• Previous Article
    Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider
  • JIMO Home
  • This Issue
  • Next Article
    A new smoothing spectral conjugate gradient method for solving tensor complementarity problems
doi: 10.3934/jimo.2021017
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Inverse single facility location problem on a tree with balancing on the distance of server to clients

Faculty of Mathematical Sciences, Shahrood University of Technology, University Blvd., Shahrood, Iran

* Corresponding author: Jafar Fathali

Received  June 2020 Revised  November 2020 Early access December 2020

We introduce a case of inverse single facility location problem on a tree where by minimum modifying in the length of edges, the difference of distances between the farthest and nearest clients to a given facility is minimized. Two cases are considered: bounded and unbounded nonnegative edge lengths. In the unbounded case, we show the problem can be reduced to solve the problem on a star graph. Then an $ O(nlogn) $ algorithm is developed to find the optimal solution. For the bounded edge lengths case an algorithm with time complexity $ O(n^2) $ is presented.

Citation: Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021017
References:
[1]

B. AlizadehE. Afrashteh and F. Baroughi, Combinatorial algorithms for some variants of inverse obnoxious median location problem on tree networks, Journal of Optimization Theory and Applications, 178 (2018), 914-934.  doi: 10.1007/s10957-018-1334-1.  Google Scholar

[2]

B. AlizadehR. E. Burkard and U. Pferschy, Inverse 1-center location problems with edge length augmentation on trees, Computing, 86 (2009), 331-343.  doi: 10.1007/s00607-009-0070-7.  Google Scholar

[3]

B. Alizadeh and R. E. Burkard, Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees, Networks, 58 (2011), 190-200.  doi: 10.1002/net.20427.  Google Scholar

[4]

B. Alizadeh and R. Etemad, Optimal algorithms for inverse vertex obnoxious center location problems on graphs, Theoretical Computer Science, 707 (2018), 36-45.  doi: 10.1016/j.tcs.2017.10.001.  Google Scholar

[5]

M. Barbati and C. Piccolo, Equality measures properties for location problems, Optimization Letters, 10 (2015), 903-920.  doi: 10.1007/s11590-015-0968-2.  Google Scholar

[6]

O. BermanZ. DreznerA. Tamir and G. O. Wesolowsky, Optimal location with equitable loads, Annals of Operations Research, 167 (2009), 307-325.  doi: 10.1007/s10479-008-0339-9.  Google Scholar

[7]

R. W. BultermanF. W. Van-Der-SommenG. Zwaan T. VerhoeffA. J. M. Van-Gasteren and W. H. J. Feijen, On computing a longest path in a tree, Information Processing Letters, 81 (2002), 93-96.  doi: 10.1016/S0020-0190(01)00198-3.  Google Scholar

[8]

R. E. BurkardC. Pleschiutschnig and J. Z. Zhang, Inverse median problems, Discrete Optimization, 1 (2004), 23-39.  doi: 10.1016/j.disopt.2004.03.003.  Google Scholar

[9]

R. E. BurkardC. Pleschiutschnig and J. Z. Zhang, The inverse 1-median problem on a cycle, Discrete Optimization, 5 (2008), 242-253.  doi: 10.1016/j.disopt.2006.11.008.  Google Scholar

[10]

M. C. CaiX. G. Yang and J. Zhang, The complexity analysis of the inverse center location problem, Journal of Global Optimization, 15 (1999), 213-218.  doi: 10.1023/A:1008360312607.  Google Scholar

[11]

M. Davoodi, k-Balanced Center Location problem: A new multi-objective facility location problem, Computers & Operations Research, 105 (2019), 68-84.  doi: 10.1016/j.cor.2019.01.009.  Google Scholar

[12]

H. A. Eiselt and G. Laporte, Objectives in Location Problems, In: Facility Location: A Survey of Applications and Methods (eds. Z. Drezner), Springer, Berlin, (1995), 151–180. doi: 10.1007/978-1-4612-5355-6.  Google Scholar

[13]

J. Fathali and M. Zaferanieh, The balanced 2-median and 2-maxian problems on a tree, arXiv preprint, arXiv: 1803.10332, 2018. Google Scholar

[14]

M. Galavii, The inverse 1-median problem on a tree and on a path, Electronic Notes in Discrete Mathematics, 36 (2010), 1241-1248.  doi: 10.1016/j.endm.2010.05.157.  Google Scholar

[15]

M. Gavalec and O. Hudec, Balanced location on a graph, Optimization, 35 (1995), 367-372.  doi: 10.1080/02331939508844156.  Google Scholar

