doi: 10.3934/jimo.2021010

Spectral norm and nuclear norm of a third order tensor

1. 

Huawei Theory Research Lab Hong Kong, Hong Kong, 00852, China

2. 

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China

* Corresponding author: Shenglong Hu

Received  August 2020 Revised  October 2020 Published  January 2021

Fund Project: Shenglong Hu: This author's work was supported by NSFC (Grant No. 11771328) and ZJSFC (Grant No. LD19A010002)

The spectral norm and the nuclear norm of a third order tensor play an important role in the tensor completion and recovery problem. We show that the spectral norm of a third order tensor is equal to the square root of the spectral norm of three positive semi-definite biquadratic tensors, and the square roots of the nuclear norms of those three positive semi-definite biquadratic tensors are lower bounds of the nuclear norm of that third order tensor. This provides a way to estimate and to evaluate the spectral norm and the nuclear norm of that third order tensor. Some upper and lower bounds for the spectral norm and nuclear norm of a third order tensor, by spectral radii and nuclear norms of some symmetric matrices, are presented.

Citation: Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021010
References:
[1]

S. Friedland and L. H. Lim, Nuclear norm of high-order tensors, Mathematics of Computation, 87 (2018), 1255-1281.  doi: 10.1090/mcom/3239.  Google Scholar

[2]

S. Hu, Relations of the nuclear norm of a tensor and its matrix flattenings, Linear Algebra and Its Applications, 478 (2015), 188-199.  doi: 10.1016/j.laa.2015.04.003.  Google Scholar

[3]

B. Jiang, F. Yang and S. Zhang, Tensor and its tucker core: The invariance relationships, Numerical Linear Algebra with Applications, 24 (2017), e2086. doi: 10.1002/nla.2086.  Google Scholar

[4]

Z. Li, Bounds of the spectral norm and the nuclear norm of a tensor based on tensor partitions, SIAM J. Matrix Analysis and Applications, 37 (2016), 1440-1452.  doi: 10.1137/15M1028777.  Google Scholar

[5]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach, 1st IEEE Internatyional Workshop on Computational Advances in MultiSensor Adaptive Processing, Puerto Vallarta, Mexico, 2005,129–132. Google Scholar

[6]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.  Google Scholar

[7]

L. Qi, H. H. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Frontiers of Mathematics in China, 4 (2009), Art. no. 349. doi: 10.1007/s11464-009-0016-6.  Google Scholar

[8]

Q. Song, H. Ge, J. Caverlee and X. Hu, Tensor completion algorithms in big data analytics, ACM Transactions on Knowledge Discovery from Data, 13 (2019), Article 6. Google Scholar

[9]

Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589–-601. doi: 10.1002/nla.633.  Google Scholar

[10]

M. Yuan and C. H. Zhang, On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.  doi: 10.1007/s10208-015-9269-5.  Google Scholar

show all references

References:
[1]

S. Friedland and L. H. Lim, Nuclear norm of high-order tensors, Mathematics of Computation, 87 (2018), 1255-1281.  doi: 10.1090/mcom/3239.  Google Scholar

[2]

S. Hu, Relations of the nuclear norm of a tensor and its matrix flattenings, Linear Algebra and Its Applications, 478 (2015), 188-199.  doi: 10.1016/j.laa.2015.04.003.  Google Scholar

[3]

B. Jiang, F. Yang and S. Zhang, Tensor and its tucker core: The invariance relationships, Numerical Linear Algebra with Applications, 24 (2017), e2086. doi: 10.1002/nla.2086.  Google Scholar

[4]

Z. Li, Bounds of the spectral norm and the nuclear norm of a tensor based on tensor partitions, SIAM J. Matrix Analysis and Applications, 37 (2016), 1440-1452.  doi: 10.1137/15M1028777.  Google Scholar

[5]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach, 1st IEEE Internatyional Workshop on Computational Advances in MultiSensor Adaptive Processing, Puerto Vallarta, Mexico, 2005,129–132. Google Scholar

[6]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.  Google Scholar

[7]

L. Qi, H. H. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Frontiers of Mathematics in China, 4 (2009), Art. no. 349. doi: 10.1007/s11464-009-0016-6.  Google Scholar

[8]

Q. Song, H. Ge, J. Caverlee and X. Hu, Tensor completion algorithms in big data analytics, ACM Transactions on Knowledge Discovery from Data, 13 (2019), Article 6. Google Scholar

[9]

Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589–-601. doi: 10.1002/nla.633.  Google Scholar

[10]

M. Yuan and C. H. Zhang, On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.  doi: 10.1007/s10208-015-9269-5.  Google Scholar

[1]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[2]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[3]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[4]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[5]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[6]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[7]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (14)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]