doi: 10.3934/jimo.2020164

Second-Order characterizations for set-valued equilibrium problems with variable ordering structures

Department of Mathematics, Nanchang University, Nanchang, 330031, China

* Corresponding author: Yihong Xu

Received  September 2019 Revised  July 2020 Published  November 2020

Fund Project: This research was supported by the National Natural Science Foundation of China Grant (11961047) and the Natural Science Foundation of Jiangxi Province (20192BAB201010)

The concepts of weakly efficient solutions and globally efficient solutions are introduced for constrained set-valued equilibrium problems with variable ordering structures. By applying the second-order tangent epiderivative and a nonlinear functional, necessary optimality conditions for weakly efficient solutions and globally efficient solutions are established without any convexity assumption. Under the cone-convexity of the objective and constraint functions, sufficient optimality conditions are given. In addition, the tangent derivatives of objective and constraint functions are separated. Simultaneously, a unified necessary and sufficient optimality conditions for weakly efficient solutions is derived, and the same goes for globally efficient solutions. In particular, we give specific examples to illustrate the optimality conditions, respectively.

Citation: Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020164
References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[2]

G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl., 74 (1992), 445-456.  doi: 10.1007/BF00940320.  Google Scholar

[3]

G. Y. Chen and X. Q. Yang, Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl., 112 (2002), 97-110.  doi: 10.1023/A:1013044529035.  Google Scholar

[4]

M. DureaR. Strugariu and C. Tammer, On set-valued optimization problems with variable ordering structure, J. Glob. Optim., 61 (2015), 745-767.  doi: 10.1007/s10898-014-0207-x.  Google Scholar

[5]

G. Eichfelder, Variable ordering structures in vector optimization, Recent Developments in Vector Optimization, Vector Optim., Springer, Berlin, (2012), 95–126. doi: 10.1007/978-3-642-21114-0_4.  Google Scholar

[6]

X.-H. Gong, Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal. TMA, 73 (2010), 3598-3612.  doi: 10.1016/j.na.2010.07.041.  Google Scholar

[7]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[8]

P. Q. Khanh and N. M. Tung, Second-order conditions for open-cone minimizers and firm minimizers in set-valued optimization subject to mixed constraints, J. Optim. Theory Appl., 171 (2016), 45-69.  doi: 10.1007/s10957-016-0995-x.  Google Scholar

[9]

Z. H. Peng and Y. H. Xu, New second-order tangent epiderivatives and applications to set-valued optimization, J. Optim. Theory Appl., 172 (2017), 128-140.  doi: 10.1007/s10957-016-1011-1.  Google Scholar

[10]

Q. S. Qiu and X. M. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions, J. Glob. Optim., 47 (2010), 1-12.  doi: 10.1007/s10898-009-9452-9.  Google Scholar

[11]

B. Soleimani, Characterization of approximate solutions of vector optimization problems with variable order structure, J. Optim. Theory Appl., 162 (2014), 605-632.  doi: 10.1007/s10957-014-0535-5.  Google Scholar

[12]

C. Tammer and P. Weidner, Nonconvex separation theorem and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[13] P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Mathematical Concepts and Methods in Science and Engineering, 30. Plenum Press, New York, 1985.  doi: 10.1007/978-1-4684-8395-6.  Google Scholar
[14]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

show all references

References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990.  Google Scholar

[2]

G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Theory Appl., 74 (1992), 445-456.  doi: 10.1007/BF00940320.  Google Scholar

[3]

G. Y. Chen and X. Q. Yang, Characterizations of variable domination structures via nonlinear scalarization, J. Optim. Theory Appl., 112 (2002), 97-110.  doi: 10.1023/A:1013044529035.  Google Scholar

[4]

M. DureaR. Strugariu and C. Tammer, On set-valued optimization problems with variable ordering structure, J. Glob. Optim., 61 (2015), 745-767.  doi: 10.1007/s10898-014-0207-x.  Google Scholar

[5]

G. Eichfelder, Variable ordering structures in vector optimization, Recent Developments in Vector Optimization, Vector Optim., Springer, Berlin, (2012), 95–126. doi: 10.1007/978-3-642-21114-0_4.  Google Scholar

[6]

X.-H. Gong, Scalarization and optimality conditions for vector equilibrium problems, Nonlinear Anal. TMA, 73 (2010), 3598-3612.  doi: 10.1016/j.na.2010.07.041.  Google Scholar

[7]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[8]

P. Q. Khanh and N. M. Tung, Second-order conditions for open-cone minimizers and firm minimizers in set-valued optimization subject to mixed constraints, J. Optim. Theory Appl., 171 (2016), 45-69.  doi: 10.1007/s10957-016-0995-x.  Google Scholar

[9]

Z. H. Peng and Y. H. Xu, New second-order tangent epiderivatives and applications to set-valued optimization, J. Optim. Theory Appl., 172 (2017), 128-140.  doi: 10.1007/s10957-016-1011-1.  Google Scholar

[10]

Q. S. Qiu and X. M. Yang, Some properties of approximate solutions for vector optimization problem with set-valued functions, J. Glob. Optim., 47 (2010), 1-12.  doi: 10.1007/s10898-009-9452-9.  Google Scholar

[11]

B. Soleimani, Characterization of approximate solutions of vector optimization problems with variable order structure, J. Optim. Theory Appl., 162 (2014), 605-632.  doi: 10.1007/s10957-014-0535-5.  Google Scholar

[12]

C. Tammer and P. Weidner, Nonconvex separation theorem and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[13] P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Mathematical Concepts and Methods in Science and Engineering, 30. Plenum Press, New York, 1985.  doi: 10.1007/978-1-4684-8395-6.  Google Scholar
[14]

S. K. ZhuS. J. Li and K. L. Teo, Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization, J. Glob. Optim., 58 (2014), 673-692.  doi: 10.1007/s10898-013-0067-9.  Google Scholar

[1]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[2]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[3]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[6]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[7]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[8]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[9]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[10]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[11]

Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021027

[12]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[13]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[14]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[15]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[18]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[19]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[20]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

2019 Impact Factor: 1.366

Article outline

[Back to Top]