[16]

X. C. Guan and B. W. Zhang, Inverse 1-median problem on trees under weighted Hamming distance, Journal of Global Optimization, 54 (2012), 75-82.  doi: 10.1007/s10898-011-9742-x.  Google Scholar

[17]

G. Y. Handler, Minimax location of a facility in an undirected tree networks, Transportation Sci., 7 (1973), 287-293.  doi: 10.1287/trsc.7.3.287.  Google Scholar

[18]

C. Heuberger, Inverse combinatorial optimization: a survey on problems, methods, and results, J. Comb. Optim., 8 (2004), 329-361.  doi: 10.1023/B:JOCO.0000038914.26975.9b.  Google Scholar

[19]

M. Landete and A. Marin, Looking for edge-equitable spanning trees, Computers & Operations Research, 41 (2014), 44-52.  doi: 10.1016/j.cor.2013.07.023.  Google Scholar

[20]

M. A. Lejeune and S. Y. Prasad, Effectiveness-equity models for facility location problems on tree networks, Networks, 62 (2013), 243-254.  doi: 10.1002/net.21510.  Google Scholar

[21]

A. Marin, The discrete facility location problem with balanced allocation of customers, European Journal of Operational Research, 210 (2011), 27-38.  doi: 10.1016/j.ejor.2010.10.012.  Google Scholar

[22]

M. T. Marsh and D. A. Schilling, Equity measurement in facility location analysis: a review and framework, European Journal of Operational Research, 74 (1994), 1-17.  doi: 10.1016/0377-2217(94)90200-3.  Google Scholar

[23]

P. B. Mirchandani and R. Francis, Discrete Location Theory, J. Wiley, 1990.  Google Scholar

[24]

M. NazariJ. FathaliM. Nazari and S. M. Varedi-Koulaei, Inverse of backup 2-median problems with variable edge lengths and vertex weight on trees and variable coordinates on the plane, Production and Operations Management, 9 (2018), 115-137.   Google Scholar

[25]

K. T. Nguyen, Inverse 1-median problem on block graphs with variable vertex weights, Journal of Optimization Theory and Applications, 168 (2016), 944-957.  doi: 10.1007/s10957-015-0829-2.  Google Scholar

[26]

K. T. Nguyen and A. R. Sepasian, The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance, Journal of Combinatorial Optimization, 32 (2016), 872-884.  doi: 10.1007/s10878-015-9907-5.  Google Scholar

[27]

S. OmidiJ. Fathali and M. Nazari, Inverse and reverse balanced facility location problems with variable edge lengths on trees, OPSEARCH, 57 (2020), 261-273.  doi: 10.1007/s12597-019-00428-6.  Google Scholar

[28]

V. H. PhamK. T. Nguyen and T.T. Le, A linear time algorithm for balance vertices on trees, Discrete Optimization, 32 (2018), 37-42.  doi: 10.1016/j.disopt.2018.11.001.  Google Scholar

[29]

T. SayarJ. Fathali and M. Ghiyasi, The problem of balancing allocation with regard to the efficiency of servers, Iranian Journal of Operations Research, 9 (2018), 29-47.   Google Scholar

[30]

A. R. Sepasian and F. Rahbarnia, An O(nlogn) algorithm for the inverse 1-median problem on trees with variable vertex weights and edge reductions, Optimization, 64 (2015), 595-602.  doi: 10.1080/02331934.2013.783033.  Google Scholar

show all references

References:
[1]

B. AlizadehE. Afrashteh and F. Baroughi, Combinatorial algorithms for some variants of inverse obnoxious median location problem on tree networks, Journal of Optimization Theory and Applications, 178 (2018), 914-934.  doi: 10.1007/s10957-018-1334-1.  Google Scholar

[2]

B. AlizadehR. E. Burkard and U. Pferschy, Inverse 1-center location problems with edge length augmentation on trees, Computing, 86 (2009), 331-343.  doi: 10.1007/s00607-009-0070-7.  Google Scholar

[3]

B. Alizadeh and R. E. Burkard, Combinatorial algorithms for inverse absolute and vertex 1-center location problems on trees, Networks, 58 (2011), 190-200.  doi: 10.1002/net.20427.  Google Scholar

[4]

B. Alizadeh and R. Etemad, Optimal algorithms for inverse vertex obnoxious center location problems on graphs, Theoretical Computer Science, 707 (2018), 36-45.  doi: 10.1016/j.tcs.2017.10.001.  Google Scholar

[5]

