[1]
|
A. Agnetis, M. A. Aloulou and M. Y. Kovalyov, Integrated production scheduling and batch delivery with fixed departure times and inventory holding costs, International Journal of Production Research, 55 (2017), 6193-6206.
doi: 10.1080/00207543.2017.1346323.
|
[2]
|
A. Agnetis, P. B. Mirchandani, D. Pacciarelli and A. Pacifici, Scheduling problems with two competing agents, Operations Research, 52 (2004), 229-242.
doi: 10.1287/opre.1030.0092.
|
[3]
|
K. R. Baker and J. C. Smith, A multiple-criterion model for machine scheduling, Journal of Scheduling, 6 (2003), 7-16.
doi: 10.1023/A:1022231419049.
|
[4]
|
Z.-L. Chen, Integrated production and outbound distribution scheduling: Review and extensions, Operations Research, 58 (2010), 130-148.
doi: 10.1287/opre.1080.0688.
|
[5]
|
E. Gerstl and G. Mosheiov, Single machine just-in-time scheduling problems with two competing agents, Naval Research Logistics, 61 (2014), 1-16.
doi: 10.1002/nav.21562.
|
[6]
|
A. M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, G. Tian and Z. Li, An adaptive Lagrangian relaxation-based algorithm for a coordinated water supply and wastewater collection network design problem, Information Sciences, 512 (2020), 1335-1359.
doi: 10.1016/j.ins.2019.10.062.
|
[7]
|
N. G. Hall, M. Lesaoana and C. N. Potts, Scheduling with fixed delivery dates, Operations Research, 49 (2001), 134-144.
doi: 10.1287/opre.49.1.134.11192.
|
[8]
|
N. G. Hall and C. N. Potts, Supply chain scheduling: Batching and delivery, Operations Research, 51 (2003), 566-584.
doi: 10.1287/opre.51.4.566.16106.
|
[9]
|
D. Han, Y. Yang, D. Wang, T. C. E. Cheng and Y. Yin, Integrated production, inventory, and outbound distribution operations with fixed departure times in a three-stage supply chain, Transportation Research Part E: Logistics and Transportation Review, 125 (2019), 334-347.
doi: 10.1016/j.tre.2019.03.014.
|
[10]
|
D. Hermelina, J.-M. Kubitza, D. Shabtay, N. Talmon and G. J. Woeginger, Scheduling two agents on a single machine: A parameterized analysis of $NP$-hard problems, Omega, 83 (2011), 275-286.
doi: 10.1016/j.omega.2018.08.001.
|
[11]
|
M. E. Johnson, Learning from toys: Lessons in managing supply chain risk from the toy industry, California Management Review, 43 (2001), 106-124.
doi: 10.2307/41166091.
|
[12]
|
M. Y. Kovalyov, A. Oulamara and A. Soukhal, Two-agent scheduling with agent specific batches on an unbounded serial batching machine, Journal of Scheduling, 18 (2015), 423-434.
doi: 10.1007/s10951-014-0410-0.
|
[13]
|
J. Y.-T. Leung and Z.-L. Chen, Integrated production and distribution with fixed delivery departure dates, Operations Research Letters, 41 (2013), 290-293.
doi: 10.1016/j.orl.2013.02.006.
|
[14]
|
J. Y.-T. Leung, M. Pinedo and G. Wan, Competitive two agents scheduling and its applications, Operations Research, 58 (2010), 458-469.
doi: 10.1287/opre.1090.0744.
|
[15]
|
F. Li, Z.-L. Chen and L. Tang, Integrated production, inventory and delivery problems: Complexity and algorithms, INFORMS Journal on Computing, 29 (2017), 232-250.
doi: 10.1287/ijoc.2016.0726.
|
[16]
|
S. Li and J. Yuan, Unbounded parallel-batching scheduling with two competitive agents, Journal of Scheduling, 15 (2012), 629-640.
doi: 10.1007/s10951-011-0253-x.
|
[17]
|
H. Matsuo, The weighted total tardiness problem with fixed shipping times and overtime utilization, Operations Research, 36 (1988), 293-307.
doi: 10.1287/opre.36.2.293.
|
[18]
|
R. A. Melo and L. A. Wolsey, Optimizing production and transportation in a commit-to-delivery business mode, European Journal of Operational Research, 203 (2010), 614-618.
doi: 10.1016/j.ejor.2009.09.011.
|
[19]
|
B. Mor and G. Mosheiov, Single machine batch scheduling with two competing agents to minimize total flowtime, European Journal of Operational Research, 215 (2011), 524-531.
doi: 10.1016/j.ejor.2011.06.037.
|
[20]
|
P. Perez-Gonzalez and J. M. Framinan, A common framework and taxonomy for multicriteria scheduling problem with interfering and competing jobs: Multi-agent scheduling problems, European Journal of Operational Research, 235 (2014), 1-16.
doi: 10.1016/j.ejor.2013.09.017.
