
-
Previous Article
Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system
- JIMO Home
- This Issue
-
Next Article
A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project
Solving fuzzy linear fractional set covering problem by a goal programming based solution approach
1. | Department of Mathematics, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran |
2. | School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University), Patiala-147004, Punjab, India |
3. | Department of Industrial Engineering, Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran |
In this paper, a fuzzy linear fractional set covering problem is solved. The non-linearity of the objective function of the problem as well as its fuzziness make it difficult and complex to be solved effectively. To overcome these difficulties, using the concepts of fuzzy theory and component-wise optimization, the problem is converted to a crisp multi-objective non-linear problem. In order to tackle the obtained multi-objective non-linear problem, a goal programming based solution approach is proposed for its Pareto-optimal solution. The non-linearity of the problem is linearized by applying some linearization techniques in the procedure of the goal programming approach. The obtained Pareto-optimal solution is also a solution of the initial fuzzy linear fractional set covering problem. As advantage, the proposed approach applies no ranking function of fuzzy numbers and its goal programming stage considers no preferences from decision maker. The computational experiments provided by some examples of the literature show the superiority of the proposed approach over the existing approaches of the literature.
References:
[1] |
M. Akram, A. Bashir and H. Garg, Decision-making model under complex picture fuzzy Hamacher aggregation operators, Computational and Applied Mathematics, 39 (2020), Paper No. 226, 38 pp.
doi: 10.1007/s40314-020-01251-2. |
[2] |
M. Akram, G. Muhammad and T. Allahviranloo, Bipolar fuzzy linear system of equations,, Computational and Applied Mathematics, 38 (2019a), Paper No. 69, 29 pp.
doi: 10.1007/s40314-019-0814-8. |
[3] |
M. Akram, D. Saleem and T. Allahviranloo,
Linear system of equations in m-polar fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37 (2019), 8251-8266.
doi: 10.3233/JIFS-190744. |
[4] |
M. Arana-Jimz,
Nondominated solutions in a fully fuzzy linear programming problem, Mathematical Methods in the Applied Sciences, 41 (2018), 7421-7430.
doi: 10.1002/mma.4882. |
[5] |
E. Cakita and W. Karwowskib,
A fuzzy overlay model for mapping adverse event risk in an active war theatre, Journal of Experimental & Theoretical Artificial Intelligence, 30 (2018), 691-701.
doi: 10.1080/0952813X.2018.1467494. |
[6] |
A. Charnes and W. W. Cooper,
Programming with Linear Fractional Functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.
doi: 10.1002/nav.3800090303. |
[7] |
T. P. Dao and S. C. Huang,
Design and multi-objective optimization for a broad self-amplified 2-DOF monolithic mechanism, Sadhana, 42 (2017), 1527-1542.
doi: 10.1007/s12046-017-0714-9. |
[8] |
W. A. De Oliveira, M. A. Rojas-Medar, A. Beato-Moreno and M. B. Hernez-Jimz,
Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems, Journal of Global Optimization, 74 (2019), 233-253.
doi: 10.1007/s10898-019-00766-1. |
[9] |
J. Frenk and S. Schaible, Fractional Programming, Handbook of Generalized Convexity and Generalized Monotonicity, In: N. Hadjisavvas, S. Komlosi, S. Schaible, editors, Nonconvex Optimization and its Applications, , Springer-Verlag, Berlin, 2005. Google Scholar |
[10] |
H. Garg,
Exponential operational laws and new aggregation operators for intuitionistic multiplicative set in multiple-attribute group decision making process, Information Sciences, 538 (2020), 245-272.
doi: 10.1016/j.ins.2020.05.095. |
[11] |
H. Garg,
Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process, Cognitive Computation, 12 (2020), 1313-1337.
doi: 10.1007/s12559-020-09750-4. |
[12] |
H. Garg,
Neutrality operations-based Pythagorean fuzzy aggregation operators and its applications to multiple attribute group decision-making process, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 3021-3041.
doi: 10.1007/s12652-019-01448-2. |
[13] |
P. Gupta and M. K. Mehlawat,
A new possibilistic programming approach for solving fuzzy multiobjective assignment problem, IEEE Transactions on Fuzzy Systems, 22 (2014), 16-34.
doi: 10.1109/TFUZZ.2013.2245134. |
[14] |
R. Gupta and R. R. Saxena,
Fuzzy linear fractional set covering problem with imprecise costs, Rairo Operations Research, 48 (2014), 415-427.
doi: 10.1051/ro/2014015. |
[15] |
J. Li and R. S. K. Kwan,
A meta-heuristic with orthogonal experiment for the set covering problem, Journal of Mathematical Modelling and Algorithms, 3 (2004), 263-283.
