[1]
|
T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, Modified inertial subgradient extragradient method with self-adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, (2020).
doi: 10.1080/02331934.2020.1723586.
|
[2]
|
Y. I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A.G.Kartsatos (Ed.), Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker, New York, 178 (1996), 15-50.
|
[3]
|
A. S. Antipin, On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika i Mat. Metody., 12 (1976), 1164-1173.
|
[4]
|
H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248-264.
doi: 10.1287/moor.26.2.248.10558.
|
[5]
|
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, New York, Springer, 2011. (CMS Books in Mathematics).
doi: 10.1007/978-1-4419-9467-7.
|
[6]
|
A. Beck, First-Order Methods in Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2017.
doi: 10.1137/1.9781611974997.ch1.
|
[7]
|
J. Y. Bello Cruz and A. N. Iusem, A strongly convergent direct method for monotone variational inequalities in Hilbert spaces, Numer. Funct. Anal. Optim., 30 (2009), 23-36.
doi: 10.1080/01630560902735223.
|
[8]
|
L. M. Bregman, The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7 (1967), 200-217.
|
[9]
|
Y. Censor, A. Gibali and S. Reich, Extensions of Korpelevich's extragradient method for variational inequality problems in Euclidean space, Optim., 61 (2012), 1119-1132.
doi: 10.1080/02331934.2010.539689.
|
[10]
|
Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Software, 26 (2011), 827-845.
doi: 10.1080/10556788.2010.551536.
|
[11]
|
Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 148 (2011), 318-335.
doi: 10.1007/s10957-010-9757-3.
|
[12]
|
Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34 (1981), 321-353.
doi: 10.1007/BF00934676.
|
[13]
|
S. V. Denisov, V. V. Semenov and P. I. Stetsynk, Bregman extragradient method with monotone rule of step adjustment, Cybern. Syst. Analysis, 55 (2019), 377-383.
|
[14]
|
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. Ⅱ, Springer Series in Operations Research, Springer, New York, 2003.
|
[15]
|
G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, Ⅷ. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 34 (1963), 138-142.
|
[16]
|
A. Gibali, A new Bregman projection method for solving variational inequalities in Hilbert spaces, Pure and Appl. Funct. Analy., 3 (2018), 403-415.
|
[17]
|
K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, (Marcel Dekker, New York, 1984.
|
[18]
|
A. Gibali, S. Reich and R. Zalas, Iterative methods for solving variational inequalities in Euclidean space, J. Fixed Point Theory Appl., 17 (2015), 775-811.
doi: 10.1007/s11784-015-0256-x.
|
[19]
|
B. Halpern, Fixed points of nonexpanding maps, Proc. Amer. Math. Soc., 73 (1967), 957-961.
doi: 10.1090/S0002-9904-1967-11864-0.
|
[20]
|
P. Hartman and G. Stampacchia, On some non linear elliptic differential-functional equations, Acta Mathematica, 115 (1966), 271-310.
doi: 10.1007/BF02392210.
|
[21]
|
H. Iiduka, A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping, Optimization, 59 (2010), 873-885.
doi: 10.1080/02331930902884158.
|
[22]
|
H. Iiduka and I. Yamada, A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim., 19 (2009), 1881-1893.
doi: 10.1137/070702497.
|
[23]
|
H. Iiduka and I. Yamada, A subgradient-type method for the equilibrium problem over the fixed point set and its applications, Optimization, 58 (2009), 251-261.
doi: 10.1080/02331930701762829.
|
[24]
|
A. N. Iusem and B. F. Svaiter, A variant of Korpelevich?s method for variational inequalities with a new search strategy, Optimization, 42 (1997), 309-321.
doi: 10.1080/02331939708844365.
|
[25]
|
L. O. Jolaoso and M. Aphane, Weak and strong convergence Bregman extragradient schemes for solving pseudo-monotone and non-Lipschitz variational inequalities, J. Ineq. Appl., (2020), Paper No. 195, 25 pp.
doi: 10.1186/s13660-020-02462-1.
