[1]
|
M. Akram, A. Bashir and H. Garg, Decision-making model under complex picture fuzzy Hamacher aggregation operators, Computational and Applied Mathematics, 39 (2020), Paper No. 226, 38 pp.
doi: 10.1007/s40314-020-01251-2.
|
[2]
|
M. Akram, G. Muhammad and T. Allahviranloo, Bipolar fuzzy linear system of equations,, Computational and Applied Mathematics, 38 (2019a), Paper No. 69, 29 pp.
doi: 10.1007/s40314-019-0814-8.
|
[3]
|
M. Akram, D. Saleem and T. Allahviranloo, Linear system of equations in m-polar fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37 (2019), 8251-8266.
doi: 10.3233/JIFS-190744.
|
[4]
|
M. Arana-Jimz, Nondominated solutions in a fully fuzzy linear programming problem, Mathematical Methods in the Applied Sciences, 41 (2018), 7421-7430.
doi: 10.1002/mma.4882.
|
[5]
|
E. Cakita and W. Karwowskib, A fuzzy overlay model for mapping adverse event risk in an active war theatre, Journal of Experimental & Theoretical Artificial Intelligence, 30 (2018), 691-701.
doi: 10.1080/0952813X.2018.1467494.
|
[6]
|
A. Charnes and W. W. Cooper, Programming with Linear Fractional Functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.
doi: 10.1002/nav.3800090303.
|
[7]
|
T. P. Dao and S. C. Huang, Design and multi-objective optimization for a broad self-amplified 2-DOF monolithic mechanism, Sadhana, 42 (2017), 1527-1542.
doi: 10.1007/s12046-017-0714-9.
|
[8]
|
W. A. De Oliveira, M. A. Rojas-Medar, A. Beato-Moreno and M. B. Hernez-Jimz, Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems, Journal of Global Optimization, 74 (2019), 233-253.
doi: 10.1007/s10898-019-00766-1.
|
[9]
|
J. Frenk and S. Schaible, Fractional Programming, Handbook of Generalized Convexity and Generalized Monotonicity, In: N. Hadjisavvas, S. Komlosi, S. Schaible, editors, Nonconvex Optimization and its Applications, , Springer-Verlag, Berlin, 2005.
|
[10]
|
H. Garg, Exponential operational laws and new aggregation operators for intuitionistic multiplicative set in multiple-attribute group decision making process, Information Sciences, 538 (2020), 245-272.
doi: 10.1016/j.ins.2020.05.095.
|
[11]
|
H. Garg, Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process, Cognitive Computation, 12 (2020), 1313-1337.
doi: 10.1007/s12559-020-09750-4.
|
[12]
|
H. Garg, Neutrality operations-based Pythagorean fuzzy aggregation operators and its applications to multiple attribute group decision-making process, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 3021-3041.
doi: 10.1007/s12652-019-01448-2.
|
[13]
|
P. Gupta and M. K. Mehlawat, A new possibilistic programming approach for solving fuzzy multiobjective assignment problem, IEEE Transactions on Fuzzy Systems, 22 (2014), 16-34.
doi: 10.1109/TFUZZ.2013.2245134.
|
[14]
|
R. Gupta and R. R. Saxena, Fuzzy linear fractional set covering problem with imprecise costs, Rairo Operations Research, 48 (2014), 415-427.
doi: 10.1051/ro/2014015.
|
[15]
|
J. Li and R. S. K. Kwan, A meta-heuristic with orthogonal experiment for the set covering problem, Journal of Mathematical Modelling and Algorithms, 3 (2004), 263-283.
doi: 10.1023/B:JMMA.0000038619.69509.bf.
|
[16]
|
A. Mahmoodirad, T. Allahviranloo and S. Niroomand, A new effective solution method for fully intuitionistic fuzzy transportation problem, Soft Computing, 23 (2019), 4521-4530.
doi: 10.1007/s00500-018-3115-z.
|
[17]
|
A. Mahmoodirad and S. Niroomand, Uncertain location-allocation decisions for a bi-objective two-stage supply chain network design problem with environmental impacts, Expert Systems, 37 (2020), e12558.
doi: 10.1111/exsy.12558.
|
[18]
|
A. Mahmoodirad, S. Niroomand, N. Mirzaei and A. Shoja, Fuzzy fractional minimal cost flow problem, International Journal of Fuzzy Systems, 20 (2018), 174-186.
