• Previous Article
    Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback
  • JIMO Home
  • This Issue
  • Next Article
    Extension of Littlewood's rule to the multi-period static revenue management model with standby customers
doi: 10.3934/jimo.2020169

On the convexity for the range set of two quadratic functions

1. 

Institute of Natural Science Education, Vinh University, Vinh, Nghe An, Vietnam

2. 

Department of Mathematics, National Cheng Kung University, Tainan, Taiwan

* Corresponding author: Ruey-Lin Sheu

In memory of Professor Hang-Chin Lai for his life contribution in Mathematics and Optimization

Received  July 2020 Revised  September 2020 Published  November 2020

Fund Project: Huu-Quang, Nguyen's research work was supported by Taiwan MOST 108-2811-M-006-537 and Ruey-Lin Sheu's research work was sponsored by Taiwan MOST 107-2115-M-006-011-MY2

Given $ n\times n $ symmetric matrices $ A $ and $ B, $ Dines in 1941 proved that the joint range set $ \{(x^TAx, x^TBx)|\; x\in\mathbb{R}^n\} $ is always convex. Our paper is concerned with non-homogeneous extension of the Dines theorem for the range set $ \mathbf{R}(f, g) = \{\left(f(x), g(x)\right)|\; x \in \mathbb{R}^n \}, $ $ f(x) = x^T A x + 2a^T x + a_0 $ and $ g(x) = x^T B x + 2b^T x + b_0. $ We show that $ \mathbf{R}(f, g) $ is convex if, and only if, any pair of level sets, $ \{x\in\mathbb{R}^n|f(x) = \alpha\} $ and $ \{x\in\mathbb{R}^n|g(x) = \beta\} $, do not separate each other. With the novel geometric concept about separation, we provide a polynomial-time procedure to practically check whether a given $ \mathbf{R}(f, g) $ is convex or not.

Citation: Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020169
References:
[1]

L. Brickmen, On the field of values of a matrix, Proceedings of the American Mathematical Society, 12 (1961), 61-66.  doi: 10.1090/S0002-9939-1961-0122827-1.  Google Scholar

[2]

K. Derinkuyu and M. Ç. Plnar, On the S-procedure and some variants, Mathematical Methods of Operations Research, 64 (2006), 55-77.  doi: 10.1007/s00186-006-0070-8.  Google Scholar

[3]

L. L. Dines, On the mapping of quadratic forms, Bulletin of the American Mathematical Society, 47 (1941), 494-498.  doi: 10.1090/S0002-9904-1941-07494-X.  Google Scholar

[4]

S.-C. FangD. Y. GaoG.-X. LinR.-L. Sheu and W. Xing, Double well potential function and its optimization in the n-dimensional real space–Part I, J. Ind. Manag. Optim., 13 (2017), 1291-1305.  doi: 10.3934/jimo.2016073.  Google Scholar

[5]

F. Flores-Bazán and F. Opazo, Characterizing the convexity of joint-range for a pair of inhomogeneous quadratic functions and strong duality, Minimax Theory Appl, 1 (2016), 257-290.   Google Scholar

[6]

H. Q. Nguyen, R. L. Sheu and Y. Xia, Solving a new type of quadratic optimization problem having a joint numerical range constraint, 2020. Available from: https://doi.org/10.13140/RG.2.2.23830.98887. Google Scholar

[7]

H.-Q. Nguyen and R.-L. Sheu, Geometric properties for level sets of quadratic functions, Journal of Global Optimization, 73 (2019), 349-369.  doi: 10.1007/s10898-018-0706-2.  Google Scholar

[8]

H.-Q. Nguyen and R.-L. Sheu, Separation properties of quadratic functions, 2020. Available from: https://doi.org/10.13140/RG.2.2.18518.88647. Google Scholar

[9]

I. Pólik and T. Terlaky, A survey of the S-lemma, SIAM Review, 49 (2007), 371-418.  doi: 10.1137/S003614450444614X.  Google Scholar

[10]

B. T. Polyak, Convexity of quadratic transformations and its use in control and optimization, Journal of Optimization Theory and Applications, 99 (1998), 553-583.  doi: 10.1023/A:1021798932766.  Google Scholar

[11]

M. Ramana and A. J. Goldman, Quadratic maps with convex images, Submitted to Math of OR. Google Scholar

[12]

H. Tuy and H. D. Tuan, Generalized S-lemma and strong duality in nonconvex quadratic programming, Journal of Global Optimization, 56 (2013), 1045-1072.  doi: 10.1007/s10898-012-9917-0.  Google Scholar

[13]

Y. XiaS. Wang and R.-L. Sheu, S-lemma with equality and its applications, Mathematical Programming, 156 (2016), 513-547.  doi: 10.1007/s10107-015-0907-0.  Google Scholar

[14]

Y. XiaR.-L. SheuS.-C. Fang and W. Xing, Double well potential function and its optimization in the n-dimensional real space–Part II, J. Ind. Manag. Optim., 13 (2017), 1307-1328.  doi: 10.3934/jimo.2016074.  Google Scholar

[15]

