
-
Previous Article
Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain
- JIMO Home
- This Issue
-
Next Article
Analysis of dynamic service system between regular and retrial queues with impatient customers
Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs
School of Mathematical Sciences and Institute of Finance and Statistics, Nanjing Normal University, Jiangsu 210023, China |
We study the optimal investment and reinsurance problem in a risk model with two dependent classes of insurance businesses, where the two claim number processes are correlated through a common shock component and the borrowing rate is higher than the lending rate. The objective is to minimize the probability of drawdown, namely, the probability that the value of the wealth process reaches some fixed proportion of its maximum value to date. By the method of stochastic control theory and the corresponding Hamilton-Jacobi-Bellman equation, we investigate the optimization problem in two different cases and divide the whole region into four subregions. The explicit expressions for the optimal investment/reinsurance strategies and the minimum probability of drawdown are derived. We find that when wealth is at a relatively low level (below the borrowing level), it is optimal to borrow money to invest in the risky asset; when wealth is at a relatively high level (above the saving level), it is optimal to save more money; while between them, the insurer is willing to invest all the wealth in the risky asset. In the end, some comparisons are presented to show the impact of higher borrowing rate and risky investment on the optimal results.
References:
[1] |
B. Angoshtari, E. Bayraktar and V. R. Young,
Optimal investment to minimize the probability of drawdown, Stochastics, 88 (2016), 946-958.
doi: 10.1080/17442508.2016.1155590. |
[2] |
B. Angoshtari, E. Bayraktar and V. R. Young,
Minimizing the probability of lifetime drawdown under constant consumption, Insurance: Mathematics and Economics, 69 (2016), 210-223.
doi: 10.1016/j.insmatheco.2016.05.007. |
[3] |
N. B$\ddot{a}$uerle,
Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.
doi: 10.1007/s00186-005-0446-1. |
[4] |
E. Bayraktar and V. R. Young,
Minimizing the probability of lifetime ruin under borrowing constraints, Insurance: Mathematics and Economics, 41 (2007), 196-221.
doi: 10.1016/j.insmatheco.2006.10.015. |
[5] |
E. Bayraktar and V. R. Young,
Minimizing the probability of ruin when consumption is ratcheted, North American Actuarial Journal, 12 (2008), 428-442.
doi: 10.1080/10920277.2008.10597535. |
[6] |
L. Bo and A. Capponi, Optimal credit investment with borrowing costs, Mathematics of Operations Research, 42 (2017), 546-575.
doi: 10.1287/moor.2016.0818. |
[7] |
S. Brown,
Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probaiblity of ruin, Mathematics of Operations Research, 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937. |
[8] |
X. Chen, D. Landriault, B. Li and D. Li,
On minimizing drawdown risks of lifetime investments, Insurance: Mathematics and Economics, 65 (2015), 46-54.
doi: 10.1016/j.insmatheco.2015.08.007. |
[9] |
J. Cvitanić and I. Karatzas, On portfolio optimization under drawdown constrainsts, IMA Volumes in Mathematics and its Applications, 65 (1995), 77-88. Google Scholar |
[10] |
C. Deng, X. Zeng and H. Zhu,
Non-zero-sum stochastic differential reinsurance and investment games with default risk, European Journal of Operational Research, 264 (2018), 1144-1158.
doi: 10.1016/j.ejor.2017.06.065. |
[11] |
R. Elie and N. Touzi,
Optimal lifetime consumption and investment under a drawdown constrainst, Finance and Stochastics, 12 (2008), 299-330.
doi: 10.1007/s00780-008-0066-8. |
[12] |
C. Fu, A. Lari-Lavassani and X. Li,
Dynamic mean-variance portfolio selection with borrowing constraint, European Journal of Operational Research, 200 (2010), 312-319.
doi: 10.1016/j.ejor.2009.01.005. |
[13] |
J. Grandell,
A class of approximations of ruin probabilities, Scandinavian Actuarial Journal, 1977 (1977), 37-52.
doi: 10.1080/03461238.1977.10405071. |
[14] |
J. Grandell, Aspects of Risk Theory, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4613-9058-9. |
[15] |
S. Grossman and Z. Zhou,
Optimal investment strategies for controlling drawdowns, Mathematical Finance, 3 (1993), 241-276.
doi: 10.1111/j.1467-9965.1993.tb00044.x. |
[16] |
X. Han, Z. Liang and K. C. Yuen,
Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure, Scandinavian Actuarial Journal, 2018 (2018), 863-889.
doi: 10.1080/03461238.2018.1469098. |
[17] |
X. Han, Z. Liang and V. R. Young,
Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle, Scandinavian Actuarial Journal, 2020 (2020), 879-903.