M. Barbati and C. Piccolo, Equality measures properties for location problems, Optimization Letters, 10 (2015), 903-920.  doi: 10.1007/s11590-015-0968-2.  Google Scholar

[6]

O. BermanZ. DreznerA. Tamir and G. O. Wesolowsky, Optimal location with equitable loads, Annals of Operations Research, 167 (2009), 307-325.  doi: 10.1007/s10479-008-0339-9.  Google Scholar

[7]

R. W. BultermanF. W. Van-Der-SommenG. Zwaan T. VerhoeffA. J. M. Van-Gasteren and W. H. J. Feijen, On computing a longest path in a tree, Information Processing Letters, 81 (2002), 93-96.  doi: 10.1016/S0020-0190(01)00198-3.  Google Scholar

[8]

R. E. BurkardC. Pleschiutschnig and J. Z. Zhang, Inverse median problems, Discrete Optimization, 1 (2004), 23-39.  doi: 10.1016/j.disopt.2004.03.003.  Google Scholar

[9]

R. E. BurkardC. Pleschiutschnig and J. Z. Zhang, The inverse 1-median problem on a cycle, Discrete Optimization, 5 (2008), 242-253.  doi: 10.1016/j.disopt.2006.11.008.  Google Scholar

[10]

M. C. CaiX. G. Yang and J. Zhang, The complexity analysis of the inverse center location problem, Journal of Global Optimization, 15 (1999), 213-218.  doi: 10.1023/A:1008360312607.  Google Scholar

[11]

M. Davoodi, k-Balanced Center Location problem: A new multi-objective facility location problem, Computers & Operations Research, 105 (2019), 68-84.  doi: 10.1016/j.cor.2019.01.009.  Google Scholar

[12]

H. A. Eiselt and G. Laporte, Objectives in Location Problems, In: Facility Location: A Survey of Applications and Methods (eds. Z. Drezner), Springer, Berlin, (1995), 151–180. doi: 10.1007/978-1-4612-5355-6.  Google Scholar

[13]

J. Fathali and M. Zaferanieh, The balanced 2-median and 2-maxian problems on a tree, arXiv preprint, arXiv: 1803.10332, 2018. Google Scholar

[14]

M. Galavii, The inverse 1-median problem on a tree and on a path, Electronic Notes in Discrete Mathematics, 36 (2010), 1241-1248.  doi: 10.1016/j.endm.2010.05.157.  Google Scholar

[15]

M. Gavalec and O. Hudec, Balanced location on a graph, Optimization, 35 (1995), 367-372.  doi: 10.1080/02331939508844156.  Google Scholar

[16]

X. C. Guan and B. W. Zhang, Inverse 1-median problem on trees under weighted Hamming distance, Journal of Global Optimization, 54 (2012), 75-82.  doi: 10.1007/s10898-011-9742-x.  Google Scholar

[17]

G. Y. Handler, Minimax location of a facility in an undirected tree networks, Transportation Sci., 7 (1973), 287-293.  doi: 10.1287/trsc.7.3.287.  Google Scholar

[18]

C. Heuberger, Inverse combinatorial optimization: a survey on problems, methods, and results, J. Comb. Optim., 8 (2004), 329-361.  doi: 10.1023/B:JOCO.0000038914.26975.9b.  Google Scholar

[19]

M. Landete and A. Marin, Looking for edge-equitable spanning trees, Computers & Operations Research, 41 (2014), 44-52.  doi: 10.1016/j.cor.2013.07.023.  Google Scholar

[20]

M. A. Lejeune and S. Y. Prasad, Effectiveness-equity models for facility location problems on tree networks, Networks, 62 (2013), 243-254.  doi: 10.1002/net.21510.  Google Scholar

[21]

A. Marin, The discrete facility location problem with balanced allocation of customers, European Journal of Operational Research, 210 (2011), 27-38.  doi: 10.1016/j.ejor.2010.10.012.  Google Scholar

[22]

M. T. Marsh and D. A. Schilling, Equity measurement in facility location analysis: a review and framework, European Journal of Operational Research, 74 (1994), 1-17.  doi: 10.1016/0377-2217(94)90200-3.  Google Scholar

[23]

P. B. Mirchandani and R. Francis, Discrete Location Theory, J. Wiley, 1990.  Google Scholar

[24]

M. NazariJ. FathaliM. Nazari and S. M. Varedi-Koulaei, Inverse of backup 2-median problems with variable edge lengths and vertex weight on trees and variable coordinates on the plane, Production and Operations Management, 9 (2018), 115-137.   Google Scholar