V. A. Yakubovich, The S-procedure in nolinear control theory, Vestnik Leninggradskogo Universiteta, Ser. Matematika, (1971), 62–77.  Google Scholar

[16]

Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245-267.  doi: 10.1137/S105262340139001X.  Google Scholar

show all references

References:
[1]

L. Brickmen, On the field of values of a matrix, Proceedings of the American Mathematical Society, 12 (1961), 61-66.  doi: 10.1090/S0002-9939-1961-0122827-1.  Google Scholar

[2]

K. Derinkuyu and M. Ç. Plnar, On the S-procedure and some variants, Mathematical Methods of Operations Research, 64 (2006), 55-77.  doi: 10.1007/s00186-006-0070-8.  Google Scholar

[3]

L. L. Dines, On the mapping of quadratic forms, Bulletin of the American Mathematical Society, 47 (1941), 494-498.  doi: 10.1090/S0002-9904-1941-07494-X.  Google Scholar

[4]

S.-C. FangD. Y. GaoG.-X. LinR.-L. Sheu and W. Xing, Double well potential function and its optimization in the n-dimensional real space–Part I, J. Ind. Manag. Optim., 13 (2017), 1291-1305.  doi: 10.3934/jimo.2016073.  Google Scholar

[5]

F. Flores-Bazán and F. Opazo, Characterizing the convexity of joint-range for a pair of inhomogeneous quadratic functions and strong duality, Minimax Theory Appl, 1 (2016), 257-290.   Google Scholar

[6]

H. Q. Nguyen, R. L. Sheu and Y. Xia, Solving a new type of quadratic optimization problem having a joint numerical range constraint, 2020. Available from: https://doi.org/10.13140/RG.2.2.23830.98887. Google Scholar

[7]

H.-Q. Nguyen and R.-L. Sheu, Geometric properties for level sets of quadratic functions, Journal of Global Optimization, 73 (2019), 349-369.  doi: 10.1007/s10898-018-0706-2.  Google Scholar

[8]

H.-Q. Nguyen and R.-L. Sheu, Separation properties of quadratic functions, 2020. Available from: https://doi.org/10.13140/RG.2.2.18518.88647. Google Scholar

[9]

I. Pólik and T. Terlaky, A survey of the S-lemma, SIAM Review, 49 (2007), 371-418.  doi: 10.1137/S003614450444614X.  Google Scholar

[10]

B. T. Polyak, Convexity of quadratic transformations and its use in control and optimization, Journal of Optimization Theory and Applications, 99 (1998), 553-583.  doi: 10.1023/A:1021798932766.  Google Scholar

[11]

M. Ramana and A. J. Goldman, Quadratic maps with convex images, Submitted to Math of OR. Google Scholar

[12]

H. Tuy and H. D. Tuan, Generalized S-lemma and strong duality in nonconvex quadratic programming, Journal of Global Optimization, 56 (2013), 1045-1072.  doi: 10.1007/s10898-012-9917-0.  Google Scholar

[13]

Y. XiaS. Wang and R.-L. Sheu, S-lemma with equality and its applications, Mathematical Programming, 156 (2016), 513-547.  doi: 10.1007/s10107-015-0907-0.  Google Scholar

[14]

Y. XiaR.-L. SheuS.-C. Fang and W. Xing, Double well potential function and its optimization in the n-dimensional real space–Part II, J. Ind. Manag. Optim., 13 (2017), 1307-1328.  doi: 10.3934/jimo.2016074.  Google Scholar

[15]

V. A. Yakubovich, The S-procedure in nolinear control theory, Vestnik Leninggradskogo Universiteta, Ser. Matematika, (1971), 62–77.  Google Scholar

[16]

Y. Ye and S. Zhang, New results on quadratic minimization, SIAM Journal on Optimization, 14 (2003), 245-267.  doi: 10.1137/S105262340139001X.  Google Scholar