doi: 10.1080/03461238.2020.1788136. |
[18] |
X. Han, Z. Liang and C. Zhang,
Optimal proportional reinsurance with common shock dependence to minimise the probability of drawdown, Annals of Actuarial Science, 13 (2019), 268-294.
doi: 10.1017/S1748499518000210. |
[19] |
C. Hipp and M. Taksar,
Optimal non-proportional reinsurance, Insurance: Mathematics and Economics, 47 (2010), 246-254.
doi: 10.1016/j.insmatheco.2010.04.001. |
[20] |
X. Liang, Z. Liang and V. R. Young,
Optimal reinsurance under the mean-variance premium principle to minimize the probability of ruin, Insurance: Mathematics and Economics, 92 (2020), 128-146.
doi: 10.1016/j.insmatheco.2020.03.008. |
[21] |
X. Liang and V. R. Young,
Minimizing the probability of ruin: Optimal per-loss reinsurance, Insurance: Mathematics and Economics, 82 (2018), 181-190.
doi: 10.1016/j.insmatheco.2018.07.005. |
[22] |
Z. Liang and E. Bayraktar,
Optimal proportional reinsurance and investment with unobservable claim size and intensity, Insurance: Mathematics and Economics, 55 (2014), 156-166.
doi: 10.1016/j.insmatheco.2014.01.011. |
[23] |
Z. Liang and K. C. Yuen,
Optimal dynamic reinsurance with dependent risks: variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.
doi: 10.1080/03461238.2014.892899. |
[24] |
S. Luo,
Ruin minimization for insurers with borrowing constrainsts, North American Actuarial Journal, 12 (2008), 143-174.
doi: 10.1080/10920277.2008.10597508. |
[25] |
R. C. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[26] |
R. C. Merton,
Optimum consumption and portfolio rules in a continuous-time model, J. Econom. Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[27] |
S. D. Promislow and V. R. Young,
Minimizing the probability of ruin when claims follow Brownian motion with drift, North American Actuarial Journal, 9 (2005), 110-128.
doi: 10.1080/10920277.2005.10596214. |
[28] |
V. R. Young,
Optimal investmet strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.
doi: 10.1080/10920277.2004.10596174. |
[29] |
K. C. Yuen, Z. Liang and M. Zhou,
Optimal proportional reinsurance with common shock dependence, Insurance: Mathematic and Economics, 64 (2015), 1-13.
doi: 10.1016/j.insmatheco.2015.04.009. |
[30] |
X. Zhang, H. Meng and Y. Zeng,
Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling, Insurance: Mathematic and Economics, 67 (2016), 125-132.
doi: 10.1016/j.insmatheco.2016.01.001. |
show all references
References:
[1] |
B. Angoshtari, E. Bayraktar and V. R. Young,
Optimal investment to minimize the probability of drawdown, Stochastics, 88 (2016), 946-958.
doi: 10.1080/17442508.2016.1155590. |
[2] |
B. Angoshtari, E. Bayraktar and V. R. Young,
Minimizing the probability of lifetime drawdown under constant consumption, Insurance: Mathematics and Economics, 69 (2016), 210-223.
doi: 10.1016/j.insmatheco.2016.05.007. |
[3] |
N. B$\ddot{a}$uerle,
Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.
doi: 10.1007/s00186-005-0446-1. |
[4] |
E. Bayraktar and V. R. Young,
Minimizing the probability of lifetime ruin under borrowing constraints, Insurance: Mathematics and Economics, 41 (2007), 196-221.
doi: 10.1016/j.insmatheco.2006.10.015. |
[5] |
E. Bayraktar and V. R. Young,
Minimizing the probability of ruin when consumption is ratcheted, North American Actuarial Journal, 12 (2008), 428-442.
doi: 10.1080/10920277.2008.10597535. |
[6] |
L. Bo and A. Capponi, Optimal credit investment with borrowing costs, Mathematics of Operations Research, 42 (2017), 546-575.
doi: 10.1287/moor.2016.0818. |
[7] |
S. Brown,
Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probaiblity of ruin, Mathematics of Operations Research, 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937. |
[8] |
X. Chen, D. Landriault, B. Li and D. Li,
On minimizing drawdown risks of lifetime investments, Insurance: Mathematics and Economics, 65 (2015), 46-54.
doi: 10.1016/j.insmatheco.2015.08.007. |
[9] |
J. Cvitanić and I. Karatzas, On portfolio optimization under drawdown constrainsts, IMA Volumes in Mathematics and its Applications, 65 (1995), 77-88. Google Scholar |
[10] |
C. Deng, X. Zeng and H. Zhu,
Non-zero-sum stochastic differential reinsurance and investment games with default risk, European Journal of Operational Research, 264 (2018), 1144-1158.
