\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cooperation in traffic network problems via evolutionary split variational inequalities

  • * Corresponding author: Xiaolong Qin

    * Corresponding author: Xiaolong Qin
Abstract Full Text(HTML) Figure(3) / Table(2) Related Papers Cited by
  • In this paper, we construct an evolutionary (time-dependent) split variational inequality problem and show how to reformulate equilibria of the dynamic traffic network models of two cities as such problem. We also establish existence result for the proposed model. Primary numerical results of equilibria illustrate the validity and applicability of our results.

    Mathematics Subject Classification: Primary:90C33, 90C39, 49J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Transportation network patterns of the City $ X\; \text{and}\; Y $

    Figure 2.  Traffic network pattern of two cities $ X $ and $ Y $

    Figure 3.  Traffic network pattern of City $ Y $

    Table 1.  Numerical Results

    $ t_{i} $ $ x_{1}^{*}(t_{i}) $ $ x_{2}^{*}(t_{i}) $ $ x_{3}^{*}(t_{i}) $ $ x_{4}^{*}(t_{i}) $
    $ 0 $ 1 1 1.5 1.5
    $ \frac{1}{8} $ 1.125 1.125 1.6875 1.6875
    $ \frac{1}{4} $ 1.25 1.25 1.875 1.875
    $ \frac{3}{8} $ 1.375 1.375 2.0625 2.0625
    $ \frac{1}{2} $ 1.5 1.5 2.25 2.25
    $ \frac{5}{8} $ 1.625 1.625 2.4375 2.4375
    $ \frac{3}{4} $ 1.75 1.75 2.625 2.625
    $ \frac{7}{8} $ 1.875 1.875 2.8125 2.8125
    $ 1 $ 2 2 3 3
    $ \frac{9}{8} $ 2.125 2.125 3.1875 3.1875
    $ \frac{5}{4} $ 2.25 2.25 3.375 3.375
    $ \frac{11}{8} $ 2.375 2.375 3.5625 3.5625
    $ \frac{3}{2} $ 2.5 2.5 3.75 3.75
    $ \frac{13}{8} $ 2.625 2.625 3.9375 3.9375
    $ \frac{7}{4} $ 2.75 2.75 4.125 4.125
    $ \frac{15}{8} $ 2.875 2.875 4.3125 4.3125
    $ 2 $ 3 3 4.5 4.5
     | Show Table
    DownLoad: CSV

    Table 2.  Numerical Results

    $ t_{i} $ $ y_{1}^{*}(t_{i}) $ $ y_{2}^{*}(t_{i}) $ $ y_{3}^{*}(t_{i}) $ $ y_{4}^{*}(t_{i}) $ $ y_{5}^{*}(t_{i}) $
    $ 0 $ 2.5 2.5 2 2 2
    $ \frac{1}{8} $ 2.8125 2.8125 2.25 2.25 2.25
    $ \frac{1}{4} $ 3.125 3.125 2.5 2.5 2.5
    $ \frac{3}{8} $ 3.4375 3.4375 2.75 2.75 2.75
    $ \frac{1}{2} $ 3.75 3.75 3 3 3
    $ \frac{5}{8} $ 4.0625 4.0625 3.25 3.25 3.25
    $ \frac{3}{4} $ 4.375 4.375 3.5 3.5 3.5
    $ \frac{7}{8} $ 4.6875 4.6875 3.75 3.75 3.75
    $ 1 $ 5 5 4 4 4
    $ \frac{9}{8} $ 5.3125 5.3125 4.25 4.25 4.25
    $ \frac{5}{4} $ 5.625 5.625 4.5 4.5 4.5
    $ \frac{11}{8} $ 5.9375 5.9375 4.75 4.75 4.75
    $ \frac{3}{2} $ 6.25 6.25 5 5 5
    $ \frac{13}{8} $ 6.5625 6.5625 5.25 5.25 5.25
    $ \frac{7}{4} $ 6.875 6.875 5.5 5.5 5.5
    $ \frac{15}{8} $ 7.1875 7.1875 5.75 5.75 5.75
    $ 2 $ 7.5 7.5 6 6 6
     | Show Table
    DownLoad: CSV
  • [1] Q. H. Ansari and M. Rezaei, Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.  doi: 10.1080/02331930903395725.
    [2] D. Aussel and J. Cotrina, Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.  doi: 10.1080/00036811.2012.692364.
    [3] D. AusselR. Gupta and A. Mehra, Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.  doi: 10.1007/s10957-015-0859-9.
    [4] A. Barbagallo, Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.  doi: 10.2478/cmam-2006-0006.
    [5] A. Barbagallo and M.-G. Cojocaru, Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.  doi: 10.1016/j.mcm.2008.02.003.
    [6] A. BarbagalloP. Daniele and A. Maugeri, Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.  doi: 10.1016/j.na.2010.10.013.
    [7] H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735.
    [8] C. ByrneY. CensorA. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775. 
    [9] L.-C. Ceng and S. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.  doi: 10.1007/s10898-009-9436-9.
    [10] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.
    [11] Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.  doi: 10.1088/0266-5611/21/6/017.
    [12] Y. CensorA. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.  doi: 10.1007/s11075-011-9490-5.
    [13] C. Ciarcià and P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.  doi: 10.1016/j.ejor.2015.11.013.
    [14] M. Chen and C. Huang, A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.  doi: 10.3934/jimo.2018012.
    [15] M. G. CojocaruP. Daniele and A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.  doi: 10.1007/s10957-005-7502-0.
    [16] M.-G. Cojocaru and L. B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.  doi: 10.1090/S0002-9939-03-07015-1.
    [17] S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.  doi: 10.1287/trsc.14.1.42.
    [18] P. Daniele, Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.  doi: 10.1023/B:JOGO.0000026449.29735.3c.
    [19] P. DanieleA. Maugeri and W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.  doi: 10.1023/A:1021779823196.
    [20] P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.  doi: 10.1080/17442509108833688.
    [21] P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.
    [22] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.  doi: 10.1007/BF01458545.
    [23] G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140. 
    [24] G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142. 
    [25] S. GiuffrèG. Idone and S. Pia, Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.  doi: 10.1007/s10898-007-9173-x.
    [26] S. Lawphongpanich and D. W. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.  doi: 10.1016/0191-2615(84)90026-2.
    [27] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.  doi: 10.1002/cpa.3160200302.
    [28] S.-Y. Matsushita and L. Xu, On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.  doi: 10.1007/s10957-013-0460-z.
    [29] A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp. doi: 10.1088/0266-5611/26/5/055007.
    [30] A. NagurneyD. Parkes and P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.  doi: 10.1007/s10287-006-0027-7.
    [31] B. PanicucciM. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.  doi: 10.1007/s11590-006-0002-9.
    [32] F. Raciti, Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.  doi: 10.1007/s10898-007-9202-9.
    [33] L. Scrimali and C. Mirabella, Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.  doi: 10.1007/s10898-017-0580-3.
    [34] Y. Shehu and O. Iyiola, On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.  doi: 10.3934/jimo.2018045.
    [35] M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.  doi: 10.1016/0191-2615(79)90022-5.
    [36] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416. 
    [37] X. K. Sun and S. J. Li, Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.  doi: 10.1080/00036811.2011.628940.
    [38] J. Yang, Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.  doi: 10.3934/jimo.2008.4.673.
  • 加载中

Figures(3)

Tables(2)

SHARE

Article Metrics

HTML views(1143) PDF downloads(395) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return