• Previous Article
    Dynamic network flow location models and algorithms for quickest evacuation planning
  • JIMO Home
  • This Issue
  • Next Article
    The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis
doi: 10.3934/jimo.2020170

Cooperation in traffic network problems via evolutionary split variational inequalities

1. 

Department of Mathematics, Technion - Israel Institute of Technology, Haifa, 3200003, Israel

2. 

Department of Mathematics, ORT Braude College, Karmiel, 2161002, Israel

3. 

The Center for Mathematics and Scientific Computation, University of Haifa, Mt. Carmel, Haifa, 3498838, Israel

4. 

Department of Mathematics, Zhejiang Normal University, Zhejiang, China

* Corresponding author: Xiaolong Qin

Received  August 2020 Revised  September 2020 Published  November 2020

In this paper, we construct an evolutionary (time-dependent) split variational inequality problem and show how to reformulate equilibria of the dynamic traffic network models of two cities as such problem. We also establish existence result for the proposed model. Primary numerical results of equilibria illustrate the validity and applicability of our results.

Citation: Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020170
References:
[1]

Q. H. Ansari and M. Rezaei, Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.  doi: 10.1080/02331930903395725.  Google Scholar

[2]

D. Aussel and J. Cotrina, Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.  doi: 10.1080/00036811.2012.692364.  Google Scholar

[3]

D. AusselR. Gupta and A. Mehra, Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.  doi: 10.1007/s10957-015-0859-9.  Google Scholar

[4]

A. Barbagallo, Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.  doi: 10.2478/cmam-2006-0006.  Google Scholar

[5]

A. Barbagallo and M.-G. Cojocaru, Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.  doi: 10.1016/j.mcm.2008.02.003.  Google Scholar

[6]

A. BarbagalloP. Daniele and A. Maugeri, Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.  doi: 10.1016/j.na.2010.10.013.  Google Scholar

[7]

H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735.  Google Scholar

[8]

C. ByrneY. CensorA. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.   Google Scholar

[9]

L.-C. Ceng and S. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.  doi: 10.1007/s10898-009-9436-9.  Google Scholar

[10]

Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.  Google Scholar

[11]

Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.  doi: 10.1088/0266-5611/21/6/017.  Google Scholar

[12]

Y. CensorA. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.  doi: 10.1007/s11075-011-9490-5.  Google Scholar

[13]

C. Ciarcià and P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.  doi: 10.1016/j.ejor.2015.11.013.  Google Scholar

[14]

M. Chen and C. Huang, A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.  doi: 10.3934/jimo.2018012.  Google Scholar

[15]

M. G. CojocaruP. Daniele and A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.  doi: 10.1007/s10957-005-7502-0.  Google Scholar

[16]

M.-G. Cojocaru and L. B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.  doi: 10.1090/S0002-9939-03-07015-1.  Google Scholar

[17]

S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.  doi: 10.1287/trsc.14.1.42.  Google Scholar

[18]

P. Daniele, Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.  doi: 10.1023/B:JOGO.0000026449.29735.3c.  Google Scholar

[19]

P. DanieleA. Maugeri and W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.  doi: 10.1023/A:1021779823196.  Google Scholar

[20]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.  doi: 10.1080/17442509108833688.  Google Scholar

[21]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[22]

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.  doi: 10.1007/BF01458545.  Google Scholar

[23]

G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140.   Google Scholar

[24]

G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142.   Google Scholar

[25]

S. GiuffrèG. Idone and S. Pia, Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.  doi: 10.1007/s10898-007-9173-x.  Google Scholar

[26]

S. Lawphongpanich and D. W. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.  doi: 10.1016/0191-2615(84)90026-2.  Google Scholar

[27]

J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.  doi: 10.1002/cpa.3160200302.  Google Scholar

[28]

S.-Y. Matsushita and L. Xu, On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.  doi: 10.1007/s10957-013-0460-z.  Google Scholar