doi: 10.1016/j.ejor.2017.06.065. |
[11] |
R. Elie and N. Touzi,
Optimal lifetime consumption and investment under a drawdown constrainst, Finance and Stochastics, 12 (2008), 299-330.
doi: 10.1007/s00780-008-0066-8. |
[12] |
C. Fu, A. Lari-Lavassani and X. Li,
Dynamic mean-variance portfolio selection with borrowing constraint, European Journal of Operational Research, 200 (2010), 312-319.
doi: 10.1016/j.ejor.2009.01.005. |
[13] |
J. Grandell,
A class of approximations of ruin probabilities, Scandinavian Actuarial Journal, 1977 (1977), 37-52.
doi: 10.1080/03461238.1977.10405071. |
[14] |
J. Grandell, Aspects of Risk Theory, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4613-9058-9. |
[15] |
S. Grossman and Z. Zhou,
Optimal investment strategies for controlling drawdowns, Mathematical Finance, 3 (1993), 241-276.
doi: 10.1111/j.1467-9965.1993.tb00044.x. |
[16] |
X. Han, Z. Liang and K. C. Yuen,
Optimal proportional reinsurance to minimize the probability of drawdown under thinning-dependence structure, Scandinavian Actuarial Journal, 2018 (2018), 863-889.
doi: 10.1080/03461238.2018.1469098. |
[17] |
X. Han, Z. Liang and V. R. Young,
Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle, Scandinavian Actuarial Journal, 2020 (2020), 879-903.
doi: 10.1080/03461238.2020.1788136. |
[18] |
X. Han, Z. Liang and C. Zhang,
Optimal proportional reinsurance with common shock dependence to minimise the probability of drawdown, Annals of Actuarial Science, 13 (2019), 268-294.
doi: 10.1017/S1748499518000210. |
[19] |
C. Hipp and M. Taksar,
Optimal non-proportional reinsurance, Insurance: Mathematics and Economics, 47 (2010), 246-254.
doi: 10.1016/j.insmatheco.2010.04.001. |
[20] |
X. Liang, Z. Liang and V. R. Young,
Optimal reinsurance under the mean-variance premium principle to minimize the probability of ruin, Insurance: Mathematics and Economics, 92 (2020), 128-146.
doi: 10.1016/j.insmatheco.2020.03.008. |
[21] |
X. Liang and V. R. Young,
Minimizing the probability of ruin: Optimal per-loss reinsurance, Insurance: Mathematics and Economics, 82 (2018), 181-190.
doi: 10.1016/j.insmatheco.2018.07.005. |
[22] |
Z. Liang and E. Bayraktar,
Optimal proportional reinsurance and investment with unobservable claim size and intensity, Insurance: Mathematics and Economics, 55 (2014), 156-166.
doi: 10.1016/j.insmatheco.2014.01.011. |
[23] |
Z. Liang and K. C. Yuen,
Optimal dynamic reinsurance with dependent risks: variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.
doi: 10.1080/03461238.2014.892899. |
[24] |
S. Luo,
Ruin minimization for insurers with borrowing constrainsts, North American Actuarial Journal, 12 (2008), 143-174.
doi: 10.1080/10920277.2008.10597508. |
[25] |
R. C. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[26] |
R. C. Merton,
Optimum consumption and portfolio rules in a continuous-time model, J. Econom. Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[27] |
S. D. Promislow and V. R. Young,
Minimizing the probability of ruin when claims follow Brownian motion with drift, North American Actuarial Journal, 9 (2005), 110-128.
doi: 10.1080/10920277.2005.10596214. |
[28] |
V. R. Young,
Optimal investmet strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.
doi: 10.1080/10920277.2004.10596174. |
[29] |
K. C. Yuen, Z. Liang and M. Zhou,
Optimal proportional reinsurance with common shock dependence, Insurance: Mathematic and Economics, 64 (2015), 1-13.
doi: 10.1016/j.insmatheco.2015.04.009. |
[30] |
X. Zhang, H. Meng and Y. Zeng,
Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling, Insurance: Mathematic and Economics, 67 (2016), 125-132.
doi: 10.1016/j.insmatheco.2016.01.001. |



[1] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[2] |
Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062 |
[3] |
Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051 |
[4] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[5] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[6] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[7] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[8] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[9] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[10] |
Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021048 |
[11] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[12] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[13] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[14] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[15] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[16] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[17] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
[18] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[19] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[20] |
Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]