation coefficient of the Brownian motions on the optimal results.

Citation: Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020156
References:
[1]

N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.  doi: 10.1007/s00186-005-0446-1.  Google Scholar

[2]

A. BensoussanK. C. WongS. C. P. Yam and S. P. Yung, Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM Journal on Financial Mathematics, 5 (2014), 153-190.  doi: 10.1137/130914139.  Google Scholar

[3]

A. BensoussanK. C. Wong and S. C. P. Yam, A paradox in time-consistency in the mean-variance problem, Finance and Stochastics, 23 (2019), 173-207.  doi: 10.1007/s00780-018-00381-0.  Google Scholar

[4]

J. Bi and J. Cai, Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance: Mathematics and Economics, 85 (2019), 1-14.  doi: 10.1016/j.insmatheco.2018.11.007.  Google Scholar

[5]

J. Bi and J. Guo, Optimal mean-variance problem with constrained controls in a jump-diffusion financial market for an insurer, Journal of Optimization Theory and Applications, 157 (2013), 252-275.  doi: 10.1007/s10957-012-0138-y.  Google Scholar

[6]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance: Mathematics and Economics, 70 (2016), 245-258.  doi: 10.1016/j.insmatheco.2016.06.012.  Google Scholar

[7]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working Paper, Stockholm School of Economics, Sweden, 2010. Google Scholar

[8]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[9]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[10]

R. J. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems, Finance and Stochastics, 1 (1997), 229-238.   Google Scholar

[11]

P. A. Forsyth and J. Wang, Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.  doi: 10.1016/j.ejor.2010.09.038.  Google Scholar

[12]

D. Li and W. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

Z. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.  Google Scholar

[14]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Mathematical Methods of Operations Research, 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[15]

Z. Liang and K. C. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.  Google Scholar

[16]

Z. LiangK. C. Yuen and C. Zhang, Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence, Journal of Applied Mathematics and Computing, 56 (2018), 637-664.  doi: 10.1007/s12190-017-1119-y.  Google Scholar

[17]

A. E. B. Lim and X. Y. Zhou, Quadratic hedging and mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[18]

H. M. Markowitz, Portfolio Selection, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1959.  Google Scholar

[19]

Z. MingZ. Liang and C. Zhang, Optimal mean-variance reinsurance with dependent risks, ANZIAM Journal, 58 (2016), 162-181.  doi: 10.1017/S144618111600016X.  Google Scholar

[20]

J. L. Pedersen and G. Peskir, Optimal mean-variance portfolio selection, Mathematics and Financial Economics, 11 (2017), 137-160.  doi: 10.1007/s11579-016-0174-8.  Google Scholar

[21]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization, Management Science, 35 (1989), 1045-1055.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[22]

Z. Sun and J. Guo, Optimal mean-variance investment and reinsurance problem for an insurer with stochastic volatility, Mathematical Methods of Operations Research, 88 (2018), 59-79.  doi: 10.1007/s00186-017-0628-7.  Google Scholar

[23]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.  Google Scholar

[24]

J. WeiD. Li and Y. Zeng, Robust optimal consumption-investment strategy with nonexponential discounting, Journal of Industrial and Management Optimization, 16 (2020), 207-230.  doi: 10.3934/jimo.2018147.  Google Scholar

[25]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[26]

K. C. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.  doi: 10.1016/j.insmatheco.2015.04.009.  Google Scholar

[27]

Y. ZengZ. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps, Insurance: Mathematics and Economics, 52 (2013), 498-507.  doi: 10.1016/j.insmatheco.2013.02.007.  Google Scholar

[28]

C. Zhang and Z. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[29]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a Markovian regime-switching economy, Acta Mathematica Sinica English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

[30]

J. ZhouX. Yang and J. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability Letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[31]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[32]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

show all references

References:
[1]

N. Bäuerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.  doi: 10.1007/s00186-005-0446-1.  Google Scholar

[2]

A. BensoussanK. C. WongS. C. P. Yam and S. P. Yung, Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM Journal on Financial Mathematics, 5 (2014), 153-190.  doi: 10.1137/130914139.  Google Scholar

[3]

A. BensoussanK. C. Wong and S. C. P. Yam, A paradox in time-consistency in the mean-variance problem, Finance and Stochastics, 23 (2019), 173-207.  doi: 10.1007/s00780-018-00381-0.  Google Scholar

[4]

J. Bi and J. Cai, Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets, Insurance: Mathematics and Economics, 85 (2019), 1-14.  doi: 10.1016/j.insmatheco.2018.11.007.  Google Scholar

[5]

J. Bi and J. Guo, Optimal mean-variance problem with constrained controls in a jump-diffusion financial market for an insurer, Journal of Optimization Theory and Applications, 157 (2013), 252-275.  doi: 10.1007/s10957-012-0138-y.  Google Scholar

[6]