[29]

A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp. doi: 10.1088/0266-5611/26/5/055007.  Google Scholar

[30]

A. NagurneyD. Parkes and P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.  doi: 10.1007/s10287-006-0027-7.  Google Scholar

[31]

B. PanicucciM. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.  doi: 10.1007/s11590-006-0002-9.  Google Scholar

[32]

F. Raciti, Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.  doi: 10.1007/s10898-007-9202-9.  Google Scholar

[33]

L. Scrimali and C. Mirabella, Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.  doi: 10.1007/s10898-017-0580-3.  Google Scholar

[34]

Y. Shehu and O. Iyiola, On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.  doi: 10.3934/jimo.2018045.  Google Scholar

[35]

M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.  doi: 10.1016/0191-2615(79)90022-5.  Google Scholar

[36]

G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.   Google Scholar

[37]

X. K. Sun and S. J. Li, Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.  doi: 10.1080/00036811.2011.628940.  Google Scholar

[38]

J. Yang, Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.  doi: 10.3934/jimo.2008.4.673.  Google Scholar

show all references

References:
[1]

Q. H. Ansari and M. Rezaei, Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.  doi: 10.1080/02331930903395725.  Google Scholar

[2]

D. Aussel and J. Cotrina, Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.  doi: 10.1080/00036811.2012.692364.  Google Scholar

[3]

D. AusselR. Gupta and A. Mehra, Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.  doi: 10.1007/s10957-015-0859-9.  Google Scholar

[4]

A. Barbagallo, Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.  doi: 10.2478/cmam-2006-0006.  Google Scholar

[5]

A. Barbagallo and M.-G. Cojocaru, Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.  doi: 10.1016/j.mcm.2008.02.003.  Google Scholar

[6]

A. BarbagalloP. Daniele and A. Maugeri, Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.  doi: 10.1016/j.na.2010.10.013.  Google Scholar

[7]

H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735.  Google Scholar

[8]

C. ByrneY. CensorA. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.   Google Scholar

[9]

L.-C. Ceng and S. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.  doi: 10.1007/s10898-009-9436-9.  Google Scholar

[10]

Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.  Google Scholar

[11]

Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.  doi: 10.1088/0266-5611/21/6/017.  Google Scholar

[12]

Y. CensorA. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.  doi: 10.1007/s11075-011-9490-5.  Google Scholar

[13]

C. Ciarcià and P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.  doi: 10.1016/j.ejor.2015.11.013.  Google Scholar

[14]

M. Chen and C. Huang, A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.  doi: 10.3934/jimo.2018012.  Google Scholar

[15]

M. G. CojocaruP. Daniele and A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.  doi: 10.1007/s10957-005-7502-0.  Google Scholar

[16]

M.-G. Cojocaru and L. B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.  doi: 10.1090/S0002-9939-03-07015-1.  Google Scholar

[17]

S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.  doi: 10.1287/trsc.14.1.42.  Google Scholar

[18]

P. Daniele, Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.  doi: 10.1023/B:JOGO.0000026449.29735.3c.  Google Scholar

[19]

P. DanieleA. Maugeri and W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.  doi: 10.1023/A:1021779823196.  Google Scholar

[20]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.  doi: 10.1080/17442509108833688.  Google Scholar

[21]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[22]

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.  doi: 10.1007/BF01458545.  Google Scholar

[23]

G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140.   Google Scholar

[24]

G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142.   Google Scholar

[25]

S. GiuffrèG. Idone and S. Pia, Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.  doi: 10.1007/s10898-007-9173-x.  Google Scholar

[26]

S. Lawphongpanich and D. W. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.  doi: 10.1016/0191-2615(84)90026-2.  Google Scholar

[27]

J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.  doi: 10.1002/cpa.3160200302.  Google Scholar

[28]

S.-Y. Matsushita and L. Xu, On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.  doi: 10.1007/s10957-013-0460-z.  Google Scholar

