[1]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers, Now Foundations and Trends, 2011.
doi: 10.1561/9781601984616.
|
[2]
|
E. Carrizosa, E. Conde, M. Muñoz-Márquez and J. Puerto, Simpson points in planar problems with locational constraints. The polyhedral-gauge case, Math. Oper. Res., 22 (1997), 291-300.
doi: 10.1287/moor.22.2.291.
|
[3]
|
M. Cera, J. A. Mesa, F. A. Ortega and F. Plastria, Locating a central hunter on the plane, J. Optim. Theory Appl., 136 (2008), 155-166.
doi: 10.1007/s10957-007-9293-y.
|
[4]
|
C. Chen, B. He, Y. Ye and X. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Math. Program., 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[5]
|
Y.-H. Dai, D. Han, X. Yuan and W. Zhang, A sequential updating scheme of the Lagrange multiplier for separable convex programming, Math. Comp., 86 (2017), 315-343.
doi: 10.1090/mcom/3104.
|
[6]
|
F. Daneshzand and R. Shoeleh, Multifacility location problem, in Facility Location, Contributions to Management Science, Physica, Heidelberg, 2009, 69–92.
doi: 10.1007/978-3-7908-2151-2_4.
|
[7]
|
Z. Drezner, Facility Location. A Survey of Applications and Methods, Springer Series in Operations Research, Springer-Verlag, New York, 1995.
|
[8]
|
Z. Drezner and H. W. Hamacher, Facility Location. Applications and Theory, Springer-Verlag, Berlin, 2002.
|
[9]
|
J. W. Eyster, J. A. White and W. W. Wierwille, On solving multifacility location problems using a hyperboloid approximation procedure, AIIE Trans., 5 (1973), 1-6.
doi: 10.1080/05695557308974875.
|
[10]
|
M. Fortin and R. Glowinski, On decomposition-coordination methods using an augmented Lagrangian, in Studies in Mathematics and Its Applications, 15, Elsevier, Amsterdam, 1983, 97–146.
doi: 10.1016/S0168-2024(08)70028-6.
|
[11]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[12]
|
R. Glowinski, Lectures on Numerical Methods for Non-linear Variational Problems, Research Lectures on Mathematics and Physics, 65, Tata Institute of Fundamental Research, Bombay; sh Springer-Verlag, Berlin-New York, 1980.
|
[13]
|
R. Glowinski and A. Marrocco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér, 9 (1975), 41–76.
doi: 10.1051/m2an/197509R200411.
|
[14]
|
K. Guo, D. Han and X. Yuan, Convergence analysis of Douglas–Rachford splitting method for "strongly + weakly" convex programming, SIAM J. Numer. Anal., 55 (2017), 1549-1577.
doi: 10.1137/16M1078604.
|
[15]
|
B. He, F. Ma and X. Yuan, Optimally linearizing the alternating direction method of multipliers for convex programming, Comput. Optim. Appl., 75 (2020), 361-388.
doi: 10.1007/s10589-019-00152-3.
|
[16]
|
B. He, X. Yuan and W. Zhang, A customized proximal point algorithm for convex minimization with linear constraints, Comput. Optim. Appl., 56 (2013), 559-572.
doi: 10.1007/s10589-013-9564-5.
|
[17]
|
B. S. He, A modified projection and contraction method for a class of linear complementarity problems, J. Comput. Math., 14 (1996), 54-63.
|
[18]
|
J. Jiang, S. Zhang, Y. Lv, X. Du and Z. Yan, An ADMM-based location-allocation algorithm for nonconvex constrained multi-source Weber problem under gauge, J. Global Optim., 76 (2020), 793-818.
doi: 10.1007/s10898-019-00796-9.
|
[19]
|
J. Jiang, S. Zhang, S. Zhang and J. Wen, A variational inequality approach for constrained multifacility Weber problem under gauge, J. Ind. Manag. Optim., 14 (2018), 1085-1104.
doi: 10.3934/jimo.2017091.
