doi: 10.3934/jimo.2020176

Perturbation of Image and conjugate duality for vector optimization

1. 

College of Mathematics and Information, China West Normal University, Nanchong 637009, Sichuan, China

2. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

* Corresponding author: Manxue You

Received  January 2019 Revised  October 2019 Published  December 2020

Fund Project: This research was supported by the National Natural Science Foundation of China (Grant numbers: 12001438, 11971078, 11871059) and the Fund of China West Normal University (NO. 18Q059, 19B043)

This paper aims at employing the image space approach to investigate the conjugate duality theory for general constrained vector optimization problems. We introduce the concepts of conjugate map and subdifferential by using two types of maximums. We also construct the conjugate duality problems via a perturbation method. Moreover, the separation condition is proposed by means of vector weak separation functions. Then, it is proved to be a new sufficient condition, which ensures the strong duality theorem. This separation condition is different from the classical regular conditions in the literature. Simultaneously, the application to a nonconvex multi-objective optimization problem is shown to verify our main results.

Citation: Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020176
References:
[1]

R. I. Bot, Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, 637. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04900-2.  Google Scholar

[2]

R. I. BotS. M. Grad and G. Wanka, New constraint qualification and conjugate duality for composed convex optimization problems, J. Optim. Theory Appl., 135 (2007), 241-255.  doi: 10.1007/s10957-007-9247-4.  Google Scholar

[3]

G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439.  Google Scholar

[4]

J. W. ChenS. J. LiZ. P. Wang and J. C. Yao, Vector variational-like inequalities with constraints: Separation and alternative, J. Optim. Theory Appl., 166 (2015), 460-479.  doi: 10.1007/s10957-015-0736-6.  Google Scholar

[5]

M. Chinaie and J. Zafarani, Image space analysis and scalarization of multivalued optimization, J. Optim. Theory Appl., 142 (2009), 451-467.  doi: 10.1007/s10957-009-9531-6.  Google Scholar

[6]

P. H. DienG. MastroeniM. Pappalardo and P. H. Quang, Regularity condition for constrained extreme problems via image space, J. Optim. Theory Appl., 80 (1994), 19-37.  doi: 10.1007/BF02196591.  Google Scholar

[7]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.  doi: 10.1007/BF00935321.  Google Scholar

[8]

F. Giannessi, On the theory of Lagrangian duality, Optim. Lett., 1 (2007), 9-20.  doi: 10.1007/s11590-006-0013-6.  Google Scholar

[9]

F. Giannessi, Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, vol. 1. Springer, Berlin, 2005.  Google Scholar

[10]

C. GutiérrezB. Jiménez and V. Novo, On approximate solutions in vector optimization problems via scalarization, Comput. Optim. Appl., 35 (2006), 305-324.  doi: 10.1007/s10589-006-8718-0.  Google Scholar

[11]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality, J. Glob. Optim., 42 (2008), 401-412.  doi: 10.1007/s10898-008-9301-2.  Google Scholar

[12]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities, Image space analysis and seperation, In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, Kluwer Academic, Dordrech, (2000), 153-215. Google Scholar

[13]

J. LiS. Q. Feng and Z. Zhang, A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.  doi: 10.1007/s10957-013-0276-x.  Google Scholar

[14]

S. J. LiY. D. Xu and S. K. Zhu, Nonlinear separation approach to constrained extremum problems, J. Optim. Theory Appl., 154 (2012), 842-856.  doi: 10.1007/s10957-012-0027-4.  Google Scholar

[15]

G. Mastroeni, Optimality conditions and image space analysis for vector optimization problems, In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, Vector Optimization, Springer, Dordrecht, 1 (2012), 169-220. doi: 10.1007/978-3-642-21114-0_6.  Google Scholar

[16]

G. Mastroeni, On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation, J. Glob. Optim., 53 (2012), 203-214.  doi: 10.1007/s10898-011-9674-5.  Google Scholar

[17]

G. Mastroeni, Some applications of the image space analysis to the duality theory for constrained extremum problems, J. Glob. Optim., 46 (2010), 603-614.  doi: 10.1007/s10898-009-9445-8.  Google Scholar

[18]

G. Mastroeni, Nonlinear separation in the image space with applications to penalty methods, Appl. Anal., 91 (2012), 1901-1914.  doi: 10.1080/00036811.2011.614603.  Google Scholar

[19]

G. MastroeniM. Pappalardo and N. D. Yen, Image of a parametric optimization problem and continuity of the perturbation function, J. Optim. Theory Appl., 81 (1994), 193-202.  doi: 10.1007/BF02190319.  Google Scholar

[20]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 1: Suffficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.  doi: 10.1007/s10957-009-9518-3.  Google Scholar

[21]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.  doi: 10.1007/s10957-009-9521-8.  Google Scholar

[22]

M. Pappalardo, Image space approach to penalty methods, J. Optim. Theory Appl., 64 (1990), 141-152.  doi: 10.1007/BF00940028.  Google Scholar

[23]

T. Tanino, Conjugate duality in vector optimization, J. Math. Anal. Appl., 167 (1992), 84-97.  doi: 10.1016/0022-247X(92)90237-8.  Google Scholar

[24]

F. Tardella, On the image of a constrained extremum problem and some applications to existence of a minimum, J. Optim. Theory Appl., 60 (1989), 93-104.  doi: 10.1007/BF00938802.  Google Scholar

[25]

Y. D. Xu and S. J. Li, Gap functions and error bounds for weak vector variational inequalities, Optimization, 63 (2014), 1339-1352.  doi: 10.1080/02331934.2012.721115.  Google Scholar

[26]