Figure 1.  The graph corresponds to Example 1
Figure 2.  Let $ f(x, y, z) = x^2+y^2 $ and $ g(x, y, z) = -x^2+y^2+z $
Figure 3.  For remark (c) and remark (e). Let $f(x, y) = -x^2 + 4 y^2$ and $g(x, y) = 2x-y$. The level set $\{g = 0\}$ separates $\{f<0\}, $ while $\{g = 0\}$ does not separate $\{f = 0\}$
Figure 4.  For remark (d). Let $f(x, y) = -x^2 + 4 y^2 - 1$ and $g(x, y) = x-5y$. The level set $\{g = 0\}$ separates $\{f = 0\}$ while $\{g = 0\}$ does not separate $\{f<0\}.$
Figure 5.  For remark (f) in which $ f(x, y) = -x^2 + 4 y^2 + 1 $ and $ g(x, y) = -(x-1)^2+4y^2+1 $
Figure 6.  Graph for Proof of Theorem 3.1
Figure 7.  For Example 2. Let $ f(x, y) = -\frac{\sqrt{3}}{2} x^2 + \frac{\sqrt{3}}{2} y^2 + x - \frac{1}{2} y $ and $ g(x, y) = \frac{1}{2} x^2 - \frac{1}{2} y^2 + \sqrt{3} x - \frac{\sqrt{3}}{2} y $
Figure 8.  The joint numerical range $ \mathbf{R}(f, g) $ in Example 3
Table 1.  Chronological list of notable results related to problem (P)
1941
(Dines [3])
(Dines Theorem)
$ \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex. Moreover, if $ x^T A x $ and $ x^T B x $ has no common zero except for $ x=0 $, then $ \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is either $ \mathbb{R}^2 $ or an angular sector of angle less than $ \pi $.
1961
(Brickmen [1])
$ \mathbf{K}_{A, B} = \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n\; , \; \|x\|=1 \right\} $
is convex if $ n \geq 3 $.
1995
(Ramana & Goldman [11])
Unpublished
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if and only if $ \mathbf{R}(f, g) = \mathbf{R}(f_H, g_H) + \mathbf{R}(f, g) $, where $ f_H(x) = x^T A x $ and $ g_H(x) = x^T B x $.
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if $ n \geq 2 $ and $ \exists\; \alpha, \beta \in \mathbb{R} $ such that $ \alpha A + \beta B \succ 0 $.
1998
(Polyak [10])
$ \left\{ \left. \left( x^T A x, x^T B x, x^T C x \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if $ n \geq 3 $ and $ \exists\; \alpha, \beta, \gamma \in \mathbb{R} $ such that $ \alpha A + \beta B + \gamma C \succ 0 $.
$ \left\{ \left. \left( x^T A_1 x, \cdots, x^T A_m x \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if $ A_1, \cdots, A_m $ commute.
2016
(Bazán & Opazo [5])
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if and only if $ \exists\; d=(d_1, d_2) \in \mathbb{R}^2 $, $ d \neq 0 $, such that the following four conditions hold:
$ \bf{(C1):} $ $ F_L \left( \mathcal{N}(A) \cap \mathcal{N}(B) \right) = \{0\} $
$ \bf{(C2):} $ $ d_2 A = d_1 B $
$ \bf{(C3):} $ $ -d \in \mathbf{R}(f_H, g_H) $
$ \bf{(C4):} $ $ F_H(u) = -d \implies \langle F_L(u), d_{\perp}\rangle \neq 0 $
where $ \mathcal{N}(A) $ and $ \mathcal{N}(B) $ denote the null space of $ A $ and $ B $ respectively, $ F_H(x) = \left( f_H(x), g_H(x) \right) = \left( x^T A x , x^T B x \right) $, $ F_L(x) = \left( a^T x , b^T x \right) $, and $ d_{\perp} = (-d_2, d_1) $.
1941
(Dines [3])
(Dines Theorem)
$ \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex. Moreover, if $ x^T A x $ and $ x^T B x $ has no common zero except for $ x=0 $, then $ \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\} $ is either $ \mathbb{R}^2 $ or an angular sector of angle less than $ \pi $.
1961
(Brickmen [1])
$ \mathbf{K}_{A, B} = \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n\; , \; \|x\|=1 \right\} $
is convex if $ n \geq 3 $.
1995
(Ramana & Goldman [11])
Unpublished
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if and only if $ \mathbf{R}(f, g) = \mathbf{R}(f_H, g_H) + \mathbf{R}(f, g) $, where $ f_H(x) = x^T A x $ and $ g_H(x) = x^T B x $.
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if $ n \geq 2 $ and $ \exists\; \alpha, \beta \in \mathbb{R} $ such that $ \alpha A + \beta B \succ 0 $.
1998
(Polyak [10])
$ \left\{ \left. \left( x^T A x, x^T B x, x^T C x \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if $ n \geq 3 $ and $ \exists\; \alpha, \beta, \gamma \in \mathbb{R} $ such that $ \alpha A + \beta B + \gamma C \succ 0 $.
$ \left\{ \left. \left( x^T A_1 x, \cdots, x^T A_m x \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if $ A_1, \cdots, A_m $ commute.
2016
(Bazán & Opazo [5])
$ \mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\} $
is convex if and only if $ \exists\; d=(d_1, d_2) \in \mathbb{R}^2 $, $ d \neq 0 $, such that the following four conditions hold:
$ \bf{(C1):} $ $ F_L \left( \mathcal{N}(A) \cap \mathcal{N}(B) \right) = \{0\} $
$ \bf{(C2):} $ $ d_2 A = d_1 B $
$ \bf{(C3):} $ $ -d \in \mathbf{R}(f_H, g_H) $
$ \bf{(C4):} $ $ F_H(u) = -d \implies \langle F_L(u), d_{\perp}\rangle \neq 0 $
where $ \mathcal{N}(A) $ and $ \mathcal{N}(B) $ denote the null space of $ A $ and $ B $ respectively, $ F_H(x) = \left( f_H(x), g_H(x) \right) = \left( x^T A x , x^T B x \right) $, $ F_L(x) = \left( a^T x , b^T x \right) $, and $ d_{\perp} = (-d_2, d_1) $.
[1]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[2]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[3]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[4]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[5]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[8]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[9]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[10]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[11]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[12]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[13]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[14]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[15]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[16]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[18]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[19]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[20]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]