doi: 10.3934/jimo.2021010
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Spectral norm and nuclear norm of a third order tensor

1. 

Huawei Theory Research Lab Hong Kong, Hong Kong, 00852, China

2. 

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, 310018, China

* Corresponding author: Shenglong Hu

Received  August 2020 Revised  October 2020 Early access January 2021

Fund Project: Shenglong Hu: This author's work was supported by NSFC (Grant No. 11771328) and ZJSFC (Grant No. LD19A010002)

The spectral norm and the nuclear norm of a third order tensor play an important role in the tensor completion and recovery problem. We show that the spectral norm of a third order tensor is equal to the square root of the spectral norm of three positive semi-definite biquadratic tensors, and the square roots of the nuclear norms of those three positive semi-definite biquadratic tensors are lower bounds of the nuclear norm of that third order tensor. This provides a way to estimate and to evaluate the spectral norm and the nuclear norm of that third order tensor. Some upper and lower bounds for the spectral norm and nuclear norm of a third order tensor, by spectral radii and nuclear norms of some symmetric matrices, are presented.

Citation: Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021010
References:
[1]

S. Friedland and L. H. Lim, Nuclear norm of high-order tensors, Mathematics of Computation, 87 (2018), 1255-1281.  doi: 10.1090/mcom/3239.  Google Scholar

[2]

S. Hu, Relations of the nuclear norm of a tensor and its matrix flattenings, Linear Algebra and Its Applications, 478 (2015), 188-199.  doi: 10.1016/j.laa.2015.04.003.  Google Scholar

[3]

B. Jiang, F. Yang and S. Zhang, Tensor and its tucker core: The invariance relationships, Numerical Linear Algebra with Applications, 24 (2017), e2086. doi: 10.1002/nla.2086.  Google Scholar

[4]

Z. Li, Bounds of the spectral norm and the nuclear norm of a tensor based on tensor partitions, SIAM J. Matrix Analysis and Applications, 37 (2016), 1440-1452.  doi: 10.1137/15M1028777.  Google Scholar

[5]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach, 1st IEEE Internatyional Workshop on Computational Advances in MultiSensor Adaptive Processing, Puerto Vallarta, Mexico, 2005,129–132. Google Scholar

[6]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.  Google Scholar

[7]

L. Qi, H. H. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Frontiers of Mathematics in China, 4 (2009), Art. no. 349. doi: 10.1007/s11464-009-0016-6.  Google Scholar

[8]

Q. Song, H. Ge, J. Caverlee and X. Hu, Tensor completion algorithms in big data analytics, ACM Transactions on Knowledge Discovery from Data, 13 (2019), Article 6. Google Scholar

[9]

Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589–-601. doi: 10.1002/nla.633.  Google Scholar

[10]

M. Yuan and C. H. Zhang, On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.  doi: 10.1007/s10208-015-9269-5.  Google Scholar

show all references

References:
[1]

S. Friedland and L. H. Lim, Nuclear norm of high-order tensors, Mathematics of Computation, 87 (2018), 1255-1281.  doi: 10.1090/mcom/3239.  Google Scholar

[2]

S. Hu, Relations of the nuclear norm of a tensor and its matrix flattenings, Linear Algebra and Its Applications, 478 (2015), 188-199.  doi: 10.1016/j.laa.2015.04.003.  Google Scholar

[3]

B. Jiang, F. Yang and S. Zhang, Tensor and its tucker core: The invariance relationships, Numerical Linear Algebra with Applications, 24 (2017), e2086. doi: 10.1002/nla.2086.  Google Scholar

[4]

Z. Li, Bounds of the spectral norm and the nuclear norm of a tensor based on tensor partitions, SIAM J. Matrix Analysis and Applications, 37 (2016), 1440-1452.  doi: 10.1137/15M1028777.  Google Scholar

[5]

L. H. Lim, Singular values and eigenvalues of tensors: a variational approach, 1st IEEE Internatyional Workshop on Computational Advances in MultiSensor Adaptive Processing, Puerto Vallarta, Mexico, 2005,129–132. Google Scholar

[6]

L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, Springer, Singapore, 2018. doi: 10.1007/978-981-10-8058-6.  Google Scholar

[7]

L. Qi, H. H. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Frontiers of Mathematics in China, 4 (2009), Art. no. 349. doi: 10.1007/s11464-009-0016-6.  Google Scholar

[8]

Q. Song, H. Ge, J. Caverlee and X. Hu, Tensor completion algorithms in big data analytics, ACM Transactions on Knowledge Discovery from Data, 13 (2019), Article 6. Google Scholar

[9]

Y. Wang, L. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numerical Linear Algebra with Applications, 16 (2009), 589–-601. doi: 10.1002/nla.633.  Google Scholar

[10]

M. Yuan and C. H. Zhang, On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.  doi: 10.1007/s10208-015-9269-5.  Google Scholar

[1]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[2]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[3]

Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042

[4]

ShiChun Lv, Shou-Qiang Du. A new smoothing spectral conjugate gradient method for solving tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021150

[5]

Michael K. Ng, Chi-Pan Tam, Fan Wang. Multi-view foreground segmentation via fourth order tensor learning. Inverse Problems & Imaging, 2013, 7 (3) : 885-906. doi: 10.3934/ipi.2013.7.885

[6]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[7]

Ya Li, ShouQiang Du, YuanYuan Chen. Modified spectral PRP conjugate gradient method for solving tensor eigenvalue complementarity problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020147

[8]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[9]

Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021146

[10]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[11]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021220

[12]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5449-5463. doi: 10.3934/dcdsb.2020353

[13]

Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems & Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053

[14]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[15]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[16]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[17]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[18]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[19]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[20]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049

2020 Impact Factor: 1.801

Article outline

[Back to Top]