• Previous Article
    Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition
  • JIMO Home
  • This Issue
  • Next Article
    On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system
doi: 10.3934/jimo.2021012

A new adaptive method to nonlinear semi-infinite programming

College of Mathematics and Information Science, Hebei University, Hebei Key Laboratory of Machine Learning and Computational Intelligence, Baoding 071002, China

$ ^{\star} $ Corresponding author: Yumeng Lin

Received  March 2020 Revised  October 2020 Published  December 2020

Fund Project: $ ^* $ The first author is supported by the National Natural Science Foundation of China (No. 11101115), the Natural Science Foundation of Hebei Province (grant No. A2018201172), the Key Research Foundation of Education Bureau of Hebei Province (grant No. ZD2015069), the graduate student Innovation ability training project of Hebei University (grant number hbu2020ss043)

In this paper, we propose a new adaptive method for solving nonlinear semi-infinite programming(SIP). In the presented method, the continuous infinite inequality constraints are transformed into equivalent equality constraints in integral form. Based on penalty method and trust region strategy, we propose a modified quadratic subproblem, in which an adaptive parameter is considered. The acceptable criterion of the trial point is adjustable according to the value of this adaptive parameter and the improvements that made by the current iteration. Compared with the existing methods, our method is more flexible. Under some reasonable conditions, the convergent properties of the proposed algorithm are proved. The numerical results are reported in the end.

Citation: Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021012
References:
[1]

R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program., 91 (2002), 239-269.  doi: 10.1007/s101070100244.  Google Scholar

[2]

R. FletcherS. Leyffer and P. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13 (2002), 44-59.  doi: 10.1137/S105262340038081X.  Google Scholar

[3]

G. GramlichR. Hettich and E. W. Sachs, Local convergence of SQP methods in semi-infinite programming, SIAM J. Optim., 5 (1995), 641-658.  doi: 10.1137/0805031.  Google Scholar

[4]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.  Google Scholar

[5]

J.-B. JianQ.-J. Xu and D.-L. Han, A norm-relaxed method of feasible directions for finely discretized problems from semi-infinite programming, European J. Oper. Res., 186 (2008), 41-62.  doi: 10.1016/j.ejor.2007.01.026.  Google Scholar

[6]

D. Li and D. Zhu, An affine scaling interior trust-region method combining with line search filter technique for optimization subject to bounds on variables, Numer. Algorithms, 77 (2018), 1159-1182.  doi: 10.1007/s11075-017-0357-2.  Google Scholar

[7]

Y. LiuK. L. Teo and S. Y. Wu, A new quadratic semi-infinite programming algorithm based on dual parametrization, J. Global Optim., 29 (2004), 401-413.  doi: 10.1023/B:JOGO.0000047910.80739.95.  Google Scholar

[8]

J. LvL.-P. Pang and F.-Y. Meng, A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information, J. Global Optim., 70 (2018), 517-549.  doi: 10.1007/s10898-017-0565-2.  Google Scholar

[9]

Y.-G. Ou, A filter trust region method for solving semi-infinite programming problems, J. Appl. Math. Comput., 29 (2009), 311-324.  doi: 10.1007/s12190-008-0132-6.  Google Scholar

[10]

L. Pang and D. Zhu, A line search filter-SQP method with Lagrangian function for nonlinear inequality constrained optimization, Jpn. J. Ind. Appl. Math., 34 (2017), 141-176.  doi: 10.1007/s13160-017-0236-1.  Google Scholar

[11]

R. Reemtsen, Discretization methods for the solution of semi-infinite programming problems, J. Optim. Theory Appl., 71 (1991), 85-103.  doi: 10.1007/BF00940041.  Google Scholar

[12]

Y. TanakaM. Fukushima and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear optimization, J. Comput. Appl. Math., 23 (1988), 141-153.  doi: 10.1016/0377-0427(88)90276-2.  Google Scholar

[13]

K. L. TeoV. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 29 (1993), 789-792.  doi: 10.1016/0005-1098(93)90076-6.  Google Scholar

