-
Previous Article
Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints
- JIMO Home
- This Issue
-
Next Article
Tighter quadratically constrained convex reformulations for semi-continuous quadratic programming
Optimality results for a specific fractional problem
1. | LAMA, FSDM, Sidi Mohamed Ben Abdellah University, Fez, Morocco |
In this paper, one minimizes a fractional function over a compact set. Using an exact separation theorem, one gives necessary optimality conditions for strict optimal solutions in terms of Fréchet subdifferentials. All data are assumed locally Lipschitz.
References:
[1] |
A. Y. Kruger,
On Fréchet subdifferentials, Journal of Mathematical Sciences, 116 (2003), 3325-3358.
doi: 10.1023/A:1023673105317. |
[2] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330, Springer, Berlin, 2006. |
[3] |
B. S. Mordukhovich and Y. Shao,
Nonsmooth sequential analysis in Asplund spaces, Transactions of the American Mathematical Society, 348 (1996), 1235-1280.
doi: 10.1090/S0002-9947-96-01543-7. |
[4] |
B. S. Mordukhovich, N. M. Nam and N. D. Yen,
Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization, 55 (2006), 685-708.
doi: 10.1080/02331930600816395. |
[5] |
R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, 1993. |
[6] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processe, Wiley, New York, 1962. |
[7] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[8] |
X. Y. Zheng, Z. Yang and J. Zou,
Exact separation theorem for closed sets in Asplund spaces, Optimization, 66 (2017), 1065-1077.
doi: 10.1080/02331934.2017.1316503. |
show all references
References:
[1] |
A. Y. Kruger,
On Fréchet subdifferentials, Journal of Mathematical Sciences, 116 (2003), 3325-3358.
doi: 10.1023/A:1023673105317. |
[2] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330, Springer, Berlin, 2006. |
[3] |
B. S. Mordukhovich and Y. Shao,
Nonsmooth sequential analysis in Asplund spaces, Transactions of the American Mathematical Society, 348 (1996), 1235-1280.
doi: 10.1090/S0002-9947-96-01543-7. |
[4] |
B. S. Mordukhovich, N. M. Nam and N. D. Yen,
Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization, 55 (2006), 685-708.
doi: 10.1080/02331930600816395. |
[5] |
R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, 1993. |
[6] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processe, Wiley, New York, 1962. |
[7] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[8] |
X. Y. Zheng, Z. Yang and J. Zou,
Exact separation theorem for closed sets in Asplund spaces, Optimization, 66 (2017), 1065-1077.
doi: 10.1080/02331934.2017.1316503. |
[1] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[2] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[3] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[4] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[5] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[6] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[7] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[8] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[9] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[10] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[11] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[12] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[13] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[14] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[15] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[16] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[17] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[18] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[19] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[20] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
2019 Impact Factor: 1.366
Tools
Article outline
[Back to Top]