doi: 10.1023/B:JMMA.0000038619.69509.bf. |
[16] |
A. Mahmoodirad, T. Allahviranloo and S. Niroomand,
A new effective solution method for fully intuitionistic fuzzy transportation problem, Soft Computing, 23 (2019), 4521-4530.
doi: 10.1007/s00500-018-3115-z. |
[17] |
A. Mahmoodirad and S. Niroomand, Uncertain location-allocation decisions for a bi-objective two-stage supply chain network design problem with environmental impacts, Expert Systems, 37 (2020), e12558.
doi: 10.1111/exsy.12558. |
[18] |
A. Mahmoodirad, S. Niroomand, N. Mirzaei and A. Shoja,
Fuzzy fractional minimal cost flow problem, International Journal of Fuzzy Systems, 20 (2018), 174-186.
doi: 10.1007/s40815-017-0293-2. |
[19] |
A. Mahmoodirad, S. Niroomand and M. Shafiee,
A closed loop supply chain network design problem with multi-mode demand satisfaction in fuzzy environment, Journal of Intelligent & Fuzzy Systems, 39 (2020), 503-524.
doi: 10.3233/JIFS-191528. |
[20] |
M. Moula and A. Mekhilef, Quadratic optimization over a discrete pareto set of a multi-objective linear fractional program, Optimization, 2020.
doi: 10.1080/02331934.2020.1730834. |
[21] |
S. Niroomand, A. Bazyar, M. Alborzi and A. Mahmoodirad, A hybrid approach for multi-criteria emergency center location problem considering existing emergency centers with interval type data: A case study, Journal of Ambient Intelligence and Humanized Computing, 9 (2018), 1999-2008. Google Scholar |
[22] |
S. Niroomand, H. Garg and A. Mahmoodirad, An intuitionistic fuzzy two stage supply chain network design problem with multi-mode demand and multi-mode transportation, ISA Transactions, 2020.
doi: 10.1016/j.isatra.2020.07.033. |
[23] |
S. Niroomand, A. Hadi-Vencheh, N. Mirzaei and S. Molla-Alizadeh-Zavardehi, Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a special single machine scheduling problem: case study and generalisation, International Journal of Computer Integrated Manufacturing, 29 (2016), 870-888. Google Scholar |
[24] |
S. Niroomand, A. Mahmoodirad and S. Mosallaeipour, A hybrid solution approach for fuzzy multiobjective dual supplier and material selection problem of carton box production systems, Expert Systems, 36 (2019), e12341. Google Scholar |
[25] |
D. Rani, T. R. Gulati and H. Garg,
Multi-objective non - linear programming problem in intuitionistic fuzzy environment: Optimistic and pessimistic view point, Expert Systems with Applications, 64 (2016), 228-238.
doi: 10.1016/j.eswa.2016.07.034. |
[26] |
R. Sahraeian and M. S. Kazemi, A fuzzy set covering-clustering algorithm for facility location problem, IEEE International Conference on Industrial Engineering Management, (2011), 1098–1102. Google Scholar |
[27] |
M. Sanei, A. Mahmoodirad and S. Niroomand,
Two-stage supply chain network design problem with interval data, International Journal of e-Navigation and Maritime Economy, 5 (2016), 74-84.
doi: 10.1016/j.enavi.2016.12.006. |
[28] |
R. R. Saxena and S. R. Arora,
A linearization technique for solving the quadratic set covering problem, Optimization, 39 (1997), 35-42.
doi: 10.1080/02331939708844269. |
[29] |
R. R. Saxena and R. Gupta,
Enumeration technique for solving linear fractional fuzzy set covering problem, International Journal of Pure and Applied Mathematics, 84 (2013), 477-496.
doi: 10.12732/ijpam.v84i5.3. |
[30] |
S. Schaible and J. Shi,
Fractional programming: The sum-of-ratios case, Optimization Methods and Software, 18 (2003), 219-229.
doi: 10.1080/1055678031000105242. |
[31] |
S. Schaible, A note on the sum of a linear and linear-fractional function, Naval Research Logistics Quarterly, 24 (1977), 691-693. Google Scholar |
[32] |
H. Shavandi and H. Mahlooji,
Fuzzy hierarchical queueing models for the location set covering problem in congested systems, Scientia Iranica, 15 (2008), 378-388.
|
[33] |
R. H. Walia, U. Mishra, H. Garg and H. P. Umap, A nonlinear programming approach to solve the stochastic multi-objective inventory model using the uncertain information, Arabian Journal for Science and Engineering, 45 (2020), 6963-6973. Google Scholar |
[34] |
Z. Yang, H. Garg, J. Li, G. Srivastava and Z. Cao, Investigation of multiple heterogeneous relationships using a Q-order neighbor pair fuzzy multi-criteria decision algorithm, Neural Computing and Applications, (2020).
doi: 10.1007/s00521-020-05003-5. |
[35] |
D. Yousri M. Abd Elaziz S. Mirjalili, Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation, Knowledge-Based Systems, 1975 (2020), 105889.