J. BiZ. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence, Insurance: Mathematics and Economics, 70 (2016), 245-258.  doi: 10.1016/j.insmatheco.2016.06.012.  Google Scholar

[7]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working Paper, Stockholm School of Economics, Sweden, 2010. Google Scholar

[8]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.  Google Scholar

[9]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[10]

R. J. Elliott and J. Hoek, An application of hidden Markov models to asset allocation problems, Finance and Stochastics, 1 (1997), 229-238.   Google Scholar

[11]

P. A. Forsyth and J. Wang, Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.  doi: 10.1016/j.ejor.2010.09.038.  Google Scholar

[12]

D. Li and W. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[13]

Z. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.  Google Scholar

[14]

Z. LiangJ. BiK. C. Yuen and C. Zhang, Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Mathematical Methods of Operations Research, 84 (2016), 155-181.  doi: 10.1007/s00186-016-0538-0.  Google Scholar

[15]

Z. Liang and K. C. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.  Google Scholar

[16]

Z. LiangK. C. Yuen and C. Zhang, Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence, Journal of Applied Mathematics and Computing, 56 (2018), 637-664.  doi: 10.1007/s12190-017-1119-y.  Google Scholar

[17]

A. E. B. Lim and X. Y. Zhou, Quadratic hedging and mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.  doi: 10.1287/moor.27.1.101.337.  Google Scholar

[18]

H. M. Markowitz, Portfolio Selection, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1959.  Google Scholar

[19]

Z. MingZ. Liang and C. Zhang, Optimal mean-variance reinsurance with dependent risks, ANZIAM Journal, 58 (2016), 162-181.  doi: 10.1017/S144618111600016X.  Google Scholar

[20]

J. L. Pedersen and G. Peskir, Optimal mean-variance portfolio selection, Mathematics and Financial Economics, 11 (2017), 137-160.  doi: 10.1007/s11579-016-0174-8.  Google Scholar

[21]

H. R. Richardson, A minimum variance result in continuous trading portfolio optimization, Management Science, 35 (1989), 1045-1055.  doi: 10.1287/mnsc.35.9.1045.  Google Scholar

[22]

Z. Sun and J. Guo, Optimal mean-variance investment and reinsurance problem for an insurer with stochastic volatility, Mathematical Methods of Operations Research, 88 (2018), 59-79.  doi: 10.1007/s00186-017-0628-7.  Google Scholar

[23]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.  Google Scholar

[24]

J. WeiD. Li and Y. Zeng, Robust optimal consumption-investment strategy with nonexponential discounting, Journal of Industrial and Management Optimization, 16 (2020), 207-230.  doi: 10.3934/jimo.2018147.  Google Scholar

[25]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[26]

K. C. YuenZ. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.  doi: 10.1016/j.insmatheco.2015.04.009.  Google Scholar

[27]

Y. ZengZ. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps, Insurance: Mathematics and Economics, 52 (2013), 498-507.  doi: 10.1016/j.insmatheco.2013.02.007.  Google Scholar

[28]

C. Zhang and Z. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion, Optimal Control Applications and Methods, 38 (2017), 229-246.  doi: 10.1002/oca.2252.  Google Scholar

[29]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a Markovian regime-switching economy, Acta Mathematica Sinica English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

[30]

J. ZhouX. Yang and J. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability Letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[31]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

[32]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

Figure 1.  The comparison of value functions with and without constraint
Figure 2.  The comparison of optimal strategies between regime 1 and regime 2
Figure 3.  The effect of parameter $ \lambda_{01} $ on optimal strategies with regime 1
Figure 4.  The effect of jump's parameters on optimal strategies with regime 1
Figure 5.  The effect of risk-free rate on optimal strategies with regime 1
Table 1.  The value of parameters
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.300.20.30.80.060.080.020.05520.51
$ e_2 $(bearish)5210.30.250.070.10.40.50.030.040.030.03210.30.6
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.300.20.30.80.060.080.020.05520.51
$ e_2 $(bearish)5210.30.250.070.10.40.50.030.040.030.03210.30.6
Table 2.  The parameters-set
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.650.20.70.80.060.080.040.04520.51
$ e_2 $(bearish)5210.30.350.370.10.40.50.030.040.030.03210.30.6
parameters$ T $$ x $ $ \gamma_{i} $$ r_0 $$ r_{1i} $$ r_{2i} $$ \rho $$ \sigma_{1i} $$ \sigma_{2i} $$ \mu_{1i} $$ \mu_{2i} $$ \beta_{1i} $$ \beta_{2i} $$ \lambda_{1i} $$ \lambda_{2i} $$ \lambda_{0i} $
$ e_1 $(bullish)520.50.30.600.650.20.70.80.060.080.040.04520.51
$ e_2 $(bearish)5210.30.350.370.10.40.50.030.040.030.03210.30.6
[1]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[4]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[5]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[6]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[7]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[8]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[9]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[10]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[11]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[12]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[13]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[14]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[15]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[16]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[17]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[18]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (48)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]