-
Previous Article
A stochastic model and social optimization of a blockchain system based on a general limited batch service queue
- JIMO Home
- This Issue
-
Next Article
A unified analysis for scheduling problems with variable processing times
The skewness for uncertain random variable and application to portfolio selection problem
1. | School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, China |
2. | School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China |
Uncertainty and randomness are two basic types of indeterminacy, where uncertain variable is used to represent quantities with human uncertainty and random variable is applied for modeling quantities with objective randomness. In many real systems, uncertainty and randomness often exist simultaneously. Then uncertain random variable and chance measure can be used to handle such cases. We know that the skewness is a measure of distributional asymmetry. However, the concept of skewness for uncertain random variable has not been clearly defined. In this paper, we first propose a concept of skewness for uncertain random variable and then present a formula for calculating the skewness via chance distribution. Applying the presented formula, the skewnesses of three special uncertain random variables are derived. Finally, a portfolio selection problem is carried out for showing the efficiency and applicability of skewness and presented formula.
References:
[1] |
H. Ahmadzade, Y. Sheng and F. Hassantabar Darzi,
Some results of moments of uncertain random variables, Iran. J. Fuzzy Syst., 14 (2017), 1-21.
|
[2] |
R. Bhattacharyya, A. Chatterjee and S. Kar, Mean-variance-skewness portfolio selection model in general uncertain environment, Indian J. Ind. Appl. Math., 3 (2012), 45-61. Google Scholar |
[3] |
W. Briec, K. Kerstens and I. Van de Woestyne,
Portfolio selection with skewness: A comparison of methods and a generalized one fund result, Eur. J. Oper. Res., 230 (2013), 412-421.
doi: 10.1016/j.ejor.2013.04.021. |
[4] |
A. Chatterjee, R. Bhattacharyya, S. Mukherjee and S. Kar,
Optimization of mean-semivariance-skewness portfolio selection model in fuzzy random environment, ICOMOS 2010, American Institute of Physics conference proceedings, 1298 (2010), 516-521.
doi: 10.1063/1.3516359. |
[5] |
W. Chen, Y. Wang, P. Gupta and M. K. Mehlawat,
A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints, Appl. Intell., 48 (2018), 2996-3018.
doi: 10.1007/s10489-017-1124-8. |
[6] |
Y. Chen and Y. Zhu,
Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems, J. Ind. Manag. Optim., 14 (2018), 913-930.
doi: 10.3934/jimo.2017082. |
[7] |
A. Fernandez-Perez, B. Frijns, A. M. Fuertes and J. Miffre, The skewness of commodity futures returns, J. Bank. Financ., 86 (2018), 143-158. Google Scholar |
[8] |
R. Gao and D. A. Ralescu,
Elliptic entropy of uncertain set and its applications, Int. J. Intell. Syst., 33 (2018), 836-857.
doi: 10.1002/int.21970. |
[9] |
X. Huang and H. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Econ. Model., 30 (2013), 61-66. Google Scholar |
[10] |
R. G. Ibbotson,
Price performance of common stock new issues, J. Financ. Econ., 2 (1975), 235-272.
doi: 10.1016/0304-405X(75)90015-X. |
[11] |
A. Kolmogorov, Grundbegriffe Der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933. |
[12] |
H. Kwakernaak,
Fuzzy random variables-Ⅰ: Definitions and theorems, Inform. Sciences, 15 (1978), 1-29.
doi: 10.1016/0020-0255(78)90019-1. |
[13] |
H. Kwakernaak,
Fuzzy random variables-Ⅱ: Algorithms and examples for the discrete case, Inform. Sciences, 17 (1979), 253-278.
doi: 10.1016/0020-0255(79)90020-3. |
[14] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.