doi: 10.1007/s40815-017-0293-2.
|
[19]
|
A. Mahmoodirad, S. Niroomand and M. Shafiee, A closed loop supply chain network design problem with multi-mode demand satisfaction in fuzzy environment, Journal of Intelligent & Fuzzy Systems, 39 (2020), 503-524.
doi: 10.3233/JIFS-191528.
|
[20]
|
M. Moula and A. Mekhilef, Quadratic optimization over a discrete pareto set of a multi-objective linear fractional program, Optimization, 2020.
doi: 10.1080/02331934.2020.1730834.
|
[21]
|
S. Niroomand, A. Bazyar, M. Alborzi and A. Mahmoodirad, A hybrid approach for multi-criteria emergency center location problem considering existing emergency centers with interval type data: A case study, Journal of Ambient Intelligence and Humanized Computing, 9 (2018), 1999-2008.
|
[22]
|
S. Niroomand, H. Garg and A. Mahmoodirad, An intuitionistic fuzzy two stage supply chain network design problem with multi-mode demand and multi-mode transportation, ISA Transactions, 2020.
doi: 10.1016/j.isatra.2020.07.033.
|
[23]
|
S. Niroomand, A. Hadi-Vencheh, N. Mirzaei and S. Molla-Alizadeh-Zavardehi, Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a special single machine scheduling problem: case study and generalisation, International Journal of Computer Integrated Manufacturing, 29 (2016), 870-888.
|
[24]
|
S. Niroomand, A. Mahmoodirad and S. Mosallaeipour, A hybrid solution approach for fuzzy multiobjective dual supplier and material selection problem of carton box production systems, Expert Systems, 36 (2019), e12341.
|
[25]
|
D. Rani, T. R. Gulati and H. Garg, Multi-objective non - linear programming problem in intuitionistic fuzzy environment: Optimistic and pessimistic view point, Expert Systems with Applications, 64 (2016), 228-238.
doi: 10.1016/j.eswa.2016.07.034.
|
[26]
|
R. Sahraeian and M. S. Kazemi, A fuzzy set covering-clustering algorithm for facility location problem, IEEE International Conference on Industrial Engineering Management, (2011), 1098–1102.
|
[27]
|
M. Sanei, A. Mahmoodirad and S. Niroomand, Two-stage supply chain network design problem with interval data, International Journal of e-Navigation and Maritime Economy, 5 (2016), 74-84.
doi: 10.1016/j.enavi.2016.12.006.
|
[28]
|
R. R. Saxena and S. R. Arora, A linearization technique for solving the quadratic set covering problem, Optimization, 39 (1997), 35-42.
doi: 10.1080/02331939708844269.
|
[29]
|
R. R. Saxena and R. Gupta, Enumeration technique for solving linear fractional fuzzy set covering problem, International Journal of Pure and Applied Mathematics, 84 (2013), 477-496.
doi: 10.12732/ijpam.v84i5.3.
|
[30]
|
S. Schaible and J. Shi, Fractional programming: The sum-of-ratios case, Optimization Methods and Software, 18 (2003), 219-229.
doi: 10.1080/1055678031000105242.
|
[31]
|
S. Schaible, A note on the sum of a linear and linear-fractional function, Naval Research Logistics Quarterly, 24 (1977), 691-693.
|
[32]
|
H. Shavandi and H. Mahlooji, Fuzzy hierarchical queueing models for the location set covering problem in congested systems, Scientia Iranica, 15 (2008), 378-388.
|
[33]
|
R. H. Walia, U. Mishra, H. Garg and H. P. Umap, A nonlinear programming approach to solve the stochastic multi-objective inventory model using the uncertain information, Arabian Journal for Science and Engineering, 45 (2020), 6963-6973.
|
[34]
|
Z. Yang, H. Garg, J. Li, G. Srivastava and Z. Cao, Investigation of multiple heterogeneous relationships using a Q-order neighbor pair fuzzy multi-criteria decision algorithm, Neural Computing and Applications, (2020).
doi: 10.1007/s00521-020-05003-5.
|
[35]
|
D. Yousri M. Abd Elaziz S. Mirjalili, Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation, Knowledge-Based Systems, 1975 (2020), 105889.
doi: 10.1016/j.knosys.2020.105889.
|
[36]
|
K. Zimmermann, Fuzzy set covering problem, International Journal of General Systems, 20 (1991), 127-131.
doi: 10.1080/03081079108945020.
|