[25]

K. T. Nguyen, Inverse 1-median problem on block graphs with variable vertex weights, Journal of Optimization Theory and Applications, 168 (2016), 944-957.  doi: 10.1007/s10957-015-0829-2.  Google Scholar

[26]

K. T. Nguyen and A. R. Sepasian, The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance, Journal of Combinatorial Optimization, 32 (2016), 872-884.  doi: 10.1007/s10878-015-9907-5.  Google Scholar

[27]

S. OmidiJ. Fathali and M. Nazari, Inverse and reverse balanced facility location problems with variable edge lengths on trees, OPSEARCH, 57 (2020), 261-273.  doi: 10.1007/s12597-019-00428-6.  Google Scholar

[28]

V. H. PhamK. T. Nguyen and T.T. Le, A linear time algorithm for balance vertices on trees, Discrete Optimization, 32 (2018), 37-42.  doi: 10.1016/j.disopt.2018.11.001.  Google Scholar

[29]

T. SayarJ. Fathali and M. Ghiyasi, The problem of balancing allocation with regard to the efficiency of servers, Iranian Journal of Operations Research, 9 (2018), 29-47.   Google Scholar

[30]

A. R. Sepasian and F. Rahbarnia, An O(nlogn) algorithm for the inverse 1-median problem on trees with variable vertex weights and edge reductions, Optimization, 64 (2015), 595-602.  doi: 10.1080/02331934.2013.783033.  Google Scholar

Figure 1.  The tree $ T $ with 10 verteices
Table 1.  The lengths and costs of changing lengths of edges in tree $ T $
$ e_i $ $ l_i $ $ c_i^+ $ $ c_i^- $
$ e_1=(v_1,v_2) $ 3 1 2
$ e_2=(v_2,x) $ 3 3 1
$ e_3=(x,v_3) $ 5 2 2
$ e_4=(v_3,v_{4}) $ 2 1 3
$ e_5=(v_{4},v_{5}) $ 8 1 4
$ e_6=(x,v_{6}) $ 1 5 3
$ e_7=(v_6,v_7) $ 2 3 1
$ e_8=(x,v_{8}) $ 3 5 2
$ e_9=(v_{8},v_{9}) $ 4 3 4
$ e_{10}=(v_{9},v_{10}) $ 3 4 4
$ e_i $ $ l_i $ $ c_i^+ $ $ c_i^- $
$ e_1=(v_1,v_2) $ 3 1 2
$ e_2=(v_2,x) $ 3 3 1
$ e_3=(x,v_3) $ 5 2 2
$ e_4=(v_3,v_{4}) $ 2 1 3
$ e_5=(v_{4},v_{5}) $ 8 1 4
$ e_6=(x,v_{6}) $ 1 5 3
$ e_7=(v_6,v_7) $ 2 3 1
$ e_8=(x,v_{8}) $ 3 5 2
$ e_9=(v_{8},v_{9}) $ 4 3 4
$ e_{10}=(v_{9},v_{10}) $ 3 4 4
Table 2.  The edge length bounds of the tree $ T $
$ e_i $ $ l_i $ $ \underline{l_i} $ $ \bar{l_i} $
$ e_1=(v_1,v_2) $ 3 1 4
$ e_2=(v_2,x) $ 3 2 6
$ e_3=(x,v_3) $ 5 1 7
$ e_4=(v_3,v_{4}) $ 2 1 5
$ e_5=(v_{4},v_{5}) $ 8 4 10
$ e_6=(x,v_{6}) $ 1 1 4
$ e_7=(v_6,v_7) $ 2 1 5
$ e_8=(x,v_{8}) $ 3 1 7
$ e_9=(v_{8},v_{9}) $ 4 2 8
$ e_{10}=(v_{9},v_{10}) $ 3 1 6
$ e_i $ $ l_i $ $ \underline{l_i} $ $ \bar{l_i} $
$ e_1=(v_1,v_2) $ 3 1 4
$ e_2=(v_2,x) $ 3 2 6
$ e_3=(x,v_3) $ 5 1 7
$ e_4=(v_3,v_{4}) $ 2 1 5
$ e_5=(v_{4},v_{5}) $ 8 4 10
$ e_6=(x,v_{6}) $ 1 1 4
$ e_7=(v_6,v_7) $ 2 1 5
$ e_8=(x,v_{8}) $ 3 1 7
$ e_9=(v_{8},v_{9}) $ 4 2 8
$ e_{10}=(v_{9},v_{10}) $ 3 1 6
Table 3.  The iterations result for Example 2
Iteration $ P_1 $ $ P_2 $ $ C_{P_1} $ $ C_{P_2} $ $ f_1 $ $ f_2 $
1 $ \{p_1\} $ $ \{p_2\} $ $ c^-_3=2 $ $ c^+_6=5 $ 8 10
2 $ \{p_1\} $ $ \{p_2,p_3\} $ $ c^-_4=3 $ - 11 9
3 $ \{p_1,p_4\} $ $ \{p_2,p_3\} $ $ c^-_5+c^-_8=6 $ - 23 7
4 $ \{p_1,p_4\} $ $ \{p_2,p_3\} $ $ c^-_5+c^-_9=16 $ - 39 5
Iteration $ P_1 $ $ P_2 $ $ C_{P_1} $ $ C_{P_2} $ $ f_1 $ $ f_2 $
1 $ \{p_1\} $ $ \{p_2\} $ $ c^-_3=2 $ $ c^+_6=5 $ 8 10
2 $ \{p_1\} $ $ \{p_2,p_3\} $ $ c^-_4=3 $ - 11 9
3 $ \{p_1,p_4\} $ $ \{p_2,p_3\} $ $ c^-_5+c^-_8=6 $ - 23 7
4 $ \{p_1,p_4\} $ $ \{p_2,p_3\} $ $ c^-_5+c^-_9=16 $ - 39 5
Table 4.  The optimal edge lengths for Example 2
$ e_i $ optimal $ l_i $ $ \underline{l_i} $ $ \bar{l_i} $
$ e_1=(v_1,v_2) $ 3 1 4
$ e_2=(v_2,x) $ 3 2 6
$ e_3=(x,v_3) $ 1 1 7
$ e_4=(v_3,v_{4}) $ 1 1 5
$ e_5=(v_{4},v_{5}) $ 4 4 10
$ e_6=(x,v_{6}) $ 1 1 4
$ e_7=(v_6,v_7) $ 2 1 5
$ e_8=(x,v_{8}) $ 1 1 7
$ e_9=(v_{8},v_{9}) $ 2 2 8
$ e_{10}=(v_{9},v_{10}) $ 3 1 6
$ e_i $ optimal $ l_i $ $ \underline{l_i} $ $ \bar{l_i} $
$ e_1=(v_1,v_2) $ 3 1 4
$ e_2=(v_2,x) $ 3 2 6
$ e_3=(x,v_3) $ 1 1 7
$ e_4=(v_3,v_{4}) $ 1 1 5
$ e_5=(v_{4},v_{5}) $ 4 4 10
$ e_6=(x,v_{6}) $ 1 1 4
$ e_7=(v_6,v_7) $ 2 1 5
$ e_8=(x,v_{8}) $ 1 1 7
$ e_9=(v_{8},v_{9}) $ 2 2 8
$ e_{10}=(v_{9},v_{10}) $ 3 1 6
[1]

Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial & Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629

[2]

Liping Zhang, Soon-Yi Wu. Robust solutions to Euclidean facility location problems with uncertain data. Journal of Industrial & Management Optimization, 2010, 6 (4) : 751-760. doi: 10.3934/jimo.2010.6.751

[3]

Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034

[4]

Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial & Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521

[5]

Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044

[6]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[7]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[8]

Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094

[9]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[10]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061

[11]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[12]

Kewei Zhang. On equality of relaxations for linear elastic strains. Communications on Pure & Applied Analysis, 2002, 1 (4) : 565-573. doi: 10.3934/cpaa.2002.1.565

[13]

Monika Muszkieta. A variational approach to edge detection. Inverse Problems & Imaging, 2016, 10 (2) : 499-517. doi: 10.3934/ipi.2016009

[14]

Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks & Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591

[15]

Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391

[16]

Liming Zhang, Tao Qian, Qingye Zeng. Edge detection by using rotational wavelets. Communications on Pure & Applied Analysis, 2007, 6 (3) : 899-915. doi: 10.3934/cpaa.2007.6.899

[17]

Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339

[18]

Emmanuel Schenck. Exponential gaps in the length spectrum. Journal of Modern Dynamics, 2020, 16: 207-223. doi: 10.3934/jmd.2020007

[19]

Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1301-1317. doi: 10.3934/dcds.2014.34.1301

[20]

Lotfi Tadj, Zhe George Zhang, Chakib Tadj. A queueing analysis of multi-purpose production facility's operations. Journal of Industrial & Management Optimization, 2011, 7 (1) : 19-30. doi: 10.3934/jimo.2011.7.19

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]