[1]
|
Q. H. Ansari and M. Rezaei, Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.
doi: 10.1080/02331930903395725.
|
[2]
|
D. Aussel and J. Cotrina, Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.
doi: 10.1080/00036811.2012.692364.
|
[3]
|
D. Aussel, R. Gupta and A. Mehra, Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.
doi: 10.1007/s10957-015-0859-9.
|
[4]
|
A. Barbagallo, Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.
doi: 10.2478/cmam-2006-0006.
|
[5]
|
A. Barbagallo and M.-G. Cojocaru, Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.
doi: 10.1016/j.mcm.2008.02.003.
|
[6]
|
A. Barbagallo, P. Daniele and A. Maugeri, Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.
doi: 10.1016/j.na.2010.10.013.
|
[7]
|
H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735.
|
[8]
|
C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.
|
[9]
|
L.-C. Ceng and S. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.
doi: 10.1007/s10898-009-9436-9.
|
[10]
|
Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692.
|
[11]
|
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017.
|
[12]
|
Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.
doi: 10.1007/s11075-011-9490-5.
|
[13]
|
C. Ciarcià and P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.
doi: 10.1016/j.ejor.2015.11.013.
|
[14]
|
M. Chen and C. Huang, A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.
doi: 10.3934/jimo.2018012.
|
[15]
|
M. G. Cojocaru, P. Daniele and A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.
doi: 10.1007/s10957-005-7502-0.
|
[16]
|
M.-G. Cojocaru and L. B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.
doi: 10.1090/S0002-9939-03-07015-1.
|
[17]
|
S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.
doi: 10.1287/trsc.14.1.42.
|
[18]
|
P. Daniele, Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.
doi: 10.1023/B:JOGO.0000026449.29735.3c.
|
[19]
|
P. Daniele, A. Maugeri and W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.
doi: 10.1023/A:1021779823196.
|
[20]
|
P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.
doi: 10.1080/17442509108833688.
|
[21]
|
P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.
doi: 10.1007/BF02073589.
|
[22]
|
K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.
doi: 10.1007/BF01458545.
|
[23]
|
G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140.
|
[24]
|
G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142.
|
[25]
|
S. Giuffrè, G. Idone and S. Pia, Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.
doi: 10.1007/s10898-007-9173-x.
|
[26]
|
S. Lawphongpanich and D. W. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.
doi: 10.1016/0191-2615(84)90026-2.
|
[27]
|
J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.
doi: 10.1002/cpa.3160200302.
|
[28]
|
S.-Y. Matsushita and L. Xu, On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.
doi: 10.1007/s10957-013-0460-z.
|
[29]
|
A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp.
doi: 10.1088/0266-5611/26/5/055007.
|
[30]
|
A. Nagurney, D. Parkes and P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.
doi: 10.1007/s10287-006-0027-7.
|
[31]
|
B. Panicucci, M. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.
doi: 10.1007/s11590-006-0002-9.
|
[32]
|
F. Raciti, Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.
doi: 10.1007/s10898-007-9202-9.
|
[33]
|
L. Scrimali and C. Mirabella, Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.
doi: 10.1007/s10898-017-0580-3.
|
[34]
|
Y. Shehu and O. Iyiola, On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.
doi: 10.3934/jimo.2018045.
|
[35]
|
M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.
doi: 10.1016/0191-2615(79)90022-5.
|
[36]
|
G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
|
[37]
|
X. K. Sun and S. J. Li, Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.
doi: 10.1080/00036811.2011.628940.
|
[38]
|
J. Yang, Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.
doi: 10.3934/jimo.2008.4.673.
|