-
Previous Article
Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort
- JIMO Home
- This Issue
-
Next Article
Solving fuzzy linear fractional set covering problem by a goal programming based solution approach
Stability for semivectorial bilevel programs
1. | School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 400067, China |
2. | School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China |
3. | School of Mathematics Science, Chongqing Normal University, Chongqing, 401331, China |
This paper studies the stability for bilevel program where the lower-level program is a multiobjective programming problem. As we know, the weakly efficient solution mapping for parametric multiobjective program is not generally lower semicontinuous. We first obtain this semicontinuity under a suitable assumption. Then, a new condition for the lower semicontinuity of the efficient solution mapping of this problem is also obtained. Finally, we get the continuities of the value functions and the solution set mapping for the upper-level problem based on the semicontinuities of solution mappings for the lower-level parametric multiobjective program.
References:
[1] |
M. J. Alves and C. H. Antunes, A differential evolution algorithm to semivectorial bilevel problems, International Workshop on Machine Learning, Optimization, and Big Data. Springer, Cham, (2017), 172-185.
doi: 10.1007/978-3-319-72926-8_15. |
[2] |
M. J. Alves and C. H. Antunes,
A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing, Computers and Operations Research, 92 (2018), 130-144.
doi: 10.1016/j.cor.2017.12.014. |
[3] |
J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 1998.
doi: 10.1007/978-1-4757-2836-1. |
[4] |
H. Bonnel and J. Morgan,
Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.
doi: 10.1007/s10957-006-9150-4. |
[5] |
H. Bonnel,
Optimality conditions for the semivectorial bilevel optimization problem, Pacific Journal of Optimization, 2 (2006), 447-467.
|
[6] |
H. Bonnel, L. Todjihound$\acute{e}$ and C. Udrit$\acute{e}$.,
Semivectorial bilevel optimization on riemannian manifolds, Journal of Optimization Theory and Applications, 167 (2015), 464-486.
doi: 10.1007/s10957-015-0789-6. |
[7] |
S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, 2002.
doi: 10.1007/b101970. |
[8] |
S. Dempe and P. Mehlitz,
Semivectorial bilevel programming versus scalar bilevel programming, Optimization, 69 (2020), 657-679.
doi: 10.1080/02331934.2019.1625900. |
[9] |
S. Dempe, N. Gadhi and A. B. Zemkoho.,
New optimality conditions for the semivectorial bilevel optimization problem, Journal of Optimization Theory and Applications, 157 (2013), 54-74.
doi: 10.1007/s10957-012-0161-z. |
[10] |
G. Eichfelder,
Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.
doi: 10.1007/s10107-008-0259-0. |
[11] |
W. W Hogan,
Point-to-set maps in mathematical programming, SIAM Review, 15 (1973), 591-603.
doi: 10.1137/1015073. |
[12] |
G. Li, Z. Wan and X. Zhao,
Optimality conditions for bilevel optimization problem with both levels problems being multiobjective, Pacific Journal of Optimization, 13 (2017), 421-441.
|
[13] |
G. Li and Z. Wan,
On bilevel programs with a convex lower-level problem violating slater's constraint qualification, Journal of Optimization Theory and Applications, 179 (2018), 820-837.
doi: 10.1007/s10957-018-1392-4. |
[14] |
B. Liu, Z. Wan, J. Chen and G. Wang.,
Optimality conditions for pessimistic semivectorial bilevel programming problems, Journal of Inequalities and Applications, 2014 (2014), 1-26.
doi: 10.1186/1029-242X-2014-41. |
[15] |
M. B. Lignola and J. Morgan,
Topological existence and stability for stackelberg problems, Journal of Optimization Theory and Applications, 84 (1995), 145-169.
doi: 10.1007/BF02191740. |
[16] |
Y. Lv and Z. Wan,
Linear bilevel multiobjective optimization problem: penalty approach, Journal of Industrial and Management Optimization, 15 (2019), 1213-1223.
