\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms

  • * Corresponding author: Masoud Rabbani, Tel: +98 21 88335605, Email: mrabani@ut.ac.ir

    * Corresponding author: Masoud Rabbani, Tel: +98 21 88335605, Email: mrabani@ut.ac.ir 
Abstract / Introduction Full Text(HTML) Figure(20) / Table(7) Related Papers Cited by
  • The shortage of relief vehicles capacity is a common issue throughout disastrous situations due to the abundance of injured people who need urgent medical aid. Hence, ambulances fleet management is highly important to save as many injured individuals as possible. In this regard, the present paper defines different patient groups based on their needs and characteristics. In order to provide the affected people with proper and timely medical aid, changes in their health status are also considered. A Mixed-integer Linear Programming (MILP) model is proposed to find the best sequence of routes for each ambulance and minimize the latest service completion time (SCT) as well as the number of patients whose condition gets worse because of receiving untimely medical services. Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO) are used to find high-quality solutions over a short time. In the end, Lorestan province, Iran, is considered as a case study to assess the model's performance and analyze the sensitivity of solutions with respect to the major parameters, which results in insightful managerial suggestions.

    Mathematics Subject Classification: Primary: 90C11.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Requests classification and changes in patient condition

    Figure 2.  The flowchart of NSGA-II

    Figure 3.  An illustrative example of the decoding process

    Figure 4.  An illustrative example of the classical order crossover

    Figure 5.  An illustrative example of the two-point swap mutation

    Figure 6.  The flowchart of MOPSO

    Figure 7.  Results of NSGA-II parameter tuning based on the Taguchi method

    Figure 8.  Results of MOPSO parameter tuning based on the Taguchi method

    Figure 9.  Optimal Pareto front for test instance 1

    Figure 10.  Pareto front approximation for test instance 10

    Figure 11.  Comparison of NSGA-II and MOPSO based on CPU time

    Figure 12.  Comparison of NSGA-II and MOPSO based on RNI

    Figure 13.  Comparison of NSGA-II and MOPSO based on DM

    Figure 14.  Comparison of NSGA-II and MOPSO based on SM

    Figure 15.  Comparison of NSGA-II and MOPSO based on GD

    Figure 16.  Lorestan province hospital locations and post-disaster potential locations for medical demands

    Figure 17.  Alternation of OFVs according to the variation in the number of hospitals

    Figure 20.  Alternation of OFVs according to the variation of travel time

    Figure 18.  Alternation of OFVs according to the variation in the number of ambulances

    Figure 19.  Alternation of OFVs according to the variation in the number of patients

    Table 1.  Assumptions considered in the related works on emergency medical service

    Authors Objective function Problem Modes Variable condition Patient groups Solution approach
    Talarico et al. [40] Min max response time Routing _ _ X Heuristic
    Jotshi et al. [26] Max demand coverage/Min coverage cost Routing _ _ X Heuristic
    Schuurman et al. [37] Max demand coverage Locating _ _ _ Exact
    Erdemir et al. [12] Min establishment cost/Max demand coverage Locating X _ _ Heuristic
    Branas et al. [7] Min average response time Locating _ _ _ Heuristic
    Furuta and Tanaka [14] Min max transfer time/Min response time Locating X _ _ Exact
    Sasaki et al. [35] Min transfer time Locating _ _ _ Exact
    Berman et al. [5] Min transfer time Locating _ _ _ Heuristic
    Hosseinijou and Bashiri [25] Min max distance Locating _ _ _ Exact: analytical/numerical
    Kalantari et al. [27] Min transfer time Locating _ _ _ Heuristic
    Camacho et al. [8] Min response time Distribution X _ _ Exact
    Tikani and Setak [41] Min max response time Routing _ _ X Heuristic
    Fitzsimmons and Srikar [13] Min max response time Locating _ _ _ Heuristic
    Gendreau et al. [19] Max demand coverage Relocating _ _ _ Heuristic
    Knight et al. [28] Max survival probability Locating _ _ X Heuristic
    Toro-Díaz et al. [45] Min response time/Max demand coverage Locating/dispatching _ _ _ Heuristic
    Andersson and Värbrand [1] Min max transfer time Locating/dispatching _ _ _ Heuristic
    Schmid [36] Min average response time Relocating/dispatching _ _ _ Heuristic
    Goldberg and Listowsky [23] _ Routing _ _ _ Survey
    Tlili et al. [44] Min travel cost Routing _ _ _ Heuristic
    Bozorgi-Amiri et al. [6] Min transfer time Locating X _ _ Exact
    Navazi et al. [30] Min establishment cost/Min response time Locating X _ _ Exact
    This paper Min max response time/Min number of patients Routing _ X X Heuristic
     | Show Table
    DownLoad: CSV

