doi: 10.3934/jimo.2021012

A new adaptive method to nonlinear semi-infinite programming

College of Mathematics and Information Science, Hebei University, Hebei Key Laboratory of Machine Learning and Computational Intelligence, Baoding 071002, China

$ ^{\star} $ Corresponding author: Yumeng Lin

Received  March 2020 Revised  October 2020 Published  December 2020

Fund Project: $ ^* $ The first author is supported by the National Natural Science Foundation of China (No. 11101115), the Natural Science Foundation of Hebei Province (grant No. A2018201172), the Key Research Foundation of Education Bureau of Hebei Province (grant No. ZD2015069), the graduate student Innovation ability training project of Hebei University (grant number hbu2020ss043)

In this paper, we propose a new adaptive method for solving nonlinear semi-infinite programming(SIP). In the presented method, the continuous infinite inequality constraints are transformed into equivalent equality constraints in integral form. Based on penalty method and trust region strategy, we propose a modified quadratic subproblem, in which an adaptive parameter is considered. The acceptable criterion of the trial point is adjustable according to the value of this adaptive parameter and the improvements that made by the current iteration. Compared with the existing methods, our method is more flexible. Under some reasonable conditions, the convergent properties of the proposed algorithm are proved. The numerical results are reported in the end.

Citation: Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021012
References:
[1]

R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program., 91 (2002), 239-269.  doi: 10.1007/s101070100244.  Google Scholar

[2]

R. FletcherS. Leyffer and P. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13 (2002), 44-59.  doi: 10.1137/S105262340038081X.  Google Scholar

[3]

G. GramlichR. Hettich and E. W. Sachs, Local convergence of SQP methods in semi-infinite programming, SIAM J. Optim., 5 (1995), 641-658.  doi: 10.1137/0805031.  Google Scholar

[4]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.  Google Scholar

[5]

J.-B. JianQ.-J. Xu and D.-L. Han, A norm-relaxed method of feasible directions for finely discretized problems from semi-infinite programming, European J. Oper. Res., 186 (2008), 41-62.  doi: 10.1016/j.ejor.2007.01.026.  Google Scholar

[6]

D. Li and D. Zhu, An affine scaling interior trust-region method combining with line search filter technique for optimization subject to bounds on variables, Numer. Algorithms, 77 (2018), 1159-1182.  doi: 10.1007/s11075-017-0357-2.  Google Scholar

[7]

Y. LiuK. L. Teo and S. Y. Wu, A new quadratic semi-infinite programming algorithm based on dual parametrization, J. Global Optim., 29 (2004), 401-413.  doi: 10.1023/B:JOGO.0000047910.80739.95.  Google Scholar

[8]

J. LvL.-P. Pang and F.-Y. Meng, A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information, J. Global Optim., 70 (2018), 517-549.  doi: 10.1007/s10898-017-0565-2.  Google Scholar

[9]

Y.-G. Ou, A filter trust region method for solving semi-infinite programming problems, J. Appl. Math. Comput., 29 (2009), 311-324.  doi: 10.1007/s12190-008-0132-6.  Google Scholar

[10]

L. Pang and D. Zhu, A line search filter-SQP method with Lagrangian function for nonlinear inequality constrained optimization, Jpn. J. Ind. Appl. Math., 34 (2017), 141-176.  doi: 10.1007/s13160-017-0236-1.  Google Scholar

[11]

R. Reemtsen, Discretization methods for the solution of semi-infinite programming problems, J. Optim. Theory Appl., 71 (1991), 85-103.  doi: 10.1007/BF00940041.  Google Scholar

[12]

Y. TanakaM. Fukushima and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear optimization, J. Comput. Appl. Math., 23 (1988), 141-153.  doi: 10.1016/0377-0427(88)90276-2.  Google Scholar

[13]

K. L. TeoV. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 29 (1993), 789-792.  doi: 10.1016/0005-1098(93)90076-6.  Google Scholar

[14]

K. L. TeoX. Q. Yang and L. S. Jennings, Computational discretization algorithms for functional inequality constrained optimization, Ann. Oper. Res., 98 (2000), 215-234.  doi: 10.1023/A:1019260508329.  Google Scholar

[15]

S.-Y. WuD. H. Liand L. Qi and G. Zhou, An iterative method for solving KKT system of the semi-infinite programming, Optim. Methods Softw., 20 (2005), 629-643.  doi: 10.1080/10556780500094739.  Google Scholar

[16]

C. YuK. L. TeoL. Zhang and Y. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, J. Ind. Manag. Optim., 6 (2010), 895-910.  doi: 10.3934/jimo.2010.6.895.  Google Scholar

[17]

L. ZhangS.-Y. Wu and M. A. López, A new exchange method for convex semi-infinite programming, SIAM J. Optim., 20 (2010), 2959-2977.  doi: 10.1137/090767133.  Google Scholar

show all references

References:
[1]

