doi: 10.3934/jimo.2020164

Second-Order characterizations for set-valued equilibrium problems with variable ordering structures

Department of Mathematics, Nanchang University, Nanchang, 330031, China

* Corresponding author: Yihong Xu

Received  September 2019 Revised  July 2020 Published  November 2020

Fund Project: This research was supported by the National Natural Science Foundation of China Grant (11961047) and the Natural Science Foundation of Jiangxi Province (20192BAB201010)

The concepts of weakly efficient solutions and globally efficient solutions are introduced for constrained set-valued equilibrium problems with variable ordering structures. By applying the second-order tangent epiderivative and a nonlinear functional, necessary optimality conditions for weakly efficient solutions and globally efficient solutions are established without any convexity assumption. Under the cone-convexity of the objective and constraint functions, sufficient optimality conditions are given. In addition, the tangent derivatives of objective and constraint functions are separated. Simultaneously, a unified necessary and sufficient optimality conditions for weakly efficient solutions is derived, and the same goes for globally efficient solutions. In particular, we give specific examples to illustrate the optimality conditions, respectively.

Citation: Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020164
References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[2]

G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl., 74 (1992), 445-456.  doi: 10.1007/BF00940320.  Google Scholar

[3]

G. Y. Chen and X. Q. Yang, Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl., 112 (2002), 97-110.  doi: 10.1023/A:1013044529035.  Google Scholar

[4]

M. DureaR. Strugariu and C. Tammer, On set-valued optimization problems with variable ordering structure, J. Glob. Optim., 61 (2015), 745-767.  doi: 10.1007/s10898-014-0207-x.  Google Scholar

[5]

G. Eichfelder, Variable ordering structures in vector optimization, Recent Developments in Vector Optimization, Vector Optim., Springer, Berlin, (2012), 95–126. doi: 10.1007/978-3-642-21114-0_4.  Google Scholar

[6]

X.-H. Gong, Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal. TMA, 73 (2010), 3598-3612.  doi: 10.1016/j.na.2010.07.041.  Google Scholar

[7]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[8]

P. Q. Khanh and N. M. Tung, Second-order conditions for open-cone minimizers and firm minimizers in set-valued optimization subject to mixed constraints, J. Optim. Theory Appl., 171 (2016), 45-69.  doi: 10.1007/s10957-016-0995-x.  Google Scholar

[9]

Z. H. Peng and Y. H. Xu, New second-order tangent epiderivatives and applications to set-valued optimization, J. Optim. Theory Appl., 172 (2017), 128-140.  doi: 10.1007/s10957-016-1011-1.  Google Scholar

[10]

Q. S. Qiu and X. M. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions, J. Glob. Optim., 47 (2010), 1-12.  doi: 10.1007/s10898-009-9452-9.  Google Scholar

[11]

B. Soleimani, Characterization of approximate solutions of vector optimization problems with variable order structure, J. Optim. Theory Appl., 162 (2014), 605-632.  doi: 10.1007/s10957-014-0535-5.  Google Scholar

[12]

C. Tammer and P. Weidner, Nonconvex separation theorem and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[13] P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Mathematical Concepts and Methods in Science and Engineering, 30. Plenum Press, New York, 1985.  doi: 10.1007/978-1-4684-8395-6.  Google Scholar
[14]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

show all references

References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[2]

G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl., 74 (1992), 445-456.  doi: 10.1007/BF00940320.  Google Scholar

[3]

G. Y. Chen and X. Q. Yang, Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl., 112 (2002), 97-110.  doi: 10.1023/A:1013044529035.  Google Scholar

[4]

M. DureaR. Strugariu and C. Tammer, On set-valued optimization problems with variable ordering structure, J. Glob. Optim., 61 (2015), 745-767.  doi: 10.1007/s10898-014-0207-x.  Google Scholar

[5]

G. Eichfelder, Variable ordering structures in vector optimization, Recent Developments in Vector Optimization, Vector Optim., Springer, Berlin, (2012), 95–126. doi: 10.1007/978-3-642-21114-0_4.  Google Scholar

[6]

X.-H. Gong, Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal. TMA, 73 (2010), 3598-3612.  doi: 10.1016/j.na.2010.07.041.  Google Scholar

[7]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[8]

P. Q. Khanh and N. M. Tung, Second-order conditions for open-cone minimizers and firm minimizers in set-valued optimization subject to mixed constraints, J. Optim. Theory Appl., 171 (2016), 45-69.  doi: 10.1007/s10957-016-0995-x.  Google Scholar

[9]

Z. H. Peng and Y. H. Xu, New second-order tangent epiderivatives and applications to set-valued optimization, J. Optim. Theory Appl., 172 (2017), 128-140.  doi: 10.1007/s10957-016-1011-1.  Google Scholar

[10]

Q. S. Qiu and X. M. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions, J. Glob. Optim., 47 (2010), 1-12.  doi: 10.1007/s10898-009-9452-9.  Google Scholar

[11]

B. Soleimani, Characterization of approximate solutions of vector optimization problems with variable order structure, J. Optim. Theory Appl., 162 (2014), 605-632.  doi: 10.1007/s10957-014-0535-5.  Google Scholar

[12]

C. Tammer and P. Weidner, Nonconvex separation theorem and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[13] P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Mathematical Concepts and Methods in Science and Engineering, 30. Plenum Press, New York, 1985.  doi: 10.1007/978-1-4684-8395-6.  Google Scholar
[14]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 1.366

Article outline

[Back to Top]