    Table 2.  Employed notation for modeling the ARP

     | Show Table
    DownLoad: CSV

    Table 3.  Adjusted parameters for NSGA-II and MOPSO

    Algorithm Parameter
    $ N_{pop} $ $ max-it $ $ p_c $ $ p_m $ $ p_m $ $ w $ $ c_1 $ $ c_2 $
    NSGA-II 75 100 0.6 0.2 _ _ _ _
    MOPSO 100 125 _ _ 75 0.5 1.25 1.5
     | Show Table
    DownLoad: CSV

    Table 4.  Results of the 15 problem instances using NSGA-II and MOPSO

    Problem Num. Dimension NSGA-II MOPSO Optimal
    CPU time (s) RNI DM SM GD CPU time (s) RNI DM SM GD CPU time (s)
    1 (3, 4, 4, 3) 124.23 0.31 2.1253 0.0079 0.005 136.61 0.16 1.9872 0.0098 0.005 15
    2 (5, 6, 8, 6) 132.4 0.37 1.5231 0.0091 0.003 148.25 0.11 1.9865 0.0111 0.005 89
    3 (8, 10, 10, 7) 139.87 0.29 3.2964 0.0082 0.003 161.2 0.2 5.2964 0.0109 0.006 236
    4 (12, 15, 13, 11) 149.12 0.4 0.4374 0.011 0.004 169.59 0.33 0.1381 0.0147 0.004 894
    5 (15, 17, 15, 13) 156.76 0.64 1.0964 0.0054 0.006 175.32 0.42 2.1784 0.0021 0.006 2601
    6 (20, 23, 20, 18) 161.2 0.57 1.4384 0.0066 0.003 183.82 0.62 5.9824 0.0069 0.002 8732
    7 (20, 24, 22, 20) 168.94 0.59 1.9842 0.0069 0.001 187.48 0.48 3.9855 0.0132 0.003 15000
    8 (25, 28, 21, 20) 175.54 0.21 4.7337 0.0074 0.005 193.56 0.15 2.9156 0.0097 0.007 15000
    9 (25, 27, 25, 21) 179.36 0.28 3.341 0.0043 0.002 195.7 0.27 3.4415 0.004 0.008 15000
    10 (30, 32, 24, 22) 188.87 0.88 3.7609 0.0121 0.003 210.1 0.42 4.5699 0.0158 0.005 15000
    11 (40, 43, 29, 25) 194.3 0.91 1.2745 0.0108 0.001 223.24 0.81 6.1801 0.0124 0.001 15000
    12 (50, 55, 41, 32) 212.25 0.73 2.8954 0.0039 0.002 240.51 0.83 4.0643 0.0061 0.001 15000
    13 (75, 83, 66, 45) 237.86 0.77 5.762 0.0089 0.006 271.24 0.5 5.957 0.009 0.008 15000
    14 (90, 95, 70, 51) 264.22 0.86 3.8713 0.0077 0.005 284.5 0.46 3.869 0.0111 0.005 15000
    15 (100, 112, 84, 62) 283.67 0.94 1.8751 0.0106 0.005 303.2 0.73 5.5147 0.0131 0.006 15000
     | Show Table
    DownLoad: CSV

    Table 5.  The analytical results of two-sample t-test

    Criteria Optimal method Average results Two-sample t-test
    NSGA-II MOPSO Comparison of means P-value
    CPU time (s) Both methods 194.5727 205.6213 $ \mu_{NSGA-II}=\mu_{MOPSO} $ 0
    RNI NSGA-II 0.5833 0.4326 $ \mu_{NSGA-II}> \mu_{MOPSO} $ 0.32
    DM MOPSO 2.6276 3.8711 $ \mu_{NSGA-II}< \mu_{MOPSO} $ 0.212
    SM NSGA-II 0.0079 0.0098 $ \mu_{NSGA-II}< \mu_{MOPSO} $ 0.901
    GD NSGA-II 0.0036 0.0048 $ \mu_{NSGA-II}< \mu_{MOPSO} $ 0.625
     | Show Table
    DownLoad: CSV

