-
Previous Article
Tabu search guided by reinforcement learning for the max-mean dispersion problem
- JIMO Home
- This Issue
-
Next Article
A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem
Second-Order characterizations for set-valued equilibrium problems with variable ordering structures
Department of Mathematics, Nanchang University, Nanchang, 330031, China |
The concepts of weakly efficient solutions and globally efficient solutions are introduced for constrained set-valued equilibrium problems with variable ordering structures. By applying the second-order tangent epiderivative and a nonlinear functional, necessary optimality conditions for weakly efficient solutions and globally efficient solutions are established without any convexity assumption. Under the cone-convexity of the objective and constraint functions, sufficient optimality conditions are given. In addition, the tangent derivatives of objective and constraint functions are separated. Simultaneously, a unified necessary and sufficient optimality conditions for weakly efficient solutions is derived, and the same goes for globally efficient solutions. In particular, we give specific examples to illustrate the optimality conditions, respectively.
References:
[1] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. |
[2] |
G. Y. Chen,
Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl., 74 (1992), 445-456.
doi: 10.1007/BF00940320. |
[3] |
G. Y. Chen and X. Q. Yang,
Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl., 112 (2002), 97-110.
doi: 10.1023/A:1013044529035. |
[4] |
M. Durea, R. Strugariu and C. Tammer,
On set-valued optimization problems with variable ordering structure, J. Glob. Optim., 61 (2015), 745-767.
doi: 10.1007/s10898-014-0207-x. |
[5] |
G. Eichfelder, Variable ordering structures in vector optimization, Recent Developments in Vector Optimization, Vector Optim., Springer, Berlin, (2012), 95–126.
doi: 10.1007/978-3-642-21114-0_4. |
[6] |
X.-H. Gong,
Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal. TMA, 73 (2010), 3598-3612.
doi: 10.1016/j.na.2010.07.041. |
[7] |
J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-24828-6. |
[8] |
P. Q. Khanh and N. M. Tung,
Second-order conditions for open-cone minimizers and firm minimizers in set-valued optimization subject to mixed constraints, J. Optim. Theory Appl., 171 (2016), 45-69.
doi: 10.1007/s10957-016-0995-x. |
[9] |
Z. H. Peng and Y. H. Xu,
New second-order tangent epiderivatives and applications to set-valued optimization, J. Optim. Theory Appl., 172 (2017), 128-140.
doi: 10.1007/s10957-016-1011-1. |
[10] |
Q. S. Qiu and X. M. Yang,
Some properties of approximate solutions for vector optimization problem with set-valued functions, J. Glob. Optim., 47 (2010), 1-12.
doi: 10.1007/s10898-009-9452-9. |
[11] |
B. Soleimani,
Characterization of approximate solutions of vector optimization problems with variable order structure, J. Optim. Theory Appl., 162 (2014), 605-632.
doi: 10.1007/s10957-014-0535-5. |
[12] |
C. Tammer and P. Weidner,
Nonconvex separation theorem and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.
doi: 10.1007/BF00940478. |
[13] |
P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Mathematical Concepts and Methods in Science and Engineering, 30. Plenum Press, New York, 1985.
doi: 10.1007/978-1-4684-8395-6.![]() ![]() |
[14] |
S. K. Zhu, S. J. Li and K. L. Teo,
Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.
doi: 10.1007/s10898-013-0067-9. |
show all references
References:
[1] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. |
[2] |
G. Y. Chen,
Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl., 74 (1992), 445-456.
doi: 10.1007/BF00940320. |
[3] |
G. Y. Chen and X. Q. Yang,
Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl., 112 (2002), 97-110.
doi: 10.1023/A:1013044529035. |
[4] |
M. Durea, R. Strugariu and C. Tammer,
On set-valued optimization problems with variable ordering structure, J. Glob. Optim., 61 (2015), 745-767.
doi: 10.1007/s10898-014-0207-x. |
[5] |
G. Eichfelder, Variable ordering structures in vector optimization, Recent Developments in Vector Optimization, Vector Optim., Springer, Berlin, (2012), 95–126.
doi: 10.1007/978-3-642-21114-0_4. |
[6] |
X.-H. Gong,
Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal. TMA, 73 (2010), 3598-3612.
doi: 10.1016/j.na.2010.07.041. |
[7] |
J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-24828-6. |
[8] |
P. Q. Khanh and N. M. Tung,
Second-order conditions for open-cone minimizers and firm minimizers in set-valued optimization subject to mixed constraints, J. Optim. Theory Appl., 171 (2016), 45-69.
doi: 10.1007/s10957-016-0995-x. |
[9] |
Z. H. Peng and Y. H. Xu,
New second-order tangent epiderivatives and applications to set-valued optimization, J. Optim. Theory Appl., 172 (2017), 128-140.
doi: 10.1007/s10957-016-1011-1. |
[10] |
Q. S. Qiu and X. M. Yang,
Some properties of approximate solutions for vector optimization problem with set-valued functions, J. Glob. Optim., 47 (2010), 1-12.
doi: 10.1007/s10898-009-9452-9. |
[11] |
B. Soleimani,
Characterization of approximate solutions of vector optimization problems with variable order structure, J. Optim. Theory Appl., 162 (2014), 605-632.
doi: 10.1007/s10957-014-0535-5. |
[12] |
C. Tammer and P. Weidner,
Nonconvex separation theorem and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.
doi: 10.1007/BF00940478. |
[13] |
P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Mathematical Concepts and Methods in Science and Engineering, 30. Plenum Press, New York, 1985.
doi: 10.1007/978-1-4684-8395-6.![]() ![]() |
[14] |
S. K. Zhu, S. J. Li and K. L. Teo,
Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.
doi: 10.1007/s10898-013-0067-9. |
[1] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[2] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[3] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[4] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[5] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[6] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[7] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[8] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[9] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[10] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[11] |
Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021027 |
[12] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[13] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[14] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[15] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[16] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[17] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[18] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[19] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[20] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
2019 Impact Factor: 1.366
Tools
Article outline
[Back to Top]