Y. D. Xu and S. J. Li, Nonlinear separation functions and constrained extremum problems, Optim. Lett., 8 (2014), 1149-1160.  doi: 10.1007/s11590-013-0644-3.  Google Scholar

[27]

S. K. Zhu and S. J. Li, United duality theory for constrained extremum problems. Part I: Image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[28]

S. K. Zhu and S. J. Li, United duality theory for constrained extremum problems, Part II: Special Duality Schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

show all references

References:
[1]

R. I. Bot, Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, 637. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04900-2.  Google Scholar

[2]

R. I. BotS. M. Grad and G. Wanka, New constraint qualification and conjugate duality for composed convex optimization problems, J. Optim. Theory Appl., 135 (2007), 241-255.  doi: 10.1007/s10957-007-9247-4.  Google Scholar

[3]

G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439.  Google Scholar

[4]

J. W. ChenS. J. LiZ. P. Wang and J. C. Yao, Vector variational-like inequalities with constraints: Separation and alternative, J. Optim. Theory Appl., 166 (2015), 460-479.  doi: 10.1007/s10957-015-0736-6.  Google Scholar

[5]

M. Chinaie and J. Zafarani, Image space analysis and scalarization of multivalued optimization, J. Optim. Theory Appl., 142 (2009), 451-467.  doi: 10.1007/s10957-009-9531-6.  Google Scholar

[6]

P. H. DienG. MastroeniM. Pappalardo and P. H. Quang, Regularity condition for constrained extreme problems via image space, J. Optim. Theory Appl., 80 (1994), 19-37.  doi: 10.1007/BF02196591.  Google Scholar

[7]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.  doi: 10.1007/BF00935321.  Google Scholar

[8]

F. Giannessi, On the theory of Lagrangian duality, Optim. Lett., 1 (2007), 9-20.  doi: 10.1007/s11590-006-0013-6.  Google Scholar

[9]

F. Giannessi, Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, vol. 1. Springer, Berlin, 2005.  Google Scholar

[10]

C. GutiérrezB. Jiménez and V. Novo, On approximate solutions in vector optimization problems via scalarization, Comput. Optim. Appl., 35 (2006), 305-324.  doi: 10.1007/s10589-006-8718-0.  Google Scholar

[11]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality, J. Glob. Optim., 42 (2008), 401-412.  doi: 10.1007/s10898-008-9301-2.  Google Scholar

[12]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities, Image space analysis and seperation, In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, Kluwer Academic, Dordrech, (2000), 153-215. Google Scholar

[13]

J. LiS. Q. Feng and Z. Zhang, A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.  doi: 10.1007/s10957-013-0276-x.  Google Scholar

[14]

S. J. LiY. D. Xu and S. K. Zhu, Nonlinear separation approach to constrained extremum problems, J. Optim. Theory Appl., 154 (2012), 842-856.  doi: 10.1007/s10957-012-0027-4.  Google Scholar

[15]

G. Mastroeni, Optimality conditions and image space analysis for vector optimization problems, In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, Vector Optimization, Springer, Dordrecht, 1 (2012), 169-220. doi: 10.1007/978-3-642-21114-0_6.  Google Scholar

[16]

G. Mastroeni, On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation, J. Glob. Optim., 53 (2012), 203-214.  doi: 10.1007/s10898-011-9674-5.  Google Scholar

[17]

G. Mastroeni, Some applications of the image space analysis to the duality theory for constrained extremum problems, J. Glob. Optim., 46 (2010), 603-614.  doi: 10.1007/s10898-009-9445-8.  Google Scholar

[18]

G. Mastroeni, Nonlinear separation in the image space with applications to penalty methods, Appl. Anal., 91 (2012), 1901-1914.  doi: 10.1080/00036811.2011.614603.  Google Scholar

[19]

G. MastroeniM. Pappalardo and N. D. Yen, Image of a parametric optimization problem and continuity of the perturbation function, J. Optim. Theory Appl., 81 (1994), 193-202.  doi: 10.1007/BF02190319.  Google Scholar

[20]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 1: Suffficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.  doi: 10.1007/s10957-009-9518-3.  Google Scholar

[21]

A. Moldovan and L. Pellegrini, On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.  doi: 10.1007/s10957-009-9521-8.  Google Scholar

[22]

M. Pappalardo, Image space approach to penalty methods, J. Optim. Theory Appl., 64 (1990), 141-152.  doi: 10.1007/BF00940028.  Google Scholar

[23]

T. Tanino, Conjugate duality in vector optimization, J. Math. Anal. Appl., 167 (1992), 84-97.  doi: 10.1016/0022-247X(92)90237-8.  Google Scholar

[24]

F. Tardella, On the image of a constrained extremum problem and some applications to existence of a minimum, J. Optim. Theory Appl., 60 (1989), 93-104.  doi: 10.1007/BF00938802.  Google Scholar

[25]

Y. D. Xu and S. J. Li, Gap functions and error bounds for weak vector variational inequalities, Optimization, 63 (2014), 1339-1352.  doi: 10.1080/02331934.2012.721115.  Google Scholar

[26]

Y. D. Xu and S. J. Li, Nonlinear separation functions and constrained extremum problems, Optim. Lett., 8 (2014), 1149-1160.  doi: 10.1007/s11590-013-0644-3.  Google Scholar

[27]

S. K. Zhu and S. J. Li, United duality theory for constrained extremum problems. Part I: Image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[28]

S. K. Zhu and S. J. Li, United duality theory for constrained extremum problems, Part II: Special Duality Schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

Figure 1.  The red curve shows the set of objective function values
[1]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[2]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[3]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[4]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[5]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[6]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[7]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[13]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[14]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[15]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[16]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[17]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[20]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]