[29]

A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp. doi: 10.1088/0266-5611/26/5/055007.  Google Scholar

[30]

A. NagurneyD. Parkes and P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.  doi: 10.1007/s10287-006-0027-7.  Google Scholar

[31]

B. PanicucciM. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.  doi: 10.1007/s11590-006-0002-9.  Google Scholar

[32]

F. Raciti, Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.  doi: 10.1007/s10898-007-9202-9.  Google Scholar

[33]

L. Scrimali and C. Mirabella, Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.  doi: 10.1007/s10898-017-0580-3.  Google Scholar

[34]

Y. Shehu and O. Iyiola, On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.  doi: 10.3934/jimo.2018045.  Google Scholar

[35]

M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.  doi: 10.1016/0191-2615(79)90022-5.  Google Scholar

[36]

G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.   Google Scholar

[37]

X. K. Sun and S. J. Li, Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.  doi: 10.1080/00036811.2011.628940.  Google Scholar

[38]

J. Yang, Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.  doi: 10.3934/jimo.2008.4.673.  Google Scholar

Figure 1.  Transportation network patterns of the City $ X\; \text{and}\; Y $
Figure 2.  Traffic network pattern of two cities $ X $ and $ Y $
Figure 3.  Traffic network pattern of City $ Y $
Table 1.  Numerical Results
$ t_{i} $ $ x_{1}^{*}(t_{i}) $ $ x_{2}^{*}(t_{i}) $ $ x_{3}^{*}(t_{i}) $ $ x_{4}^{*}(t_{i}) $
$ 0 $ 1 1 1.5 1.5
$ \frac{1}{8} $ 1.125 1.125 1.6875 1.6875
$ \frac{1}{4} $ 1.25 1.25 1.875 1.875
$ \frac{3}{8} $ 1.375 1.375 2.0625 2.0625
$ \frac{1}{2} $ 1.5 1.5 2.25 2.25
$ \frac{5}{8} $ 1.625 1.625 2.4375 2.4375
$ \frac{3}{4} $ 1.75 1.75 2.625 2.625
$ \frac{7}{8} $ 1.875 1.875 2.8125 2.8125
$ 1 $ 2 2 3 3
$ \frac{9}{8} $ 2.125 2.125 3.1875 3.1875
$ \frac{5}{4} $ 2.25 2.25 3.375 3.375
$ \frac{11}{8} $ 2.375 2.375 3.5625 3.5625
$ \frac{3}{2} $ 2.5 2.5 3.75 3.75
$ \frac{13}{8} $ 2.625 2.625 3.9375 3.9375
$ \frac{7}{4} $ 2.75 2.75 4.125 4.125
$ \frac{15}{8} $ 2.875 2.875 4.3125 4.3125
$ 2 $ 3 3 4.5 4.5
$ t_{i} $ $ x_{1}^{*}(t_{i}) $ $ x_{2}^{*}(t_{i}) $ $ x_{3}^{*}(t_{i}) $ $ x_{4}^{*}(t_{i}) $
$ 0 $ 1 1 1.5 1.5
$ \frac{1}{8} $ 1.125 1.125 1.6875 1.6875
$ \frac{1}{4} $ 1.25 1.25 1.875 1.875
$ \frac{3}{8} $ 1.375 1.375 2.0625 2.0625
$ \frac{1}{2} $ 1.5 1.5 2.25 2.25
$ \frac{5}{8} $ 1.625 1.625 2.4375 2.4375
$ \frac{3}{4} $ 1.75 1.75 2.625 2.625
$ \frac{7}{8} $ 1.875 1.875 2.8125 2.8125
