[1]
|
C. Avramescu, A generalization of Miranda's theorem, Semin. Fixed Point Theory Cluj-Napoca, 3 (2002), 121-127.
|
[2]
|
O. Bokanowski, S. Maroso and H. Zidani, Some convergence results for Howard's algorithm, SIAM J. Numer. Anal., 47 (2009), 3001-3026.
doi: 10.1137/08073041X.
|
[3]
|
L. A. Caffarelli and R. J. McCann, Free boundaries in optimal transport and Monge-Ampere obstacle problems, Ann. Math., 171 (2010), 673-730.
doi: 10.4007/annals.2010.171.673.
|
[4]
|
M. Dai and F. Yi, Finite-horizon optimal investment with transaction costs: A parabolic double obstacle problem, J. Differ. Equ., 246 (2009), 1445-1469.
doi: 10.1016/j.jde.2008.11.003.
|
[5]
|
J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Inc., Englewood Cliffs, NJ, 1983.
|
[6]
|
G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
|
[7]
|
D. Han and J. W. L. Wan, Multigrid methods for second order Hamilton–Jacobi–Bellman and Hamilton–Jacobi–Bellman–Isaacs equations, SIAM J. Sci. Comput., 35 (2013), S323–S344.
doi: 10.1137/120881476.
|
[8]
|
T. Kärkkäinen, K. Kunisch and P. Tarvainen, Augmented Lagrangian active set methods for obstacle problems, J. Optim. Theory Appl., 119 (2003), 499-533.
doi: 10.1023/B:JOTA.0000006687.57272.b6.
|
[9]
|
R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer. Math., 69 (1994), 167-184.
doi: 10.1007/BF03325426.
|
[10]
|
P. Kovalov and V. Linetsky, Valuing convertible bonds with stock price, volatility, interest rate, and default risk, FDIC Center for Financial Research Working Paper Series, 2008.
|
[11]
|
Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1.
|
[12]
|
Z. Sun, Z. Liu and X. Yang, On power penalty methods for linear complementarity problems arising from American option pricing, J. Glob. Optim., 63 (2015), 165-180.
doi: 10.1007/s10898-015-0291-6.
|
[13]
|
S. Wang and X. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optimization, 64 (2015), 2377-2394.
doi: 10.1080/02331934.2014.967236.
|
[14]
|
S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, J. Optim. Theory Appl., 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3.
|
[15]
|
J. H. Witte and C. Reisinger, A penalty method for the numerical solution of Hamilton-Jacobi-Bellman (HJB) equations in finance, SIAM J. Numer. Anal., 49 (2011), 213-231.
doi: 10.1137/100797606.
|
[16]
|
K. Zhang and X. Yang, A power penalty method for discrete HJB equations, Optim. Lett., 14 (2020), 1419-1433.
doi: 10.1007/s11590-019-01517-7.
|
[17]
|
K. Zhang, X. Q. Yang, S. Wang and K. L. Teo, Numerical performance of penalty method for American option pricing, Optim. Methods Softw., 25 (2010), 737-752.
doi: 10.1080/10556780903051930.
|
[18]
|
J.-X. Zhao and S. Wang, An interior penalty approach to a large-scale discretized obstacle problem with nonlinear constraints, Numer. Algorithms, 85 (2020), 571-589.
doi: 10.1007/s11075-019-00827-2.
|
[19]
|
Y. Y. Zhou, S. Wang and X. Q. Yang, A penalty approximation method for a semilinear parabolic double obstacle problem, J. Glob. Optim., 60 (2014), 531-550.
doi: 10.1007/s10898-013-0122-6.
|