doi: 10.1016/j.knosys.2020.105889. |
[36] |
K. Zimmermann,
Fuzzy set covering problem, International Journal of General Systems, 20 (1991), 127-131.
doi: 10.1080/03081079108945020. |
show all references
References:
[1] |
M. Akram, A. Bashir and H. Garg, Decision-making model under complex picture fuzzy Hamacher aggregation operators, Computational and Applied Mathematics, 39 (2020), Paper No. 226, 38 pp.
doi: 10.1007/s40314-020-01251-2. |
[2] |
M. Akram, G. Muhammad and T. Allahviranloo, Bipolar fuzzy linear system of equations,, Computational and Applied Mathematics, 38 (2019a), Paper No. 69, 29 pp.
doi: 10.1007/s40314-019-0814-8. |
[3] |
M. Akram, D. Saleem and T. Allahviranloo,
Linear system of equations in m-polar fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37 (2019), 8251-8266.
doi: 10.3233/JIFS-190744. |
[4] |
M. Arana-Jimz,
Nondominated solutions in a fully fuzzy linear programming problem, Mathematical Methods in the Applied Sciences, 41 (2018), 7421-7430.
doi: 10.1002/mma.4882. |
[5] |
E. Cakita and W. Karwowskib,
A fuzzy overlay model for mapping adverse event risk in an active war theatre, Journal of Experimental & Theoretical Artificial Intelligence, 30 (2018), 691-701.
doi: 10.1080/0952813X.2018.1467494. |
[6] |
A. Charnes and W. W. Cooper,
Programming with Linear Fractional Functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.
doi: 10.1002/nav.3800090303. |
[7] |
T. P. Dao and S. C. Huang,
Design and multi-objective optimization for a broad self-amplified 2-DOF monolithic mechanism, Sadhana, 42 (2017), 1527-1542.
doi: 10.1007/s12046-017-0714-9. |
[8] |
W. A. De Oliveira, M. A. Rojas-Medar, A. Beato-Moreno and M. B. Hernez-Jimz,
Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems, Journal of Global Optimization, 74 (2019), 233-253.
doi: 10.1007/s10898-019-00766-1. |
[9] |
J. Frenk and S. Schaible, Fractional Programming, Handbook of Generalized Convexity and Generalized Monotonicity, In: N. Hadjisavvas, S. Komlosi, S. Schaible, editors, Nonconvex Optimization and its Applications, , Springer-Verlag, Berlin, 2005. Google Scholar |
[10] |
H. Garg,
Exponential operational laws and new aggregation operators for intuitionistic multiplicative set in multiple-attribute group decision making process, Information Sciences, 538 (2020), 245-272.
doi: 10.1016/j.ins.2020.05.095. |
[11] |
H. Garg,
Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process, Cognitive Computation, 12 (2020), 1313-1337.
doi: 10.1007/s12559-020-09750-4. |
[12] |
H. Garg,
Neutrality operations-based Pythagorean fuzzy aggregation operators and its applications to multiple attribute group decision-making process, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 3021-3041.
doi: 10.1007/s12652-019-01448-2. |
[13] |
P. Gupta and M. K. Mehlawat,
A new possibilistic programming approach for solving fuzzy multiobjective assignment problem, IEEE Transactions on Fuzzy Systems, 22 (2014), 16-34.
doi: 10.1109/TFUZZ.2013.2245134. |
[14] |
R. Gupta and R. R. Saxena,
Fuzzy linear fractional set covering problem with imprecise costs, Rairo Operations Research, 48 (2014), 415-427.
doi: 10.1051/ro/2014015. |
[15] |
J. Li and R. S. K. Kwan,
A meta-heuristic with orthogonal experiment for the set covering problem, Journal of Mathematical Modelling and Algorithms, 3 (2004), 263-283.
doi: 10.1023/B:JMMA.0000038619.69509.bf. |
[16] |
A. Mahmoodirad, T. Allahviranloo and S. Niroomand,
A new effective solution method for fully intuitionistic fuzzy transportation problem, Soft Computing, 23 (2019), 4521-4530.
doi: 10.1007/s00500-018-3115-z. |
[17] |
A. Mahmoodirad and S. Niroomand, Uncertain location-allocation decisions for a bi-objective two-stage supply chain network design problem with environmental impacts, Expert Systems, 37 (2020), e12558.
doi: 10.1111/exsy.12558. |
[18] |
A. Mahmoodirad, S. Niroomand, N. Mirzaei and A. Shoja,
Fuzzy fractional minimal cost flow problem, International Journal of Fuzzy Systems, 20 (2018), 174-186.
