| 1941 (Dines [3]) |
(Dines Theorem) $ \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is convex. Moreover, if $ x^T A x $ and $ x^T B x $ has no common zero except for $ x=0 $, then $ \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is either $ \mathbb{R}^2 $ or an angular sector of angle less than $ \pi $. |
| 1961 (Brickmen [1]) |
$ \mathbf{K}_{A, B} = \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n\; , \; \|x\|=1 \right\} $ is convex if $ n \geq 3 $. |
| 1995 (Ramana & Goldman [11]) Unpublished |
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is convex if and only if $ \mathbf{R}(f, g) = \mathbf{R}(f_H, g_H) + \mathbf{R}(f, g) $, where $ f_H(x) = x^T A x $ and $ g_H(x) = x^T B x $. |
| $ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is convex if $ n \geq 2 $ and $ \exists\; \alpha, \beta \in \mathbb{R} $ such that $ \alpha A + \beta B \succ 0 $. |
|
| 1998 (Polyak [10]) |
$ \left\{ \left. \left( x^T A x, x^T B x, x^T C x \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is convex if $ n \geq 3 $ and $ \exists\; \alpha, \beta, \gamma \in \mathbb{R} $ such that $ \alpha A + \beta B + \gamma C \succ 0 $. |
| $ \left\{ \left. \left( x^T A_1 x, \cdots, x^T A_m x \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is convex if $ A_1, \cdots, A_m $ commute. |
|
| 2016 (Bazán & Opazo [5]) |
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is convex if and only if $ \exists\; d=(d_1, d_2) \in \mathbb{R}^2 $, $ d \neq 0 $, such that the following four conditions hold: $ \bf{(C1):} $ $ F_L \left( \mathcal{N}(A) \cap \mathcal{N}(B) \right) = \{0\} $ $ \bf{(C2):} $ $ d_2 A = d_1 B $ $ \bf{(C3):} $ $ -d \in \mathbf{R}(f_H, g_H) $ $ \bf{(C4):} $ $ F_H(u) = -d \implies \langle F_L(u), d_{\perp}\rangle \neq 0 $ where $ \mathcal{N}(A) $ and $ \mathcal{N}(B) $ denote the null space of $ A $ and $ B $ respectively, $ F_H(x) = \left( f_H(x), g_H(x) \right) = \left( x^T A x , x^T B x \right) $, $ F_L(x) = \left( a^T x , b^T x \right) $, and $ d_{\perp} = (-d_2, d_1) $. |
Download:


