
-
Previous Article
Dynamic network flow location models and algorithms for quickest evacuation planning
- JIMO Home
- This Issue
-
Next Article
The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis
Cooperation in traffic network problems via evolutionary split variational inequalities
1. | Department of Mathematics, Technion - Israel Institute of Technology, Haifa, 3200003, Israel |
2. | Department of Mathematics, ORT Braude College, Karmiel, 2161002, Israel |
3. | The Center for Mathematics and Scientific Computation, University of Haifa, Mt. Carmel, Haifa, 3498838, Israel |
4. | Department of Mathematics, Zhejiang Normal University, Zhejiang, China |
In this paper, we construct an evolutionary (time-dependent) split variational inequality problem and show how to reformulate equilibria of the dynamic traffic network models of two cities as such problem. We also establish existence result for the proposed model. Primary numerical results of equilibria illustrate the validity and applicability of our results.
References:
[1] |
Q. H. Ansari and M. Rezaei,
Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.
doi: 10.1080/02331930903395725. |
[2] |
D. Aussel and J. Cotrina,
Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.
doi: 10.1080/00036811.2012.692364. |
[3] |
D. Aussel, R. Gupta and A. Mehra,
Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.
doi: 10.1007/s10957-015-0859-9. |
[4] |
A. Barbagallo,
Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.
doi: 10.2478/cmam-2006-0006. |
[5] |
A. Barbagallo and M.-G. Cojocaru,
Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.
doi: 10.1016/j.mcm.2008.02.003. |
[6] |
A. Barbagallo, P. Daniele and A. Maugeri,
Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.
doi: 10.1016/j.na.2010.10.013. |
[7] |
H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735. |
[8] |
C. Byrne, Y. Censor, A. Gibali and S. Reich,
The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.
|
[9] |
L.-C. Ceng and S. Huang,
Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.
doi: 10.1007/s10898-009-9436-9. |
[10] |
Y. Censor and T. Elfving,
A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692. |
[11] |
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld,
The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017. |
[12] |
Y. Censor, A. Gibali and S. Reich,
Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.
doi: 10.1007/s11075-011-9490-5. |
[13] |
C. Ciarcià and P. Daniele,
New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.
doi: 10.1016/j.ejor.2015.11.013. |
[14] |
M. Chen and C. Huang,
A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.
doi: 10.3934/jimo.2018012. |
[15] |
M. G. Cojocaru, P. Daniele and A. Nagurney,
Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.
doi: 10.1007/s10957-005-7502-0. |
[16] |
M.-G. Cojocaru and L. B. Jonker,
Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.
doi: 10.1090/S0002-9939-03-07015-1. |
[17] |
S. Dafermos,
Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.
doi: 10.1287/trsc.14.1.42. |
[18] |
P. Daniele,
Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.
doi: 10.1023/B:JOGO.0000026449.29735.3c. |
[19] |
P. Daniele, A. Maugeri and W. Oettli,
Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.
doi: 10.1023/A:1021779823196. |
[20] |
P. Dupuis and H. Ishii,
On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.
doi: 10.1080/17442509108833688. |
[21] |
P. Dupuis and A. Nagurney,
Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.
doi: 10.1007/BF02073589. |
[22] |
K. Fan,
Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.
doi: 10.1007/BF01458545. |
[23] |
G. Fichera,
Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140.
|
[24] |
G. Fichera,
Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142.
|
[25] |
S. Giuffrè, G. Idone and S. Pia,
Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.
doi: 10.1007/s10898-007-9173-x. |
[26] |
S. Lawphongpanich and D. W. Hearn,
Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.
doi: 10.1016/0191-2615(84)90026-2. |
[27] |
J.-L. Lions and G. Stampacchia,
Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.
doi: 10.1002/cpa.3160200302. |
[28] |
S.-Y. Matsushita and L. Xu,
On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.
doi: 10.1007/s10957-013-0460-z. |
[29] |
A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp.
doi: 10.1088/0266-5611/26/5/055007. |
[30] |
A. Nagurney, D. Parkes and P. Daniele,
The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.
doi: 10.1007/s10287-006-0027-7. |
[31] |
B. Panicucci, M. Pappalardo and M. Passacantando,
A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.
doi: 10.1007/s11590-006-0002-9. |
[32] |
F. Raciti,
Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.
doi: 10.1007/s10898-007-9202-9. |
[33] |
L. Scrimali and C. Mirabella,
Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.
doi: 10.1007/s10898-017-0580-3. |
[34] |
Y. Shehu and O. Iyiola,
On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.
doi: 10.3934/jimo.2018045. |
[35] |
M. J. Smith,
The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.
