• Previous Article
    Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints
  • JIMO Home
  • This Issue
  • Next Article
    Tighter quadratically constrained convex reformulations for semi-continuous quadratic programming
doi: 10.3934/jimo.2020157

Optimality results for a specific fractional problem

1. 

LAMA, FSDM, Sidi Mohamed Ben Abdellah University, Fez, Morocco

* Corresponding author: Khadija Hamdaoui

Received  July 2019 Revised  July 2020 Published  November 2020

In this paper, one minimizes a fractional function over a compact set. Using an exact separation theorem, one gives necessary optimality conditions for strict optimal solutions in terms of Fréchet subdifferentials. All data are assumed locally Lipschitz.

Citation: Nazih Abderrazzak Gadhi, Khadija Hamdaoui. Optimality results for a specific fractional problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020157
References:
[1]

A. Y. Kruger, On Fréchet subdifferentials, Journal of Mathematical Sciences, 116 (2003), 3325-3358.  doi: 10.1023/A:1023673105317.  Google Scholar

[2]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330, Springer, Berlin, 2006.  Google Scholar

[3]

B. S. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces, Transactions of the American Mathematical Society, 348 (1996), 1235-1280.  doi: 10.1090/S0002-9947-96-01543-7.  Google Scholar

[4]

B. S. MordukhovichN. M. Nam and N. D. Yen, Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization, 55 (2006), 685-708.  doi: 10.1080/02331930600816395.  Google Scholar

[5]

R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, 1993.  Google Scholar

[6]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processe, Wiley, New York, 1962.  Google Scholar

[7]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[8]

X. Y. ZhengZ. Yang and J. Zou, Exact separation theorem for closed sets in Asplund spaces, Optimization, 66 (2017), 1065-1077.  doi: 10.1080/02331934.2017.1316503.  Google Scholar

show all references

References:
[1]

A. Y. Kruger, On Fréchet subdifferentials, Journal of Mathematical Sciences, 116 (2003), 3325-3358.  doi: 10.1023/A:1023673105317.  Google Scholar

[2]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330, Springer, Berlin, 2006.  Google Scholar

[3]

B. S. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces, Transactions of the American Mathematical Society, 348 (1996), 1235-1280.  doi: 10.1090/S0002-9947-96-01543-7.  Google Scholar

[4]

B. S. MordukhovichN. M. Nam and N. D. Yen, Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization, 55 (2006), 685-708.  doi: 10.1080/02331930600816395.  Google Scholar

[5]

R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, 1993.  Google Scholar

[6]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processe, Wiley, New York, 1962.  Google Scholar

[7]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[8]

X. Y. ZhengZ. Yang and J. Zou, Exact separation theorem for closed sets in Asplund spaces, Optimization, 66 (2017), 1065-1077.  doi: 10.1080/02331934.2017.1316503.  Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[3]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[4]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[5]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[6]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[7]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[8]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[9]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[10]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[11]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[12]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[13]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[14]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[15]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[16]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[17]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[18]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[19]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[20]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (41)
  • HTML views (115)
  • Cited by (0)

Other articles
by authors

[Back to Top]