[1]
|
B. Alizadeh, E. Afrashteh and F. Baroughi, Combinatorial algorithms for some variants of inverse obnoxious median location problem on tree networks, Journal of Optimization Theory and Applications, 178 (2018), 914-934.
doi: 10.1007/s10957-018-1334-1.
|
[2]
|
B. Alizadeh, R. E. Burkard and U. Pferschy, Inverse 1-center location problems with edge length augmentation on trees, Computing, 86 (2009), 331-343.
doi: 10.1007/s00607-009-0070-7.
|
[3]
|
B. Alizadeh and R. E. Burkard, Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees, Networks, 58 (2011), 190-200.
doi: 10.1002/net.20427.
|
[4]
|
B. Alizadeh and R. Etemad, Optimal algorithms for inverse vertex obnoxious center location problems on graphs, Theoretical Computer Science, 707 (2018), 36-45.
doi: 10.1016/j.tcs.2017.10.001.
|
[5]
|
M. Barbati and C. Piccolo, Equality measures properties for location problems, Optimization Letters, 10 (2015), 903-920.
doi: 10.1007/s11590-015-0968-2.
|
[6]
|
O. Berman, Z. Drezner, A. Tamir and G. O. Wesolowsky, Optimal location with equitable loads, Annals of Operations Research, 167 (2009), 307-325.
doi: 10.1007/s10479-008-0339-9.
|
[7]
|
R. W. Bulterman, F. W. Van-Der-Sommen, G. Zwaan T. Verhoeff, A. J. M. Van-Gasteren and W. H. J. Feijen, On computing a longest path in a tree, Information Processing Letters, 81 (2002), 93-96.
doi: 10.1016/S0020-0190(01)00198-3.
|
[8]
|
R. E. Burkard, C. Pleschiutschnig and J. Z. Zhang, Inverse median problems, Discrete Optimization, 1 (2004), 23-39.
doi: 10.1016/j.disopt.2004.03.003.
|
[9]
|
R. E. Burkard, C. Pleschiutschnig and J. Z. Zhang, The inverse 1-median problem on a cycle, Discrete Optimization, 5 (2008), 242-253.
doi: 10.1016/j.disopt.2006.11.008.
|
[10]
|
M. C. Cai, X. G. Yang and J. Zhang, The complexity analysis of the inverse center location problem, Journal of Global Optimization, 15 (1999), 213-218.
doi: 10.1023/A:1008360312607.
|
[11]
|
M. Davoodi, k-Balanced Center Location problem: A new multi-objective facility location problem, Computers & Operations Research, 105 (2019), 68-84.
doi: 10.1016/j.cor.2019.01.009.
|
[12]
|
H. A. Eiselt and G. Laporte, Objectives in Location Problems, In: Facility Location: A Survey of Applications and Methods (eds. Z. Drezner), Springer, Berlin, (1995), 151–180.
doi: 10.1007/978-1-4612-5355-6.
|
[13]
|
J. Fathali and M. Zaferanieh, The balanced 2-median and 2-maxian problems on a tree, arXiv preprint, arXiv: 1803.10332, 2018.
|
[14]
|
M. Galavii, The inverse 1-median problem on a tree and on a path, Electronic Notes in Discrete Mathematics, 36 (2010), 1241-1248.
doi: 10.1016/j.endm.2010.05.157.
|
[15]
|
M. Gavalec and O. Hudec, Balanced location on a graph, Optimization, 35 (1995), 367-372.
doi: 10.1080/02331939508844156.
|
[16]
|
X. C. Guan and B. W. Zhang, Inverse 1-median problem on trees under weighted Hamming distance, Journal of Global Optimization, 54 (2012), 75-82.
doi: 10.1007/s10898-011-9742-x.
|
[17]
|
G. Y. Handler, Minimax location of a facility in an undirected tree networks, Transportation Sci., 7 (1973), 287-293.
doi: 10.1287/trsc.7.3.287.
|
[18]
|
C. Heuberger, Inverse combinatorial optimization: a survey on problems, methods, and results, J. Comb. Optim., 8 (2004), 329-361.
doi: 10.1023/B:JOCO.0000038914.26975.9b.
|
[19]
|
M. Landete and A. Marin, Looking for edge-equitable spanning trees, Computers & Operations Research, 41 (2014), 44-52.
doi: 10.1016/j.cor.2013.07.023.
|
[20]
|
M. A. Lejeune and S. Y. Prasad, Effectiveness-equity models for facility location problems on tree networks, Networks, 62 (2013), 243-254.
doi: 10.1002/net.21510.
|
[21]
|
A. Marin, The discrete facility location problem with balanced allocation of customers, European Journal of Operational Research, 210 (2011), 27-38.
doi: 10.1016/j.ejor.2010.10.012.
|
[22]
|
M. T. Marsh and D. A. Schilling, Equity measurement in facility location analysis: a review and framework, European Journal of Operational Research, 74 (1994), 1-17.
doi: 10.1016/0377-2217(94)90200-3.
|
[23]
|
P. B. Mirchandani and R. Francis, Discrete Location Theory, J. Wiley, 1990.
|
[24]
|
M. Nazari, J. Fathali, M. Nazari and S. M. Varedi-Koulaei, Inverse of backup 2-median problems with variable edge lengths and vertex weight on trees and variable coordinates on the plane, Production and Operations Management, 9 (2018), 115-137.
|
[25]
|
K. T. Nguyen, Inverse 1-median problem on block graphs with variable vertex weights, Journal of Optimization Theory and Applications, 168 (2016), 944-957.
doi: 10.1007/s10957-015-0829-2.
|
[26]
|
K. T. Nguyen and A. R. Sepasian, The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance, Journal of Combinatorial Optimization, 32 (2016), 872-884.
doi: 10.1007/s10878-015-9907-5.
|
[27]
|
S. Omidi, J. Fathali and M. Nazari, Inverse and reverse balanced facility location problems with variable edge lengths on trees, OPSEARCH, 57 (2020), 261-273.
doi: 10.1007/s12597-019-00428-6.
|
[28]
|
V. H. Pham, K. T. Nguyen and T.T. Le, A linear time algorithm for balance vertices on trees, Discrete Optimization, 32 (2018), 37-42.
doi: 10.1016/j.disopt.2018.11.001.
|
[29]
|
T. Sayar, J. Fathali and M. Ghiyasi, The problem of balancing allocation with regard to the efficiency of servers, Iranian Journal of Operations Research, 9 (2018), 29-47.
|
[30]
|
A. R. Sepasian and F. Rahbarnia, An O(nlogn) algorithm for the inverse 1-median problem on trees with variable vertex weights and edge reductions, Optimization, 64 (2015), 595-602.
doi: 10.1080/02331934.2013.783033.
|