|
[20]
|
I. N. Katz and S. R. Vogl, A Weiszfeld algorithm for the solution of an asymmetric extension of the generalized Fermat location problem, Comput. Math. Appl., 59 (2010), 399-410.
doi: 10.1016/j.camwa.2009.07.007.
|
[21]
|
X. Li, D. Sun and K.-C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Math. Program., 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5.
|
[22]
|
Z. Lin, R. Liu and H. Li, Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning, Mach. Learn., 99 (2015), 287-325.
doi: 10.1007/s10994-014-5469-5.
|
[23]
|
R. F. Love and J. G. Morris, Mathematical models of road travel distances, Manag. Sci., 25 (1979), 117-210.
doi: 10.1287/mnsc.25.2.130.
|
[24]
|
W. Miehle, Link-length minimization in networks, Operations Res., 6 (1958), 232-243.
doi: 10.1287/opre.6.2.232.
|
[25]
|
H. Minkowski, Theorie der Konvexen Körper, Gesammelte Abhandlungen, Teubner, Berlin, 1911.
|
[26]
|
L. M. Ostresh, The multifacility location problem: applications and descent theorems, J. Regional. Sci., 17 (2006), 409-419.
doi: 10.1111/j.1467-9787.1977.tb00511.x.
|
[27]
|
Y. Peng, A. Ganesh, J. Wright, W. Xu and Y. Ma, RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 2010.
doi: 10.1109/CVPR.2010.5540138.
|
[28]
|
F. Plastria, Asymmetric distances, semidirected networks and majority in Fermat-Weber problems, Ann. Oper. Res., 167 (2009), 121-155.
doi: 10.1007/s10479-008-0351-0.
|
[29]
|
F. Plastria, The Weiszfeld algorithm: Proof, amendments, and extensions, in Foundations of Location Analysis, International Series in Operations Research & Management Science, 155, Springer, New York, 2011, 357–389.
doi: 10.1007/978-1-4419-7572-0_16.
|
[30]
|
J. B. Rosen and G. L. Xue, On the convergence of a hyperboloid approximation procedure for the perturbed Euclidean multifacility location problem, Oper. Res., 41 (1993), 1164-1171.
doi: 10.1287/opre.41.6.1164.
|
[31]
|
J. B. Rosen and G. L. Xue, On the convergence of Miehle's algorithm for the Euclidean multifacility location problem, Oper. Res., 40 (1992), 188-191.
doi: 10.1287/opre.40.1.188.
|
[32]
|
D. Sun, K.-C. Toh and L. Yang, A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM J. Optim., 25 (2015), 882-915.
doi: 10.1137/140964357.
|
[33]
|
M. Tao and X. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM J. Optim., 21 (2011), 57-81.
doi: 10.1137/100781894.
|
[34]
|
X. Wang and X. Yuan, The linearized alternating direction method of multipliers for Dantzig selector, SIAM J. Sci. Comput., 34 (2012), A2792–A2811.
doi: 10.1137/110833543.
|
[35]
|
J. E. Ward and R. E. Wendell, Using block norms for location modeling, Oper. Res., 33 (1985), 1074-1090.
doi: 10.1287/opre.33.5.1074.
|
[36]
|
E. Weiszfeld, Sur le point pour lequel la somme des distances de $n$ points donnés est minimum, Tohoku Math. J., 43 (1937), 355-386.
|
[37]
|
Z. Wen, D. Goldfarb and W. Yin, Alternating direction augmented Lagrangian methods for semidefinite programming, Math. Program. Comput., 2 (2010), 203-230.
doi: 10.1007/s12532-010-0017-1.
|
[38]
|
C. Witzgall, Optimal Location of a Central Facility, Mathematical Models and Concepts, Report 8388, National Bureau of Standards, Washington D.C., 1964.
|
[39]
|
X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, J. Sci. Comput., 46 (2011), 20-46.
doi: 10.1007/s10915-010-9408-8.
|