doi: 10.3934/jimo.2018092. |
[17] |
Z. Y. Peng, J. W. Peng, X. J. Long and J. C. Yao,
On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.
doi: 10.1007/s10898-017-0553-6. |
[18] |
T. Tanino,
Stability and sensitivity analysis in multiobjective nonlinear programming, Annals of Operations Research, 27 (1990), 97-114.
doi: 10.1007/BF02055192. |
[19] |
T. Tanino and Y. Sawaragi,
Stability of nondominated solutions in multicriteria decision-making, Journal of Optimization Theory and Applications, 30 (1980), 229-253.
doi: 10.1007/BF00934497. |
[20] |
G. Wang, X. Wang, Z. Wan and Y. Lv,
A globally convergent algorithm for a class of bilevel nonlinear programming problem, Applied Mathematics and Computation, 188 (2007), 166-172.
doi: 10.1016/j.amc.2006.09.130. |
[21] |
Y.-B. Xiao, T. N. Van and J.-C. Yao,
Locally Lipschitz vector optimization problems: second-order constraint qualifications, regularity condition and KKT necessary optimality conditions, Positivity, 24 (2020), 313-337.
doi: 10.1007/s11117-019-00679-z. |
[22] |
J. J. Ye, D. Zhu and Q. Zhu,
Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM Journal on Optimization, 7 (1997), 481-507.
doi: 10.1137/S1052623493257344. |
[23] |
J. J. Ye,
Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM Journal on Optimization, 15 (2004), 252-274.
doi: 10.1137/S1052623403424193. |
[24] |
J. Yu,
Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.
doi: 10.1016/0022-247X(92)90338-E. |
[25] |
J. Zhao,
The lower semicontinuity of optimal solution sets, Journal of Mathematical Analysis and Applications, 207 (1997), 240-254.
doi: 10.1006/jmaa.1997.5288. |
[26] |
Y. Zheng, D. Fang and Z. Wan,
A solution approach to the weak linear bilevel programming problems, Optimization, 65 (2016), 1437-1449.
doi: 10.1080/02331934.2016.1154553. |
[27] |
Y. Zheng and Z. Wan,
A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.
doi: 10.1007/s12190-010-0430-7. |
[28] |
Y. Zheng, Z. Wan, S. Jia and G. Wang,
A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.
doi: 10.3934/jimo.2015.11.529. |
show all references
References:
[1] |
M. J. Alves and C. H. Antunes, A differential evolution algorithm to semivectorial bilevel problems, International Workshop on Machine Learning, Optimization, and Big Data. Springer, Cham, (2017), 172-185.
doi: 10.1007/978-3-319-72926-8_15. |
[2] |
M. J. Alves and C. H. Antunes,
A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing, Computers and Operations Research, 92 (2018), 130-144.
doi: 10.1016/j.cor.2017.12.014. |
[3] |
J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 1998.
doi: 10.1007/978-1-4757-2836-1. |
[4] |
H. Bonnel and J. Morgan,
Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.
doi: 10.1007/s10957-006-9150-4. |
[5] |
H. Bonnel,
Optimality conditions for the semivectorial bilevel optimization problem, Pacific Journal of Optimization, 2 (2006), 447-467.
|
[6] |
H. Bonnel, L. Todjihound$\acute{e}$ and C. Udrit$\acute{e}$.,
Semivectorial bilevel optimization on riemannian manifolds, Journal of Optimization Theory and Applications, 167 (2015), 464-486.
doi: 10.1007/s10957-015-0789-6. |
[7] |
S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, 2002.
doi: 10.1007/b101970. |
[8] |
S. Dempe and P. Mehlitz,
Semivectorial bilevel programming versus scalar bilevel programming, Optimization, 69 (2020), 657-679.
doi: 10.1080/02331934.2019.1625900. |
[9] |
S. Dempe, N. Gadhi and A. B. Zemkoho.,
New optimality conditions for the semivectorial bilevel optimization problem, Journal of Optimization Theory and Applications, 157 (2013), 54-74.