doi: 10.1016/0191-2615(79)90022-5. |
[36] |
G. Stampacchia,
Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
|
[37] |
X. K. Sun and S. J. Li,
Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.
doi: 10.1080/00036811.2011.628940. |
[38] |
J. Yang,
Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.
doi: 10.3934/jimo.2008.4.673. |
show all references
References:
[1] |
Q. H. Ansari and M. Rezaei,
Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.
doi: 10.1080/02331930903395725. |
[2] |
D. Aussel and J. Cotrina,
Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.
doi: 10.1080/00036811.2012.692364. |
[3] |
D. Aussel, R. Gupta and A. Mehra,
Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.
doi: 10.1007/s10957-015-0859-9. |
[4] |
A. Barbagallo,
Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.
doi: 10.2478/cmam-2006-0006. |
[5] |
A. Barbagallo and M.-G. Cojocaru,
Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.
doi: 10.1016/j.mcm.2008.02.003. |
[6] |
A. Barbagallo, P. Daniele and A. Maugeri,
Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.
doi: 10.1016/j.na.2010.10.013. |
[7] |
H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735. |
[8] |
C. Byrne, Y. Censor, A. Gibali and S. Reich,
The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.
|
[9] |
L.-C. Ceng and S. Huang,
Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.
doi: 10.1007/s10898-009-9436-9. |
[10] |
Y. Censor and T. Elfving,
A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692. |
[11] |
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld,
The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017. |
[12] |
Y. Censor, A. Gibali and S. Reich,
Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.
doi: 10.1007/s11075-011-9490-5. |
[13] |
C. Ciarcià and P. Daniele,
New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.
doi: 10.1016/j.ejor.2015.11.013. |
[14] |
M. Chen and C. Huang,
A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.
doi: 10.3934/jimo.2018012. |
[15] |
M. G. Cojocaru, P. Daniele and A. Nagurney,
Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.
doi: 10.1007/s10957-005-7502-0. |
[16] |
M.-G. Cojocaru and L. B. Jonker,
Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.
doi: 10.1090/S0002-9939-03-07015-1. |
[17] |
S. Dafermos,
Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.
doi: 10.1287/trsc.14.1.42. |
[18] |
P. Daniele,
Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.
doi: 10.1023/B:JOGO.0000026449.29735.3c. |
[19] |
P. Daniele, A. Maugeri and W. Oettli,
Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.
doi: 10.1023/A:1021779823196. |
[20] |
P. Dupuis and H. Ishii,
On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.
doi: 10.1080/17442509108833688. |
[21] |
P. Dupuis and A. Nagurney,
Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.
doi: 10.1007/BF02073589. |
[22] |
K. Fan,
Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.
doi: 10.1007/BF01458545. |
[23] |
G. Fichera,
Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140.
|
[24] |
G. Fichera,
Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142.
|
[25] |
S. Giuffrè, G. Idone and S. Pia,
Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.
doi: 10.1007/s10898-007-9173-x. |
[26] |
S. Lawphongpanich and D. W. Hearn,
Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.
doi: 10.1016/0191-2615(84)90026-2. |
[27] |
J.-L. Lions and G. Stampacchia,
Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.
doi: 10.1002/cpa.3160200302. |
[28] |
S.-Y. Matsushita and L. Xu,
On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.
doi: 10.1007/s10957-013-0460-z. |
[29] |
A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp.
doi: 10.1088/0266-5611/26/5/055007. |
[30] |
A. Nagurney, D. Parkes and P. Daniele,
The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.
doi: 10.1007/s10287-006-0027-7. |
[31] |
B. Panicucci, M. Pappalardo and M. Passacantando,
A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.
doi: 10.1007/s11590-006-0002-9. |
[32] |
F. Raciti,
Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.
doi: 10.1007/s10898-007-9202-9. |
[33] |
L. Scrimali and C. Mirabella,
Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.
doi: 10.1007/s10898-017-0580-3. |
[34] |
Y. Shehu and O. Iyiola,
On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.
doi: 10.3934/jimo.2018045. |
[35] |
M. J. Smith,
The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.
doi: 10.1016/0191-2615(79)90022-5. |
[36] |
G. Stampacchia,
Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.
|
[37] |
X. K. Sun and S. J. Li,
Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.
doi: 10.1080/00036811.2011.628940. |
[38] |
J. Yang,
Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.