R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program., 91 (2002), 239-269.  doi: 10.1007/s101070100244.  Google Scholar

[2]

R. FletcherS. Leyffer and P. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13 (2002), 44-59.  doi: 10.1137/S105262340038081X.  Google Scholar

[3]

G. GramlichR. Hettich and E. W. Sachs, Local convergence of SQP methods in semi-infinite programming, SIAM J. Optim., 5 (1995), 641-658.  doi: 10.1137/0805031.  Google Scholar

[4]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.  Google Scholar

[5]

J.-B. JianQ.-J. Xu and D.-L. Han, A norm-relaxed method of feasible directions for finely discretized problems from semi-infinite programming, European J. Oper. Res., 186 (2008), 41-62.  doi: 10.1016/j.ejor.2007.01.026.  Google Scholar

[6]

D. Li and D. Zhu, An affine scaling interior trust-region method combining with line search filter technique for optimization subject to bounds on variables, Numer. Algorithms, 77 (2018), 1159-1182.  doi: 10.1007/s11075-017-0357-2.  Google Scholar

[7]

Y. LiuK. L. Teo and S. Y. Wu, A new quadratic semi-infinite programming algorithm based on dual parametrization, J. Global Optim., 29 (2004), 401-413.  doi: 10.1023/B:JOGO.0000047910.80739.95.  Google Scholar

[8]

J. LvL.-P. Pang and F.-Y. Meng, A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information, J. Global Optim., 70 (2018), 517-549.  doi: 10.1007/s10898-017-0565-2.  Google Scholar

[9]

Y.-G. Ou, A filter trust region method for solving semi-infinite programming problems, J. Appl. Math. Comput., 29 (2009), 311-324.  doi: 10.1007/s12190-008-0132-6.  Google Scholar

[10]

L. Pang and D. Zhu, A line search filter-SQP method with Lagrangian function for nonlinear inequality constrained optimization, Jpn. J. Ind. Appl. Math., 34 (2017), 141-176.  doi: 10.1007/s13160-017-0236-1.  Google Scholar

[11]

R. Reemtsen, Discretization methods for the solution of semi-infinite programming problems, J. Optim. Theory Appl., 71 (1991), 85-103.  doi: 10.1007/BF00940041.  Google Scholar

[12]

Y. TanakaM. Fukushima and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear optimization, J. Comput. Appl. Math., 23 (1988), 141-153.  doi: 10.1016/0377-0427(88)90276-2.  Google Scholar

[13]

K. L. TeoV. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 29 (1993), 789-792.  doi: 10.1016/0005-1098(93)90076-6.  Google Scholar

[14]

K. L. TeoX. Q. Yang and L. S. Jennings, Computational discretization algorithms for functional inequality constrained optimization, Ann. Oper. Res., 98 (2000), 215-234.  doi: 10.1023/A:1019260508329.  Google Scholar

[15]

S.-Y. WuD. H. Liand L. Qi and G. Zhou, An iterative method for solving KKT system of the semi-infinite programming, Optim. Methods Softw., 20 (2005), 629-643.  doi: 10.1080/10556780500094739.  Google Scholar

[16]

C. YuK. L. TeoL. Zhang and Y. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, J. Ind. Manag. Optim., 6 (2010), 895-910.  doi: 10.3934/jimo.2010.6.895.  Google Scholar

[17]

L. ZhangS.-Y. Wu and M. A. López, A new exchange method for convex semi-infinite programming, SIAM J. Optim., 20 (2010), 2959-2977.  doi: 10.1137/090767133.  Google Scholar

Table 1.  comparison between Algorithm 1 and algorithm in MATLAB
problem Algorithm 1 Algorithm in MATLAB
Iter CPU $ f(x^{\ast}) $ $ I_{g} $ Iter CPU $ f(x^{\ast}) $ $ I_{g} $
$ 1 $ 14 0.1711 1.8348 25 38 0.1835 2.1126 202
$ 2 $ 25 0.4832 5.3257 31 39 0.7644 5.1293 303
$ 3 $ 33 0.3198 0.1944 43 8 0.5304 0.1945 38
$ 4 $ 26 2.5901 10.7224 27 70 5.9672 11.2252 1010
problem Algorithm 1 Algorithm in MATLAB
Iter CPU $ f(x^{\ast}) $ $ I_{g} $ Iter CPU $ f(x^{\ast}) $ $ I_{g} $
$ 1 $ 14 0.1711 1.8348 25 38 0.1835 2.1126 202
$ 2 $ 25 0.4832 5.3257 31 39 0.7644 5.1293 303
$ 3 $ 33 0.3198 0.1944 43 8 0.5304 0.1945 38
$ 4 $ 26 2.5901 10.7224 27 70 5.9672 11.2252 1010
[1]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[2]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[3]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[4]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[5]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[8]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[9]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[10]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[13]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[14]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[15]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[18]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[19]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[20]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]