doi: 10.1007/s10957-012-0161-z. |
[10] |
G. Eichfelder,
Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.
doi: 10.1007/s10107-008-0259-0. |
[11] |
W. W Hogan,
Point-to-set maps in mathematical programming, SIAM Review, 15 (1973), 591-603.
doi: 10.1137/1015073. |
[12] |
G. Li, Z. Wan and X. Zhao,
Optimality conditions for bilevel optimization problem with both levels problems being multiobjective, Pacific Journal of Optimization, 13 (2017), 421-441.
|
[13] |
G. Li and Z. Wan,
On bilevel programs with a convex lower-level problem violating slater's constraint qualification, Journal of Optimization Theory and Applications, 179 (2018), 820-837.
doi: 10.1007/s10957-018-1392-4. |
[14] |
B. Liu, Z. Wan, J. Chen and G. Wang.,
Optimality conditions for pessimistic semivectorial bilevel programming problems, Journal of Inequalities and Applications, 2014 (2014), 1-26.
doi: 10.1186/1029-242X-2014-41. |
[15] |
M. B. Lignola and J. Morgan,
Topological existence and stability for stackelberg problems, Journal of Optimization Theory and Applications, 84 (1995), 145-169.
doi: 10.1007/BF02191740. |
[16] |
Y. Lv and Z. Wan,
Linear bilevel multiobjective optimization problem: penalty approach, Journal of Industrial and Management Optimization, 15 (2019), 1213-1223.
doi: 10.3934/jimo.2018092. |
[17] |
Z. Y. Peng, J. W. Peng, X. J. Long and J. C. Yao,
On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.
doi: 10.1007/s10898-017-0553-6. |
[18] |
T. Tanino,
Stability and sensitivity analysis in multiobjective nonlinear programming, Annals of Operations Research, 27 (1990), 97-114.
doi: 10.1007/BF02055192. |
[19] |
T. Tanino and Y. Sawaragi,
Stability of nondominated solutions in multicriteria decision-making, Journal of Optimization Theory and Applications, 30 (1980), 229-253.
doi: 10.1007/BF00934497. |
[20] |
G. Wang, X. Wang, Z. Wan and Y. Lv,
A globally convergent algorithm for a class of bilevel nonlinear programming problem, Applied Mathematics and Computation, 188 (2007), 166-172.
doi: 10.1016/j.amc.2006.09.130. |
[21] |
Y.-B. Xiao, T. N. Van and J.-C. Yao,
Locally Lipschitz vector optimization problems: second-order constraint qualifications, regularity condition and KKT necessary optimality conditions, Positivity, 24 (2020), 313-337.
doi: 10.1007/s11117-019-00679-z. |
[22] |
J. J. Ye, D. Zhu and Q. Zhu,
Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM Journal on Optimization, 7 (1997), 481-507.
doi: 10.1137/S1052623493257344. |
[23] |
J. J. Ye,
Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM Journal on Optimization, 15 (2004), 252-274.
doi: 10.1137/S1052623403424193. |
[24] |
J. Yu,
Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.
doi: 10.1016/0022-247X(92)90338-E. |
[25] |
J. Zhao,
The lower semicontinuity of optimal solution sets, Journal of Mathematical Analysis and Applications, 207 (1997), 240-254.
doi: 10.1006/jmaa.1997.5288. |
[26] |
Y. Zheng, D. Fang and Z. Wan,
A solution approach to the weak linear bilevel programming problems, Optimization, 65 (2016), 1437-1449.
doi: 10.1080/02331934.2016.1154553. |
[27] |
Y. Zheng and Z. Wan,
A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.
doi: 10.1007/s12190-010-0430-7. |
[28] |
Y. Zheng, Z. Wan, S. Jia and G. Wang,
A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.
doi: 10.3934/jimo.2015.11.529. |
[1] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[2] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[3] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[4] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[5] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[6] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[7] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[8] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[9] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[10] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[11] |
Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[12] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[13] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
2019 Impact Factor: 1.366
Tools
Article outline
[Back to Top]