    Table 6.  Data related to the Lorestan province cities

    City name Population % of injured people % of GC demands % of RC demands
    Aleshtar 33, 132 30% 88% 12%
    Aligudarz 89, 521 21% 49% 51%
    Azna 41, 703 27% 83% 17%
    Borujerd 245, 730 19% 77% 23%
    Dorud 100, 979 32% 66% 34%
    Khorramabad 354, 854 15% 41% 59%
    Kuhdasht 111, 737 28% 58% 42%
    Nur Abad 62, 195 34% 71% 29%
    Pol Dokhtar 32, 590 26% 92% 8%
     | Show Table
    DownLoad: CSV

    Table 7.  Data related to the Lorestan province hospitals

    Hospital name RC patient capacity Number of ambulances
    Ibn Sina 120 25
    Imam Ali 215 30
    Imam Jafar Sadegh 148 28
    Imam Khomeini 270 41
    Kuhdasht 132 27
    Shohada-ye Ashayer 347 40
    Shahid Chamran 221 36
    Shohada-ye Haftom Tir 150 20
     | Show Table
    DownLoad: CSV
  • [1] T. Andersson and P. Värbrand, Decision support tools for ambulance dispatch and relocation, in Operational Research for Emergency Planning in Healthcare: Volume 1, Palgrave Macmillan, London, 195-201. doi: 10.1057/9781137535696_3.
    [2] E. Babaee TirkolaeeA. GoliM. Pahlevan and R. Malekalipour Kordestanizadeh, A robust bi-objective multi-trip periodic capacitated arc routing problem for urban waste collection using a multi-objective invasive weed optimization, Waste Management & Research, 37 (2019), 1089-1101.  doi: 10.1177/0734242X19865340.
    [3] A. BaşarB. Çatay and T. Ünlüyurt, A taxonomy for emergency service station location problem, Optimization Letters, 6 (2012), 1147-1160.  doi: 10.1007/s11590-011-0376-1.
    [4] D. BerkouneJ. RenaudM. Rekik and A. Ruiz, Transportation in disaster response operations, Socio-Economic Planning Sciences, 46 (2012), 23-32.  doi: 10.1016/j.seps.2011.05.002.
    [5] O. BermanZ. Drezner and G. O. Wesolowsky, The facility and transfer points location problem, International Transactions in Operational Research, 12 (2005), 387-402.  doi: 10.1111/j.1475-3995.2005.00514.x.
    [6] A. Bozorgi-AmiriS. TavakoliH. Mirzaeipour and M. Rabbani, Integrated locating of helicopter stations and helipads for wounded transfer under demand location uncertainty, The American Journal of Emergency Medicine, 35 (2017), 410-417.  doi: 10.1016/j.ajem.2016.11.024.
    [7] C. C. Branas, E. J. MacKenzie and C. S. ReVelle, A trauma resource allocation model for ambulances and hospitals, Health Services Research, 35 (2000), 489.
    [8] J.-F. Camacho-VallejoE. González-RodríguezF.-J. Almaguer and R. G. González-Ramírez, A bi-level optimization model for aid distribution after the occurrence of a disaster, Journal of Cleaner Production, 105 (2015), 134-145. 
    [9] C. A. Coello CoelloG. T. Pulido and Mk Salazar Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Transactions on Evolutionary Computation, 8 (2004), 256-279.  doi: 10.1109/TEVC.2004.826067.
    [10] K. DebA. PratapS. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6 (2002), 182-197.  doi: 10.1109/4235.996017.
    [11] A. E. Eiben, Z. Michalewicz, M. Schoenauer and J. E. Smith, Parameter control in evolutionary algorithms, In Parameter Setting in Evolutionary Algorithms, Springer, 2007, 19-46.
    [12] E. T. ErdemirR. BattaP. A. RogersonA. Blatt and Ma rie Flanigan, Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach, European Journal of Operational Research, 207 (2010), 736-749.  doi: 10.1016/j.ejor.2010.05.047.
    [13] J. A. Fitzsimmons and B. N. Srikar, Emergency ambulance location using the contiguous zone search routine, Journal of Operations Management, 2 (1982), 225-237.  doi: 10.1016/0272-6963(82)90011-0.