[14]

K. L. TeoX. Q. Yang and L. S. Jennings, Computational discretization algorithms for functional inequality constrained optimization, Ann. Oper. Res., 98 (2000), 215-234.  doi: 10.1023/A:1019260508329.  Google Scholar

[15]

S.-Y. WuD. H. Liand L. Qi and G. Zhou, An iterative method for solving KKT system of the semi-infinite programming, Optim. Methods Softw., 20 (2005), 629-643.  doi: 10.1080/10556780500094739.  Google Scholar

[16]

C. YuK. L. TeoL. Zhang and Y. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, J. Ind. Manag. Optim., 6 (2010), 895-910.  doi: 10.3934/jimo.2010.6.895.  Google Scholar

[17]

L. ZhangS.-Y. Wu and M. A. López, A new exchange method for convex semi-infinite programming, SIAM J. Optim., 20 (2010), 2959-2977.  doi: 10.1137/090767133.  Google Scholar

show all references

References:
[1]

R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program., 91 (2002), 239-269.  doi: 10.1007/s101070100244.  Google Scholar

[2]

R. FletcherS. Leyffer and P. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13 (2002), 44-59.  doi: 10.1137/S105262340038081X.  Google Scholar

[3]

G. GramlichR. Hettich and E. W. Sachs, Local convergence of SQP methods in semi-infinite programming, SIAM J. Optim., 5 (1995), 641-658.  doi: 10.1137/0805031.  Google Scholar

[4]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.  Google Scholar

[5]

J.-B. JianQ.-J. Xu and D.-L. Han, A norm-relaxed method of feasible directions for finely discretized problems from semi-infinite programming, European J. Oper. Res., 186 (2008), 41-62.  doi: 10.1016/j.ejor.2007.01.026.  Google Scholar

[6]

D. Li and D. Zhu, An affine scaling interior trust-region method combining with line search filter technique for optimization subject to bounds on variables, Numer. Algorithms, 77 (2018), 1159-1182.  doi: 10.1007/s11075-017-0357-2.  Google Scholar

[7]

Y. LiuK. L. Teo and S. Y. Wu, A new quadratic semi-infinite programming algorithm based on dual parametrization, J. Global Optim., 29 (2004), 401-413.  doi: 10.1023/B:JOGO.0000047910.80739.95.  Google Scholar

[8]

J. LvL.-P. Pang and F.-Y. Meng, A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information, J. Global Optim., 70 (2018), 517-549.  doi: 10.1007/s10898-017-0565-2.  Google Scholar

[9]

Y.-G. Ou, A filter trust region method for solving semi-infinite programming problems, J. Appl. Math. Comput., 29 (2009), 311-324.  doi: 10.1007/s12190-008-0132-6.  Google Scholar

[10]

L. Pang and D. Zhu, A line search filter-SQP method with Lagrangian function for nonlinear inequality constrained optimization, Jpn. J. Ind. Appl. Math., 34 (2017), 141-176.  doi: 10.1007/s13160-017-0236-1.  Google Scholar

[11]

R. Reemtsen, Discretization methods for the solution of semi-infinite programming problems, J. Optim. Theory Appl., 71 (1991), 85-103.  doi: 10.1007/BF00940041.  Google Scholar

[12]

Y. TanakaM. Fukushima and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear optimization, J. Comput. Appl. Math., 23 (1988), 141-153.  doi: 10.1016/0377-0427(88)90276-2.  Google Scholar

[13]

K. L. TeoV. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 29 (1993), 789-792.  doi: 10.1016/0005-1098(93)90076-6.  Google Scholar

[14]

K. L. TeoX. Q. Yang and L. S. Jennings, Computational discretization algorithms for functional inequality constrained optimization, Ann. Oper. Res., 98 (2000), 215-234.  doi: 10.1023/A:1019260508329.  Google Scholar

[15]

