This paper considers an investment and reinsurance problem with a defaultable security for an insurer in an environment with parameter uncertainties. Suppose that the insurer is ambiguous about the insurance claims. Specifically, the insurance claim is exponentially distributed and the rate parameter is uncertain. The insurer is allowed to invest in a financial market consisting of a risk-free bond, a stock whose price process satisfies the Heston's SV model and a defaultable bond. Moreover, the insurer is allowed to purchase proportional reinsurance and aims to maximize the smooth ambiguity utility proposed in Klibanoff et al. [
Citation: |
[1] | L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance Math. Econom., 42 (2008), 968-975. doi: 10.1016/j.insmatheco.2007.11.002. |
[2] | T. R. Bielecki and I. Jang, Portfolio optimization with a defaultable security, Asia-Pacific Financial Markets, 13 (2007), 113-127. |
[3] | T. R. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer-Verlag, Berlin, Heidelberg, 2002. |
[4] | S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937-958. doi: 10.1287/moor.20.4.937. |
[5] | Y. Cao and N. Wan, Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation, Insurance Math. Econom., 45 (2009), 157-162. doi: 10.1016/j.insmatheco.2009.05.006. |
[6] | H. Chen, M. Sherris, T. Sun and W. Zhu, Living with ambiguity: Pricing mortality-linked securities with smooth ambiguity preferences, Journal of Risk and Insurance, 80 (2013), 705-732. doi: 10.2139/ssrn.2007342. |
[7] | J. C. Cox and S. A. Ross, The valuation of options for alternative stochastic processes, Journal of Financial Economics, 3 (1976), 145-166. doi: 10.1016/0304-405X(76)90023-4. |
[8] | C. Deng, X. Zheng and H. Zhu, Non-zero-sum stochastic differential reinsurance and investment games with default risk, European J. Oper. Res., 264 (2018), 1144-1158. doi: 10.1016/j.ejor.2017.06.065. |
[9] | A. Gu, F. G. Viens and H. Yao, Optimal robust reinsurance-investment strategies for insurers with mean reversion and mispricing, Insurance Math. Econom., 80 (2018), 93-109. doi: 10.1016/j.insmatheco.2018.03.004. |
[10] | M. Gu, Y. Yang, S. Li and J. Zhang, Constant elasticity of variance model for proportional reinsurance and investment strategies, Insurance Math. Econom., 46 (2010), 580-587. doi: 10.1016/j.insmatheco.2010.03.001. |
[11] | G. Guan, Z. Liang and J. Feng, Time-consistent proportional reinsurance and investment strategies under ambiguous environment, Insurance Math. Econom., 83 (2018), 122-133. doi: 10.1016/j.insmatheco.2018.09.007. |
[12] | S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343. doi: 10.1093/rfs/6.2.327. |
[13] | C. Hipp and M. Plum, Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228. doi: 10.1016/S0167-6687(00)00049-4. |
[14] | D. G. Hobson and L. C. G. Rogers, Complete models with stochastic volatility, Math. Finance, 8 (1998), 27-48. doi: 10.1111/1467-9965.00043. |
[15] | P. Klibanoff, M. Marinacci and S. Mukerji, A smooth model of decision making under ambiguity, Econometrica, 73 (2005), 1849-1892. doi: 10.1111/j.1468-0262.2005.00640.x. |
[16] | Z. Li, Y. Zeng and Y. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insurance Math. Econom., 51 (2012), 191-203. doi: 10.1016/j.insmatheco.2011.09.002. |
[17] | Z. Liang, K. C. Yuen and K. C. Cheung, Optimal reinsurance-investment problem in a constant elasticity of variance stock market for jump-diffusion risk model, Appl. Stoch. Models Bus. Ind., 28 (2012), 585-597. doi: 10.1002/asmb.934. |
[18] | X. Lin and Y. Li, Optimal reinsurance and investment for a jump diffusion risk process under the CEV model, N. Am. Actuar. J., 15 (2011), 417-431. doi: 10.1080/10920277.2011.10597628. |
[19] | C. S. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of ruin, N. Am. Actuar. J., 8 (2004), 11-31. doi: 10.1080/10920277.2004.10596134. |
[20] | S. D. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, N. Am. Actuar. J., 9 (2005), 109-128. doi: 10.1080/10920277.2005.10596214. |
[21] | Z. Sun, X. Zheng and X. Zhang, Robust optimal investment and reinsurance of an insurer under variance premium principle and default risk, J. Math. Anal. Appl., 446 (2017), 1666-1686. doi: 10.1016/j.jmaa.2016.09.053. |
[22] | Z. Wang, J. Xia and L. Zhang, Optimal investment for an insurer: The martingale approach, Insurance Math. Econom., 40 (2007), 322-334. doi: 10.1016/j.insmatheco.2006.05.003. |
[23] | H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (2005), 615-634. doi: 10.1016/j.insmatheco.2005.06.009. |
[24] | B. Yi, Z. Li, F. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance Math. Econom., 53 (2013), 601-614. doi: 10.1016/j.insmatheco.2013.08.011. |
[25] | Y. Zeng and Z. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance Math. Econom., 49 (2011), 145-154. doi: 10.1016/j.insmatheco.2011.01.001. |
[26] | Y. Zeng, D. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance Math. Econom., 66 (2016), 138-152. doi: 10.1016/j.insmatheco.2015.10.012. |
[27] | H. Zhao, X. Rong and Y. Zhao, Optimal excess-of-loss reinsurance and investment problem for an insurer with jump-diffusion risk process under the Heston model, Insurance Math. Econom., 53 (2013), 504-514. doi: 10.1016/j.insmatheco.2013.08.004. |
[28] | H. Zhao, Y. Shen and Y. Zeng, Time-consistent investment-reinsurance strategy for mean-variance insurers with a defaultable security, J. Math. Anal. Appl., 437 (2016), 1036-1057. doi: 10.1016/j.jmaa.2016.01.035. |
[29] | X. Zheng, J. Zhou and Z. Sun, Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insurance Math. Econom., 67 (2016), 77-87. doi: 10.1016/j.insmatheco.2015.12.008. |
[30] | H. Zhu, C. Deng, S. Yue and Y. Deng, Optimal reinsurance and investment problem for an insurer with counterparty risk, Insurance Math. Econom., 61 (2015), 242-254. doi: 10.1016/j.insmatheco.2015.01.013. |
Effects of
Effects of
Effects of
Effects of
The Effect of the
The Effect of parameter
The Effect of parameter
Effects of parameters