    [14] T. Furuta and K.-i. Tanaka, Minisum and minimax location models for helicopter emergency medical service systems, Journal of the Operations Research Society of Japan, 56 (2013), 221-242.  doi: 10.15807/jorsj.56.221.
    [15] H. Garg, An efficient biogeography based optimization algorithm for solving reliability optimization problems, Swarm and Evolutionary Computation, 24 (2015), 1-10.  doi: 10.1016/j.swevo.2015.05.001.
    [16] H. Garg, A hybrid PSO-GA algorithm for constrained optimization problems, Applied Mathematics and Computation, 274 (2016), 292-305.  doi: 10.1016/j.amc.2015.11.001.
    [17] H. Garg, A hybrid GSA-GA algorithm for constrained optimization problems, Information Sciences, 478 (2019), 499-523.  doi: 10.1016/j.ins.2018.11.041.
    [18] H. Garg and S. P. Sharma, Multi-objective reliability-redundancy allocation problem using particle swarm optimization, Computers & Industrial Engineering, 64 (2013), 247-255.  doi: 10.1016/j.cie.2012.09.015.
    [19] M. GendreauG. Laporte and F. Semet, A dynamic model and parallel tabu search heuristic for real-time ambulance relocation, Parallel Computing, 27 (2001), 1641-1653.  doi: 10.1016/S0167-8191(01)00103-X.
    [20] Z. GhelichiM. Saidi-Mehrabad and M. S. Pishvaee, A stochastic programming approach toward optimal design and planning of an integrated green biodiesel supply chain network under uncertainty: A case study, Energy, 156 (2018), 661-687.  doi: 10.1016/j.energy.2018.05.103.
    [21] Z. GhelichiJ. Tajik and M. S. Pishvaee, A novel robust optimization approach for an integrated municipal water distribution system design under uncertainty: A case study of Mashhad, Computers & Chemical Engineering, 110 (2018), 13-34.  doi: 10.1016/j.compchemeng.2017.11.017.
    [22] A. GhodratnamaH. R. Arbabi and A. Azaron, Production planning in industrial townships modeled as hub location-allocation problems considering congestion in manufacturing plants, Computers & Industrial Engineering, 129 (2019), 479-501.  doi: 10.1016/j.cie.2019.01.049.
    [23] R. Goldberg and P. Listowsky, Critical factors for emergency vehicle routing expert systems, Expert Systems with Applications, 7 (1994), 589-602.  doi: 10.1016/0957-4174(94)90082-5.
    [24] J. Holguín-VerasM. JallerL. N. Van WassenhoveN. Pérez and T. Wachtendorf, On the unique features of post-disaster humanitarian logistics, Journal of Operations Management, 30 (2012), 494-506. 
    [25] S. A. Hosseinijou and M. Bashiri, Stochastic models for transfer point location problem, The International Journal of Advanced Manufacturing Technology, 58 (2012), 211-225.  doi: 10.1007/s00170-011-3360-0.
    [26] A. JotshiQ. Gong and R. Batta, Dispatching and routing of emergency vehicles in disaster mitigation using data fusion, Socio-Economic Planning Sciences, 43 (2009), 1-24.  doi: 10.1016/j.seps.2008.02.005.
    [27] H. KalantariA. YousefliM. Ghazanfari and K. Shahanaghi, Fuzzy transfer point location problem: A possibilistic unconstrained nonlinear programming approach, The International Journal of Advanced Manufacturing Technology, 70 (2014), 1043-1051.  doi: 10.1007/s00170-013-5338-6.
    [28] V. A. KnightP. R. Harper and L. Smith, Ambulance allocation for maximal survival with heterogeneous outcome measures, Omega, 40 (2012), 918-926.  doi: 10.1016/j.omega.2012.02.003.
    [29] G. Mavrotas and K. Florios, An improved version of the augmented $\varepsilon$-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems, Applied Mathematics and Computation, 219 (2013), 9652-9669.  doi: 10.1016/j.amc.2013.03.002.
    [30] F. NavaziR. Tavakkoli-Moghaddam and Z. Sazvar, A multi-period location-allocation-inventory problem for ambulance and helicopter ambulance stations: Robust possibilistic approach, IFAC-PapersOnLine, 51 (2018), 322-327.  doi: 10.1016/j.ifacol.2018.08.303.