S.-Y. WuD. H. Liand L. Qi and G. Zhou, An iterative method for solving KKT system of the semi-infinite programming, Optim. Methods Softw., 20 (2005), 629-643.  doi: 10.1080/10556780500094739.  Google Scholar

[16]

C. YuK. L. TeoL. Zhang and Y. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, J. Ind. Manag. Optim., 6 (2010), 895-910.  doi: 10.3934/jimo.2010.6.895.  Google Scholar

[17]

L. ZhangS.-Y. Wu and M. A. López, A new exchange method for convex semi-infinite programming, SIAM J. Optim., 20 (2010), 2959-2977.  doi: 10.1137/090767133.  Google Scholar

Table 1.  comparison between Algorithm 1 and algorithm in MATLAB
problem Algorithm 1 Algorithm in MATLAB
Iter CPU $ f(x^{\ast}) $ $ I_{g} $ Iter CPU $ f(x^{\ast}) $ $ I_{g} $
$ 1 $ 14 0.1711 1.8348 25 38 0.1835 2.1126 202
$ 2 $ 25 0.4832 5.3257 31 39 0.7644 5.1293 303
$ 3 $ 33 0.3198 0.1944 43 8 0.5304 0.1945 38
$ 4 $ 26 2.5901 10.7224 27 70 5.9672 11.2252 1010
problem Algorithm 1 Algorithm in MATLAB
Iter CPU $ f(x^{\ast}) $ $ I_{g} $ Iter CPU $ f(x^{\ast}) $ $ I_{g} $
$ 1 $ 14 0.1711 1.8348 25 38 0.1835 2.1126 202
$ 2 $ 25 0.4832 5.3257 31 39 0.7644 5.1293 303
$ 3 $ 33 0.3198 0.1944 43 8 0.5304 0.1945 38
$ 4 $ 26 2.5901 10.7224 27 70 5.9672 11.2252 1010
[1]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[2]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[3]

Jinchuan Zhou, Naihua Xiu, Jein-Shan Chen. Solution properties and error bounds for semi-infinite complementarity problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 99-115. doi: 10.3934/jimo.2013.9.99

[4]

Zhi Guo Feng, Kok Lay Teo, Volker Rehbock. A smoothing approach for semi-infinite programming with projected Newton-type algorithm. Journal of Industrial & Management Optimization, 2009, 5 (1) : 141-151. doi: 10.3934/jimo.2009.5.141

[5]

Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial & Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851

[6]

Dan Xue, Wenyu Sun, Hongjin He. A structured trust region method for nonconvex programming with separable structure. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 283-293. doi: 10.3934/naco.2013.3.283

[7]

Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 707-718. doi: 10.3934/jimo.2017070

[8]

Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semi-infinite variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 219-233. doi: 10.3934/jimo.2005.1.219

[9]

Azhar Ali Zafar, Khurram Shabbir, Asim Naseem, Muhammad Waqas Ashraf. MHD natural convection boundary-layer flow over a semi-infinite heated plate with arbitrary inclination. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1007-1015. doi: 10.3934/dcdss.2020059

[10]

Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1221-1233. doi: 10.3934/jimo.2018201

[11]

Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems & Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599

[12]

Igor Chueshov. Remark on an elastic plate interacting with a gas in a semi-infinite tube: Periodic solutions. Evolution Equations & Control Theory, 2016, 5 (4) : 561-566. doi: 10.3934/eect.2016019

[13]

Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems & Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317

[14]

Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022

[15]

Yannan Chen, Jingya Chang. A trust region algorithm for computing extreme eigenvalues of tensors. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 475-485. doi: 10.3934/naco.2020046

[16]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[17]

Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237

[18]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[19]

Lijuan Zhao, Wenyu Sun. Nonmonotone retrospective conic trust region method for unconstrained optimization. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 309-325. doi: 10.3934/naco.2013.3.309

[20]

Bülent Karasözen. Survey of trust-region derivative free optimization methods. Journal of Industrial & Management Optimization, 2007, 3 (2) : 321-334. doi: 10.3934/jimo.2007.3.321

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]