|
[21]
|
C. N. Potts and M. Y. Kovalyov, Scheduling with batching: A review, European Journal of Operational Research, 120 (2000), 228-249.
doi: 10.1016/S0377-2217(99)00153-8.
|
[22]
|
M. Safaeian, A. M. Fathollahi-Fard, G. Tian, Z. Li and H. Ke, A multi-objective supplier selection and order allocation through incremental discount in a fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37 (2019), 1435-1455.
doi: 10.3233/JIFS-182843.
|
[23]
|
Y. Seddik, C. Gonzales and S. Kedad-Sidhoum, Single machine scheduling with delivery dates and cumulative payoffs, Journal of Scheduling, 16 (2013), 313-329.
doi: 10.1007/s10951-012-0302-0.
|
[24]
|
K. E. Stecke and X. Zhao, Production and transportation integrationfor a make-to-order manufacturing company with a commit-to-delivery business mode, Manufacturing & Service Operations Management, 9 (2007), 206-224.
doi: 10.1287/msom.1060.0138.
|
[25]
|
G. Tian, X. Liu, M. Zhang, Y. Yang, H. Zhang, Y. Lin, F. Ma, X. Wang, T. Qu and Z. Li, Selection of take-back pattern of vehicle reverse logistics in China via Grey-DEMATEL and Fuzzy-VIKOR combined method, Journal of Cleaner Production, 220 (2019), 1088-1100.
doi: 10.1016/j.jclepro.2019.01.086.
|
[26]
|
G. Tian, H. Zhang, Y. Feng, H. Jia, C. Zhang, Z. Jiang, Z. Li and P. Li, Operation patterns analysis of automotive components remanufacturing industry development in China, Journal of Cleaner Production, 64 (2017), 1363-1375.
doi: 10.1016/j.jclepro.2017.07.028.
|
[27]
|
G. Wan, S. R. Vakati, J. Y.-T. Leung and M. Pinedo, Scheduling two agents with controllable processing times, European Journal of Operational Research, 205 (2010), 528-539.
doi: 10.1016/j.ejor.2010.01.005.
|
[28]
|
D.-J. Wang, Y. Yin, J. Xu, W. H. Wu, S.-R. Cheng and C.-C. Wu, Some due date determination scheduling problems with two agents on a single machine, International Journal of Production Economics, 168 (2015), 81-90.
doi: 10.1016/j.ijpe.2015.06.018.
|
[29]
|
D. Wang, Y. Yu, H. Qiu, Y. Yin and T. C. E. Cheng, Two-agent scheduling with linear resource-dependent processing times, Naval Research Logistics, 67 (2020), 573-591.
doi: 10.1002/nav.21936.
|
[30]
|
D.-Y. Wang, O. Grunderand and A. E. Moudni, Integrated scheduling of production and distribution operations: A review, International Journal of Industrial and Systems Engineering, 19 (2015), 94-122.
doi: 10.1504/IJISE.2015.065949.
|
[31]
|
W. Wang, G. Tian, M. Chen, F. Tao, C. Zhang, A. Al-Ahmari, Z. Li and Z. Jiang, Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints, Journal of Cleaner Production, 245 (2020), 118714.
doi: 10.1016/j.jclepro.2019.118714.
|
[32]
|
Y. Yin, S.-R. Cheng, T. C. E. Cheng, D.-J. Wang and C.-C. Wu, Just-in-time scheduling with two competing agents on unrelated parallel machines, Omega, 63 (2016), 41-47.
doi: 10.1016/j.omega.2015.09.010.
|
[33]
|
Y. Yin, Y. Chen, K. Qin and D. Wang, Two-agent scheduling on unrelated parallel machines with total completion time and weighted number of tardy jobs criteria, Journal of Scheduling, 22 (2019), 315-333.
doi: 10.1007/s10951-018-0583-z.
|
[34]
|
Y. Yin, D. Li, D. Wang and T. C. E. Cheng, Single-machine serial-batch delivery scheduling with two competing agents and due date assignment, Annals of Operations Research, (2018).
doi: 10.1007/s10479-018-2839-6.
|
[35]
|
Y. Yin, Y. Wang, T. C. E. Cheng, D. Wang and C. C. Wu, Two-agent single-machine scheduling to minimize the batch delivery cost, Computers & Industrial Engineering, 92 (2016), 16-30.
|
[36]
|
Y. Yin, W. Wang, D. Wang and T. C. E. Cheng, Multi-agent single-machine scheduling and unrestricted due date assignment with a fixed machine unavailability interval, Computers & Industrial Engineering, 111 (2017), 202-215.
doi: 10.1016/j.cie.2017.07.013.
|
[37]
|
Y. Yin, Y. Yang, D. Wang, T. C. E. Cheng and C.-C. Wu, Integrated production, inventory, and batch delivery scheduling with due date assignment and two competing agents, Naval Research Logistics, 65 (2018), 393-409.
doi: 10.1002/nav.21813.
|