doi: 10.2307/1914185. |
[15] |
X. Li, Z. Qin and K. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, Eur. J. Oper. Res., 202 (2010), 239-247. Google Scholar |
[16] |
B. Liu, Uncertainty Theory, Second ed., Springer-Verlag, Berlin, 2007. |
[17] |
B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-39987-2. |
[18] |
B. Li, Y. Sun, G. Aw and K. L. Teo,
Uncertain portfolio optimization problem under a minimax risk measure, Appl. Math. Model., 76 (2019), 274-281.
doi: 10.1016/j.apm.2019.06.019. |
[19] |
Y. Liu,
Uncertain random variables: A mixture of uncertainty and randomness, Soft Comput., 17 (2013), 625-634.
doi: 10.1007/s00500-012-0935-0. |
[20] |
B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10. Google Scholar |
[21] |
Y. Liu,
Uncertain random programming with applications, Fuzzy Optim. Decis. Ma., 12 (2013), 153-169.
doi: 10.1007/s10700-012-9149-2. |
[22] |
H. M. Markowitz,
Portfolio selection, J. Financ., 7 (1952), 77-91.
|
[23] |
A. J. Prakash, C. H. Chang and T. E. Pactwa, Selecting a portfolio with skewness: Recent evidence from US, European and Latin American equity markets, J. Bank. Financ., 27 (2003), 1375-1390. Google Scholar |
[24] |
Z. Qin,
Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns, Eur. J. Oper. Res., 245 (2015), 480-488.
doi: 10.1016/j.ejor.2015.03.017. |
[25] |
W. Xu, G. Liu, H. Li and W. Luo,
A study on project portfolio models with skewness risk and staffing, Int. J. Fuzzy Syst., 19 (2017), 2033-2047.
doi: 10.1007/s40815-017-0295-0. |
[26] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, J. Ind. Manag. Optim., 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[27] |
X. Yang and J. Gao,
Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Trans. Fuzzy Syst., 24 (2016), 819-826.
doi: 10.1109/TFUZZ.2015.2486809. |
[28] |
T. Ye and Y. Zhu,
A metric on uncertain variables, Int. J. Uncertain. Quan., 8 (2018), 251-266.
doi: 10.1615/Int.J.UncertaintyQuantification.2018020455. |
[29] |
J. Zhai, M. Bai and H. Wu,
Mean-risk-skewness models for portfolio optimization based on uncertain measure, Optimization, 67 (2018), 701-714.
doi: 10.1080/02331934.2018.1426577. |
[30] |
L. A. Zadeh,
Fuzzy sets, Inform. Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
show all references
References:
[1] |
H. Ahmadzade, Y. Sheng and F. Hassantabar Darzi,
Some results of moments of uncertain random variables, Iran. J. Fuzzy Syst., 14 (2017), 1-21.
|
[2] |
R. Bhattacharyya, A. Chatterjee and S. Kar, Mean-variance-skewness portfolio selection model in general uncertain environment, Indian J. Ind. Appl. Math., 3 (2012), 45-61. Google Scholar |
[3] |
W. Briec, K. Kerstens and I. Van de Woestyne,
Portfolio selection with skewness: A comparison of methods and a generalized one fund result, Eur. J. Oper. Res., 230 (2013), 412-421.
doi: 10.1016/j.ejor.2013.04.021. |
[4] |
A. Chatterjee, R. Bhattacharyya, S. Mukherjee and S. Kar,
Optimization of mean-semivariance-skewness portfolio selection model in fuzzy random environment, ICOMOS 2010, American Institute of Physics conference proceedings, 1298 (2010), 516-521.
doi: 10.1063/1.3516359. |
[5] |
W. Chen, Y. Wang, P. Gupta and M. K. Mehlawat,
A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints, Appl. Intell., 48 (2018), 2996-3018.
doi: 10.1007/s10489-017-1124-8. |
[6] |
Y. Chen and Y. Zhu,
Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems, J. Ind. Manag. Optim., 14 (2018), 913-930.