doi: 10.1007/s40815-017-0293-2. |
[19] |
A. Mahmoodirad, S. Niroomand and M. Shafiee,
A closed loop supply chain network design problem with multi-mode demand satisfaction in fuzzy environment, Journal of Intelligent & Fuzzy Systems, 39 (2020), 503-524.
doi: 10.3233/JIFS-191528. |
[20] |
M. Moula and A. Mekhilef, Quadratic optimization over a discrete pareto set of a multi-objective linear fractional program, Optimization, 2020.
doi: 10.1080/02331934.2020.1730834. |
[21] |
S. Niroomand, A. Bazyar, M. Alborzi and A. Mahmoodirad, A hybrid approach for multi-criteria emergency center location problem considering existing emergency centers with interval type data: A case study, Journal of Ambient Intelligence and Humanized Computing, 9 (2018), 1999-2008. Google Scholar |
[22] |
S. Niroomand, H. Garg and A. Mahmoodirad, An intuitionistic fuzzy two stage supply chain network design problem with multi-mode demand and multi-mode transportation, ISA Transactions, 2020.
doi: 10.1016/j.isatra.2020.07.033. |
[23] |
S. Niroomand, A. Hadi-Vencheh, N. Mirzaei and S. Molla-Alizadeh-Zavardehi, Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a special single machine scheduling problem: case study and generalisation, International Journal of Computer Integrated Manufacturing, 29 (2016), 870-888. Google Scholar |
[24] |
S. Niroomand, A. Mahmoodirad and S. Mosallaeipour, A hybrid solution approach for fuzzy multiobjective dual supplier and material selection problem of carton box production systems, Expert Systems, 36 (2019), e12341. Google Scholar |
[25] |
D. Rani, T. R. Gulati and H. Garg,
Multi-objective non - linear programming problem in intuitionistic fuzzy environment: Optimistic and pessimistic view point, Expert Systems with Applications, 64 (2016), 228-238.
doi: 10.1016/j.eswa.2016.07.034. |
[26] |
R. Sahraeian and M. S. Kazemi, A fuzzy set covering-clustering algorithm for facility location problem, IEEE International Conference on Industrial Engineering Management, (2011), 1098–1102. Google Scholar |
[27] |
M. Sanei, A. Mahmoodirad and S. Niroomand,
Two-stage supply chain network design problem with interval data, International Journal of e-Navigation and Maritime Economy, 5 (2016), 74-84.
doi: 10.1016/j.enavi.2016.12.006. |
[28] |
R. R. Saxena and S. R. Arora,
A linearization technique for solving the quadratic set covering problem, Optimization, 39 (1997), 35-42.
doi: 10.1080/02331939708844269. |
[29] |
R. R. Saxena and R. Gupta,
Enumeration technique for solving linear fractional fuzzy set covering problem, International Journal of Pure and Applied Mathematics, 84 (2013), 477-496.
doi: 10.12732/ijpam.v84i5.3. |
[30] |
S. Schaible and J. Shi,
Fractional programming: The sum-of-ratios case, Optimization Methods and Software, 18 (2003), 219-229.
doi: 10.1080/1055678031000105242. |
[31] |
S. Schaible, A note on the sum of a linear and linear-fractional function, Naval Research Logistics Quarterly, 24 (1977), 691-693. Google Scholar |
[32] |
H. Shavandi and H. Mahlooji,
Fuzzy hierarchical queueing models for the location set covering problem in congested systems, Scientia Iranica, 15 (2008), 378-388.
|
[33] |
R. H. Walia, U. Mishra, H. Garg and H. P. Umap, A nonlinear programming approach to solve the stochastic multi-objective inventory model using the uncertain information, Arabian Journal for Science and Engineering, 45 (2020), 6963-6973. Google Scholar |
[34] |
Z. Yang, H. Garg, J. Li, G. Srivastava and Z. Cao, Investigation of multiple heterogeneous relationships using a Q-order neighbor pair fuzzy multi-criteria decision algorithm, Neural Computing and Applications, (2020).
doi: 10.1007/s00521-020-05003-5. |
[35] |
D. Yousri M. Abd Elaziz S. Mirjalili, Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation, Knowledge-Based Systems, 1975 (2020), 105889.
doi: 10.1016/j.knosys.2020.105889. |
[36] |
K. Zimmermann,
Fuzzy set covering problem, International Journal of General Systems, 20 (1991), 127-131.
doi: 10.1080/03081079108945020. |
Objective | ||||
function value | ||||
Model (30) | ||||
Model (31) | ||||
Model (32) | ||||
Model (33) |
Objective | ||||
function value | ||||
Model (30) | ||||
Model (31) | ||||
Model (32) | ||||
Model (33) |
[1] |
Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 |
[2] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[3] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[4] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[5] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[6] |
İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021010 |
[7] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[9] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[10] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[11] |
Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036 |
[12] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[13] |
Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052 |
[14] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[15] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[16] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[17] |
Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025 |
[18] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[19] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[20] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]