$ 1 $ 2 2 3 3
$ \frac{9}{8} $ 2.125 2.125 3.1875 3.1875
$ \frac{5}{4} $ 2.25 2.25 3.375 3.375
$ \frac{11}{8} $ 2.375 2.375 3.5625 3.5625
$ \frac{3}{2} $ 2.5 2.5 3.75 3.75
$ \frac{13}{8} $ 2.625 2.625 3.9375 3.9375
$ \frac{7}{4} $ 2.75 2.75 4.125 4.125
$ \frac{15}{8} $ 2.875 2.875 4.3125 4.3125
$ 2 $ 3 3 4.5 4.5
Table 2.  Numerical Results
$ t_{i} $ $ y_{1}^{*}(t_{i}) $ $ y_{2}^{*}(t_{i}) $ $ y_{3}^{*}(t_{i}) $ $ y_{4}^{*}(t_{i}) $ $ y_{5}^{*}(t_{i}) $
$ 0 $ 2.5 2.5 2 2 2
$ \frac{1}{8} $ 2.8125 2.8125 2.25 2.25 2.25
$ \frac{1}{4} $ 3.125 3.125 2.5 2.5 2.5
$ \frac{3}{8} $ 3.4375 3.4375 2.75 2.75 2.75
$ \frac{1}{2} $ 3.75 3.75 3 3 3
$ \frac{5}{8} $ 4.0625 4.0625 3.25 3.25 3.25
$ \frac{3}{4} $ 4.375 4.375 3.5 3.5 3.5
$ \frac{7}{8} $ 4.6875 4.6875 3.75 3.75 3.75
$ 1 $ 5 5 4 4 4
$ \frac{9}{8} $ 5.3125 5.3125 4.25 4.25 4.25
$ \frac{5}{4} $ 5.625 5.625 4.5 4.5 4.5
$ \frac{11}{8} $ 5.9375 5.9375 4.75 4.75 4.75
$ \frac{3}{2} $ 6.25 6.25 5 5 5
$ \frac{13}{8} $ 6.5625 6.5625 5.25 5.25 5.25
$ \frac{7}{4} $ 6.875 6.875 5.5 5.5 5.5
$ \frac{15}{8} $ 7.1875 7.1875 5.75 5.75 5.75
$ 2 $ 7.5 7.5 6 6 6
$ t_{i} $ $ y_{1}^{*}(t_{i}) $ $ y_{2}^{*}(t_{i}) $ $ y_{3}^{*}(t_{i}) $ $ y_{4}^{*}(t_{i}) $ $ y_{5}^{*}(t_{i}) $
$ 0 $ 2.5 2.5 2 2 2
$ \frac{1}{8} $ 2.8125 2.8125 2.25 2.25 2.25
$ \frac{1}{4} $ 3.125 3.125 2.5 2.5 2.5
$ \frac{3}{8} $ 3.4375 3.4375 2.75 2.75 2.75
$ \frac{1}{2} $ 3.75 3.75 3 3 3
$ \frac{5}{8} $ 4.0625 4.0625 3.25 3.25 3.25
$ \frac{3}{4} $ 4.375 4.375 3.5 3.5 3.5
$ \frac{7}{8} $ 4.6875 4.6875 3.75 3.75 3.75
$ 1 $ 5 5 4 4 4
$ \frac{9}{8} $ 5.3125 5.3125 4.25 4.25 4.25
$ \frac{5}{4} $ 5.625 5.625 4.5 4.5 4.5
$ \frac{11}{8} $ 5.9375 5.9375 4.75 4.75 4.75
$ \frac{3}{2} $ 6.25 6.25 5 5 5
$ \frac{13}{8} $ 6.5625 6.5625 5.25 5.25 5.25
$ \frac{7}{4} $ 6.875 6.875 5.5 5.5 5.5
$ \frac{15}{8} $ 7.1875 7.1875 5.75 5.75 5.75
$ 2 $ 7.5 7.5 6 6 6
[1]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[2]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[5]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[6]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[7]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[8]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[9]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[12]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[13]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[14]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[15]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[20]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]