doi: 10.3934/jimo.2017082. |
[7] |
A. Fernandez-Perez, B. Frijns, A. M. Fuertes and J. Miffre, The skewness of commodity futures returns, J. Bank. Financ., 86 (2018), 143-158. Google Scholar |
[8] |
R. Gao and D. A. Ralescu,
Elliptic entropy of uncertain set and its applications, Int. J. Intell. Syst., 33 (2018), 836-857.
doi: 10.1002/int.21970. |
[9] |
X. Huang and H. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Econ. Model., 30 (2013), 61-66. Google Scholar |
[10] |
R. G. Ibbotson,
Price performance of common stock new issues, J. Financ. Econ., 2 (1975), 235-272.
doi: 10.1016/0304-405X(75)90015-X. |
[11] |
A. Kolmogorov, Grundbegriffe Der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933. |
[12] |
H. Kwakernaak,
Fuzzy random variables-Ⅰ: Definitions and theorems, Inform. Sciences, 15 (1978), 1-29.
doi: 10.1016/0020-0255(78)90019-1. |
[13] |
H. Kwakernaak,
Fuzzy random variables-Ⅱ: Algorithms and examples for the discrete case, Inform. Sciences, 17 (1979), 253-278.
doi: 10.1016/0020-0255(79)90020-3. |
[14] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.
doi: 10.2307/1914185. |
[15] |
X. Li, Z. Qin and K. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, Eur. J. Oper. Res., 202 (2010), 239-247. Google Scholar |
[16] |
B. Liu, Uncertainty Theory, Second ed., Springer-Verlag, Berlin, 2007. |
[17] |
B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-39987-2. |
[18] |
B. Li, Y. Sun, G. Aw and K. L. Teo,
Uncertain portfolio optimization problem under a minimax risk measure, Appl. Math. Model., 76 (2019), 274-281.
doi: 10.1016/j.apm.2019.06.019. |
[19] |
Y. Liu,
Uncertain random variables: A mixture of uncertainty and randomness, Soft Comput., 17 (2013), 625-634.
doi: 10.1007/s00500-012-0935-0. |
[20] |
B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10. Google Scholar |
[21] |
Y. Liu,
Uncertain random programming with applications, Fuzzy Optim. Decis. Ma., 12 (2013), 153-169.
doi: 10.1007/s10700-012-9149-2. |
[22] |
H. M. Markowitz,
Portfolio selection, J. Financ., 7 (1952), 77-91.
|
[23] |
A. J. Prakash, C. H. Chang and T. E. Pactwa, Selecting a portfolio with skewness: Recent evidence from US, European and Latin American equity markets, J. Bank. Financ., 27 (2003), 1375-1390. Google Scholar |
[24] |
Z. Qin,
Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns, Eur. J. Oper. Res., 245 (2015), 480-488.
doi: 10.1016/j.ejor.2015.03.017. |
[25] |
W. Xu, G. Liu, H. Li and W. Luo,
A study on project portfolio models with skewness risk and staffing, Int. J. Fuzzy Syst., 19 (2017), 2033-2047.
doi: 10.1007/s40815-017-0295-0. |
[26] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, J. Ind. Manag. Optim., 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[27] |
X. Yang and J. Gao,
Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Trans. Fuzzy Syst., 24 (2016), 819-826.
doi: 10.1109/TFUZZ.2015.2486809. |
[28] |
T. Ye and Y. Zhu,
A metric on uncertain variables, Int. J. Uncertain. Quan., 8 (2018), 251-266.
doi: 10.1615/Int.J.UncertaintyQuantification.2018020455. |
[29] |
J. Zhai, M. Bai and H. Wu,
Mean-risk-skewness models for portfolio optimization based on uncertain measure, Optimization, 67 (2018), 701-714.
doi: 10.1080/02331934.2018.1426577. |
[30] |
L. A. Zadeh,
Fuzzy sets, Inform. Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
Expected value | Variance | Skewness | ||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 |
Expected value | Variance | Skewness | ||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 |
[1] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021018 |
[2] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[3] |
Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021027 |
[4] |
Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021016 |
[5] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[6] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[7] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[8] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[9] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]