doi: 10.3934/jimo.2021004

Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices

1. 

School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China

2. 

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

* Corresponding author: Longxiang Fang

Received  September 2020 Revised  November 2020 Published  December 2020

Fund Project: The first author is supported by the Anhui Provincial Natural Science Foundation (No.1808085MA03), and the PhD research startup foundation of Anhui Normal University (No.2014bsqdjj34). The second author thanks the National Sciences and Engineering Research Council of Canada for supporting this research

In this paper, we discuss stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. To begin with, we present the hazard rate order of parallel systems with two scale proportional hazards components equipped with starting devices for two different cases: first when the starting devices with different probability have the same scale proportional hazards components, and the second when the different scale proportional hazards components have the same starting devices probability. Next, we present the usual stochastic order of parallel systems with $ n $ scale proportional hazards components equipped with starting devices. Finally, we provide some numerical examples to illustrate all the results established here.

Citation: Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021004
References:
[1]

R. FangC. Li and X. Li, Ordering results on extremes of scaled random variables with dependence and proportional hazards, Statistics, 52 (2018), 458-478.  doi: 10.1080/02331888.2018.1425998.  Google Scholar

[2]

N. K. HazraA. K. Nanda and M. Shaked, Some aging properties of parallel and series systems with a random number of components, Naval Research Logistics, 61 (2014), 238-243.  doi: 10.1002/nav.21580.  Google Scholar

[3]

H. JinL. Hai and X. Tang, An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming, Journal of Industrial & Management Optimization, 16 (2020), 965-990.  doi: 10.3934/jimo.2018188.  Google Scholar

[4]

X. Li and M. J. Zuo, Preservation of stochastic orders for random minima and maxima with applications, Naval Research Logistics, 51 (2004), 332-344.  doi: 10.1002/nav.10122.  Google Scholar

[5]

X. LiP. Parker and S. Xu, A stochastic model for quantitative security analyses of networked systems, IEEE Transactions on Dependable and Secure Computing, 8 (2011), 28-43.  doi: 10.1109/TDSC.2008.75.  Google Scholar

[6]

C. Li and X. Li, Stochastic comparisons of parallel and series systems of dependent components equipped with starting devices, Communications in Statistics-Theory and Methods, 48 (2019), 694-708.  doi: 10.1080/03610926.2018.1435806.  Google Scholar

[7]

A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, New York, 2011. doi: 10.1007/978-0-387-68276-1.  Google Scholar

[8]

A. K. Nanda and M. Shaked, Partial ordering and aging properties of order statistics when the sample size is random: A brief review, Communications in Statistics-Theory and Methods, 37 (2008), 1710-1720.  doi: 10.1080/03610920701826195.  Google Scholar

[9]

M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, New York, 2007. doi: 10.1007/978-0-387-34675-5.  Google Scholar

show all references

References:
[1]

R. FangC. Li and X. Li, Ordering results on extremes of scaled random variables with dependence and proportional hazards, Statistics, 52 (2018), 458-478.  doi: 10.1080/02331888.2018.1425998.  Google Scholar

[2]

N. K. HazraA. K. Nanda and M. Shaked, Some aging properties of parallel and series systems with a random number of components, Naval Research Logistics, 61 (2014), 238-243.  doi: 10.1002/nav.21580.  Google Scholar

[3]

H. JinL. Hai and X. Tang, An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming, Journal of Industrial & Management Optimization, 16 (2020), 965-990.  doi: 10.3934/jimo.2018188.  Google Scholar

[4]

X. Li and M. J. Zuo, Preservation of stochastic orders for random minima and maxima with applications, Naval Research Logistics, 51 (2004), 332-344.  doi: 10.1002/nav.10122.  Google Scholar

[5]

X. LiP. Parker and S. Xu, A stochastic model for quantitative security analyses of networked systems, IEEE Transactions on Dependable and Secure Computing, 8 (2011), 28-43.  doi: 10.1109/TDSC.2008.75.  Google Scholar

[6]

C. Li and X. Li, Stochastic comparisons of parallel and series systems of dependent components equipped with starting devices, Communications in Statistics-Theory and Methods, 48 (2019), 694-708.  doi: 10.1080/03610926.2018.1435806.  Google Scholar

[7]

A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer, New York, 2011. doi: 10.1007/978-0-387-68276-1.  Google Scholar

[8]

A. K. Nanda and M. Shaked, Partial ordering and aging properties of order statistics when the sample size is random: A brief review, Communications in Statistics-Theory and Methods, 37 (2008), 1710-1720.  doi: 10.1080/03610920701826195.  Google Scholar

[9]

M. Shaked and J. G. Shanthikumar, Stochastic Orders, Springer, New York, 2007. doi: 10.1007/978-0-387-34675-5.  Google Scholar

Figure 1.  Plot of $P(V_{2:2}>x)/ P(W_{2:2}>x),$ for $x\geq 0$, for Example 3.3
Figure 2.  plot of $ P(V_{2:2}>x)/ P(W_{2:2}>x), $ for $ x\geq 0 $, for Example 3.6 (1)
Figure 3.  Plot of $ P(V_{2:2}>x)/ P(W_{2:2}>x), $ for $ x\geq 0 $, for Example 3.6 (2)
Figure 4.  Plot of $P(V_{2:2}>x)/ P(W_{2:2}>x),$ for $x\geq 0$, for Example 3.8
Figure 5.  Plot of $ P(V_{2:2}>x)/ P(W_{2:2}>x), $ for $ x\geq 0 $, for Example 3.10
[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[6]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[9]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[10]

Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092

[11]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[12]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[13]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[14]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[15]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[16]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]