    [31] L. Özdamar and M. A. Ertem, Models, solutions and enabling technologies in humanitarian logistics, European Journal of Operational Research, 244 (2015), 55-65.  doi: 10.1016/j.ejor.2014.11.030.
    [32] R. S. PatwalN. Narang and H. Garg, A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units, Energy, 142 (2018), 822-837.  doi: 10.1016/j.energy.2017.10.052.
    [33] A. J. Pedraza-Martinez and L. N. Van Wassenhove, Transportation and vehicle fleet management in humanitarian logistics: Challenges for future research, EURO Journal on Transportation and Logistics, 1 (2012), 185-196.  doi: 10.1007/s13676-012-0001-1.
    [34] M. Rabbani, S. Momen, N. Akbarian-Saravi, H. Farrokhi-Asl and Z. Ghelichi, Optimal design for sustainable bioethanol supply chain considering the bioethanol production strategies: A case study, Computers & Chemical Engineering, 134 (2020), 106720. doi: 10.1016/j.compchemeng.2019.106720.
    [35] M. SasakiT. Furuta and A. Suzuki, Exact optimal solutions of the minisum facility and transfer points location problems on a network, International Transactions in Operational Research, 15 (2008), 295-306.  doi: 10.1111/j.1475-3995.2008.00602.x.
    [36] V. Schmid, Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming, European Journal of Operational Research, 219 (2012), 611-621.  doi: 10.1016/j.ejor.2011.10.043.
    [37] N. Schuurman, N. J. Bell, R. L'Heureux and S. M Hameed, Modelling optimal location for pre-hospital helicopter emergency medical services, BMC Emergency Medicine, 9 (2009), Art. No. 6. doi: 10.1186/1471-227X-9-6.
    [38] N. Srinivas and K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation, 2 (1994), 221-248.  doi: 10.1162/evco.1994.2.3.221.
    [39] G. Taguchi, Introduction to quality engineering: designing quality into products and processes, Technical report, 1986.
    [40] L. TalaricoF. Meisel and K. Sörensen, Ambulance routing for disaster response with patient groups, Computers & Operations Research, 56 (2015), 120-133.  doi: 10.1016/j.cor.2014.11.006.
    [41] H. Tikani and M. Setak, Ambulance routing in disaster response scenario considering different types of ambulances and semi soft time windows, Journal of Industrial and Systems Engineering, 12 (2019), 95-128. 
    [42] E. B. Tirkolaee, A. Goli and G.-W. Weber, Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option, IEEE Transactions on Fuzzy Systems, 2020.
    [43] E. B. TirkolaeeS. HadianG.-W. Weber and I. Mahdavi, A robust green traffic-based routing problem for perishable products distribution, Computational Intelligence, 36 (2020), 80-101.  doi: 10.1111/coin.12240.
    [44] T. TliliS. Abidi and S. Krichen, A mathematical model for efficient emergency transportation in a disaster situation, The American Journal of Emergency Medicine, 36 (2018), 1585-1590.  doi: 10.1016/j.ajem.2018.01.039.
    [45] H. Toro-DíAzM. E. MayorgaS. Chanta and and L. A. Mclay, Joint location and dispatching decisions for emergency medical services, Computers & Industrial Engineering, 64 (2013), 917-928. 
    [46] Y.-J. ZhengS.-Y. Chen and and H.-F. Ling, Evolutionary optimization for disaster relief operations: A survey, Applied Soft Computing, 27 (2015), 553-566.  doi: 10.1016/j.asoc.2014.09.041.
    [47] A. ZhouB.-Y. QuH. LiS.-Z. ZhaoP. N. Suganthan and Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation, 1 (2011), 32-49.  doi: 10.1016/j.swevo.2011.03.001.
  • 加载中

Figures(20)

Tables(7)

SHARE

Article Metrics

HTML views(8670) PDF downloads(1402) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return