|
[26]
|
L. O. Jolaoso and I. Karahan, A general alternative regularization method with line search technique for solving split equilibrium and fixed point problems in Hilbert spaces, Comput. Appl. Math., 39 (2020), Article 150, 22pp.
doi: 10.1007/s40314-020-01178-8.
|
[27]
|
L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A strong convergence theorem for solving pseudo-monotone variational inequalities using projection methods in a reflexive Banach space, J. Optim. Theory Appl., 185 (2020), 744-766.
doi: 10.1007/s10957-020-01672-3.
|
[28]
|
L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (2020), Paper No. 38, 28 pp.
doi: 10.1007/s40314-019-1014-2.
|
[29]
|
R. Kraikaew and S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163 (2014), 399-412.
doi: 10.1007/s10957-013-0494-2.
|
[30]
|
E. N. Khobotov, Modification of the extragradient method for solving variational inequalities and certain optimization problems, USSR Comput. Math. Math. Phys., 27 (1987), 120-127.
|
[31]
|
D. Kinderlehrer and G. Stampachia, An introduction to variational inequalities and Their Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2000.
doi: 10.1137/1.9780898719451.
|
[32]
|
F. Kohsaka and W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005), 505-523.
|
[33]
|
G. M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekon. Mat. Metody, 12 (1976), 747-756.
|
[34]
|
L. J. Lin, M. F. Yang, Q. H. Ansari and G. Kassay, Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps, Nonlinear Analy. Theory Methods and Appl., 61 (2005), 1-19.
doi: 10.1016/j.na.2004.07.038.
|
[35]
|
J. L. Lions and G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493-519.
doi: 10.1002/cpa.3160200302.
|
[36]
|
P. E. Mainge, A hybrid extragradient viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499-1515.
doi: 10.1137/060675319.
|
[37]
|
P. E. Mainge, Numerical approach to monotone variational inequalities by a one-step projected reflected gradient method with the line-search procedure, Comput. Math. Appl., 72 (2016), 720-728.
doi: 10.1016/j.camwa.2016.05.028.
|
[38]
|
P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
doi: 10.1007/s11228-008-0102-z.
|
[39]
|
P. E. Mainge and M. L. Gobindass, Convergence of one-step projected gradient methods for variational inequalities, J. Optim. Theory Appl., 171 (2016), 146-168.
doi: 10.1007/s10957-016-0972-4.
|
[40]
|
Y. V. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM J. Optim., 25 (2015), 502-520.
doi: 10.1137/14097238X.
|
[41]
|
E. Naraghirad and J.-C. yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory and Appl., 2013 (2013), Article ID: 141, 43pp.
doi: 10.1186/1687-1812-2013-141.
|
[42]
|
J. Mashreghi and M. Nasri, Forcing strong convergence of Korpelevich's method in Banach spaces with its applications in game theory, Nonlinear Analy., 72 (2010), 2086-2099.
doi: 10.1016/j.na.2009.10.009.
|
[43]
|
A. Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems, SIAM J. on Optimization, 15 (2004), 229-251.
doi: 10.1137/S1052623403425629.
|
[44]
|
D. A. Nomirovskii, B. V. Rublyov and V. V. Semenov, Convergence of two-step method with Bregman divergence for solving variational inequalities, Cybern. Syst. Analysis, 55 (2019), 359-368.
|
[45]
|
R. P. Phelps, Convex Functions, Monotone Operators, and Differentiability, 2nd Edition, in: Lecture Notes in Mathematics, vol. 1364, Springer Verlag, Berlin, 1993.
|
[46]
|
S. Reich and S. Sabach, A strong convergence theorem for proximal type- algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471-485.
|
[47]
|
G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci., Paris. 258 (1964), 4413-4416.
|
[48]
|
M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control and Optim., 37 (1999), 765-776.
doi: 10.1137/S0363012997317475.
|
[49]
|
H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240-256.
doi: 10.1112/S0024610702003332.
|
[50]
|
J. Yang and H. Liu, Strong convergence result for solving monotone variational inequalities in Hilbert space, J. Numer Algor, 80 (2019), 741-752.
doi: 10.1007/s11075-018-0504-4.
|