doi: 10.3934/jimo.2008.4.673. |


1 | 1 | 1.5 | 1.5 | |
1.125 | 1.125 | 1.6875 | 1.6875 | |
1.25 | 1.25 | 1.875 | 1.875 | |
1.375 | 1.375 | 2.0625 | 2.0625 | |
1.5 | 1.5 | 2.25 | 2.25 | |
1.625 | 1.625 | 2.4375 | 2.4375 | |
1.75 | 1.75 | 2.625 | 2.625 | |
1.875 | 1.875 | 2.8125 | 2.8125 | |
2 | 2 | 3 | 3 | |
2.125 | 2.125 | 3.1875 | 3.1875 | |
2.25 | 2.25 | 3.375 | 3.375 | |
2.375 | 2.375 | 3.5625 | 3.5625 | |
2.5 | 2.5 | 3.75 | 3.75 | |
2.625 | 2.625 | 3.9375 | 3.9375 | |
2.75 | 2.75 | 4.125 | 4.125 | |
2.875 | 2.875 | 4.3125 | 4.3125 | |
3 | 3 | 4.5 | 4.5 |
1 | 1 | 1.5 | 1.5 | |
1.125 | 1.125 | 1.6875 | 1.6875 | |
1.25 | 1.25 | 1.875 | 1.875 | |
1.375 | 1.375 | 2.0625 | 2.0625 | |
1.5 | 1.5 | 2.25 | 2.25 | |
1.625 | 1.625 | 2.4375 | 2.4375 | |
1.75 | 1.75 | 2.625 | 2.625 | |
1.875 | 1.875 | 2.8125 | 2.8125 | |
2 | 2 | 3 | 3 | |
2.125 | 2.125 | 3.1875 | 3.1875 | |
2.25 | 2.25 | 3.375 | 3.375 | |
2.375 | 2.375 | 3.5625 | 3.5625 | |
2.5 | 2.5 | 3.75 | 3.75 | |
2.625 | 2.625 | 3.9375 | 3.9375 | |
2.75 | 2.75 | 4.125 | 4.125 | |
2.875 | 2.875 | 4.3125 | 4.3125 | |
3 | 3 | 4.5 | 4.5 |
2.5 | 2.5 | 2 | 2 | 2 | |
2.8125 | 2.8125 | 2.25 | 2.25 | 2.25 | |
3.125 | 3.125 | 2.5 | 2.5 | 2.5 | |
3.4375 | 3.4375 | 2.75 | 2.75 | 2.75 | |
3.75 | 3.75 | 3 | 3 | 3 | |
4.0625 | 4.0625 | 3.25 | 3.25 | 3.25 | |
4.375 | 4.375 | 3.5 | 3.5 | 3.5 | |
4.6875 | 4.6875 | 3.75 | 3.75 | 3.75 | |
5 | 5 | 4 | 4 | 4 | |
5.3125 | 5.3125 | 4.25 | 4.25 | 4.25 | |
5.625 | 5.625 | 4.5 | 4.5 | 4.5 | |
5.9375 | 5.9375 | 4.75 | 4.75 | 4.75 | |
6.25 | 6.25 | 5 | 5 | 5 | |
6.5625 | 6.5625 | 5.25 | 5.25 | 5.25 | |
6.875 | 6.875 | 5.5 | 5.5 | 5.5 | |
7.1875 | 7.1875 | 5.75 | 5.75 | 5.75 | |
7.5 | 7.5 | 6 | 6 | 6 |
2.5 | 2.5 | 2 | 2 | 2 | |
2.8125 | 2.8125 | 2.25 | 2.25 | 2.25 | |
3.125 | 3.125 | 2.5 | 2.5 | 2.5 | |
3.4375 | 3.4375 | 2.75 | 2.75 | 2.75 | |
3.75 | 3.75 | 3 | 3 | 3 | |
4.0625 | 4.0625 | 3.25 | 3.25 | 3.25 | |
4.375 | 4.375 | 3.5 | 3.5 | 3.5 | |
4.6875 | 4.6875 | 3.75 | 3.75 | 3.75 | |
5 | 5 | 4 | 4 | 4 | |
5.3125 | 5.3125 | 4.25 | 4.25 | 4.25 | |
5.625 | 5.625 | 4.5 | 4.5 | 4.5 | |
5.9375 | 5.9375 | 4.75 | 4.75 | 4.75 | |
6.25 | 6.25 | 5 | 5 | 5 | |
6.5625 | 6.5625 | 5.25 | 5.25 | 5.25 | |
6.875 | 6.875 | 5.5 | 5.5 | 5.5 | |
7.1875 | 7.1875 | 5.75 | 5.75 | 5.75 | |
7.5 | 7.5 | 6 | 6 | 6 |
[1] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[2] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[3] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[4] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[5] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[6] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[7] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[8] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[9] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[10] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[11] |
Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360 |
[12] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[13] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[14] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[15] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[16] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[17] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[18] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[19] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[20] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]