\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solution method for discrete double obstacle problems based on a power penalty approach

  • * Corresponding author: Kai Zhang

    * Corresponding author: Kai Zhang 
Abstract Full Text(HTML) Figure(3) / Table(3) Related Papers Cited by
  • We develop a power penalty approach to a finite-dimensional double obstacle problem. This problem is first approximated by a system of nonlinear equations containing two penalty terms. We show that the solution to this penalized equation converges to that of the original obstacle problem at an exponential rate when the coefficient matrices are $ M $-matrices. Numerical examples are presented to confirm the theoretical findings and illustrate the efficiency and effectiveness of the new method.

    Mathematics Subject Classification: Primary: 90C33, 90-08; Secondary: 65K15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Solution $ U(s) $ with $ N = 99 $. The solution is obtained with the lower order penalty method ($ k = 2 $). Tolerance $ \varepsilon = 10^{-6} $ is chosen for the Newton iteration. The smoothing interval is chosen to be $ (0,10^{-3}) $. $ \lambda = 10^{3} $

    Figure 2.  Solution $ u(x,y) $ with the mesh grid $ 60 \times 60 $, obtained with the lower order penalty method ($ k = 2 $). Tolerance is set to be $ 10^{-6} $. $ \epsilon = 10^{-3} $. $ \lambda = 10^{3} $

    Figure 3.  The lower coincidence sets (dot '$ \cdot $') and the upper coincidence sets (star '$ \ast $') of solution $ u(x,y) $ on the mesh grid $ 60 \times 60 $. The solution is obtained with the lower order penalty method ($ k = 2 $). Tolerance $ \varepsilon = 10^{-6} $ is chosen for the Newton iteration. The smoothing interval is chosen to be $ (0,10^{-3}) $. $ \lambda = 10^{3} $

    Table 1.  Results computed by the power penalty method. Tolerance $ \varepsilon = 10^{-6} $ is chosen for the Newton iteration. The smoothing parameter $ \epsilon = 10^{-3} $. 'Ra' stands for ratio

    $k=1$ $k=2$
    $\lambda_{i}$ $[x_{\lambda_{i}}]_{1}$ $[x_{\lambda_{i}}]_{4}$ $\Vert x-x_{\lambda_{i}}\Vert_{\infty}$ Ra $\lambda_{i}$ $[x_{\lambda_{i}}]_{1}$ $[x_{\lambda_{i}}]_{4}$ $\Vert x-x_{\lambda_{i}}\Vert_{\infty}$ Ra
    $10^{2}$ $0.5119$ $5.3052$ $6.25\times10^{-1}$ $10^{2}$ $0.9985$ $5.0011$ $2.81\times10^{-1}$
    $10^{3}$ $0.9430$ $5.0327$ $6.49\times10^{-2}$ $0.98$ $10^{3}$ $0.9998$ $5.0002$ $2.85\times10^{-3}$ $1.99$
    $10^{4}$ $0.9942$ $5.0033$ $6.59\times10^{-3}$ $0.99$ $10^{4}$ $0.9999$ $5.0001$ $4.93\times10^{-5}$ $1.76$
    $10^{5}$ $0.9994$ $5.0003$ $6.60\times10^{-4}$ $1.00$ $10^{5}$ $1.0000$ $5.0000$ $6.90\times10^{-6}$ $1.69$
     | Show Table
    DownLoad: CSV

    Table 2.  Total number of iterations for the linear penalty ($ k = 1 $), lower order penalty ($ k = 2 $), and modified policy methods with $ N = 99 $. Tolerance is set to be $ 10^{-6} $. $ \epsilon = 10^{-3} $. $ \lambda $ is set to be $ 10^{6} $ and $ 10^{3} $ for $ k = 1 $ and $ k = 2 $, respectively

    $ k=1 $ $ k=2 $ Modified policy iter.
    Iterations 9 12 88
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of computational efficiency among power penalty methods, Gauss-Seidel iteration method and active set method. Tolerance is set to be $ 10^{-6} $. $ \epsilon = 10^{-3} $. $ \lambda $ is set to be $ 10^{6} $ and $ 10^{3} $ for $ k = 1 $ and $ k = 2 $, respectively

    $k=1$ $k=2$ Gauss-Seidel Active set
    $N=49$ Iterations 11 16 426 Failed
    Time (s) 1.26 1.89 32.81 Failed
    $N=59$ Iterations 15 17 740 17
    Time (s) 7.78 8.96 198.7 6.43
     | Show Table
    DownLoad: CSV
  • [1] C. Avramescu, A generalization of Miranda's theorem, Semin. Fixed Point Theory Cluj-Napoca, 3 (2002), 121-127. 
    [2] O. BokanowskiS. Maroso and H. Zidani, Some convergence results for Howard's algorithm, SIAM J. Numer. Anal., 47 (2009), 3001-3026.  doi: 10.1137/08073041X.
    [3] L. A. Caffarelli and R. J. McCann, Free boundaries in optimal transport and Monge-Ampere obstacle problems, Ann. Math., 171 (2010), 673-730.  doi: 10.4007/annals.2010.171.673.
    [4] M. Dai and F. Yi, Finite-horizon optimal investment with transaction costs: A parabolic double obstacle problem, J. Differ. Equ., 246 (2009), 1445-1469.  doi: 10.1016/j.jde.2008.11.003.
    [5] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Inc., Englewood Cliffs, NJ, 1983.
    [6] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
    [7] D. Han and J. W. L. Wan, Multigrid methods for second order Hamilton–Jacobi–Bellman and Hamilton–Jacobi–Bellman–Isaacs equations, SIAM J. Sci. Comput., 35 (2013), S323–S344. doi: 10.1137/120881476.
    [8] T. KärkkäinenK. Kunisch and P. Tarvainen, Augmented Lagrangian active set methods for obstacle problems, J. Optim. Theory Appl., 119 (2003), 499-533.  doi: 10.1023/B:JOTA.0000006687.57272.b6.
    [9] R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer. Math., 69 (1994), 167-184.  doi: 10.1007/BF03325426.
    [10] P. Kovalov and V. Linetsky, Valuing convertible bonds with stock price, volatility, interest rate, and default risk, FDIC Center for Financial Research Working Paper Series, 2008.
    [11] Y. PeresO. SchrammS. Sheffield and D. B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc., 22 (2009), 167-210.  doi: 10.1090/S0894-0347-08-00606-1.
    [12] Z. SunZ. Liu and X. Yang, On power penalty methods for linear complementarity problems arising from American option pricing, J. Glob. Optim., 63 (2015), 165-180.  doi: 10.1007/s10898-015-0291-6.
    [13] S. Wang and X. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optimization, 64 (2015), 2377-2394.  doi: 10.1080/02331934.2014.967236.
    [14] S. WangX. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, J. Optim. Theory Appl., 129 (2006), 227-254.  doi: 10.1007/s10957-006-9062-3.
    [15] J. H. Witte and C. Reisinger, A penalty method for the numerical solution of Hamilton-Jacobi-Bellman (HJB) equations in finance, SIAM J. Numer. Anal., 49 (2011), 213-231.  doi: 10.1137/100797606.
    [16] K. Zhang and X. Yang, A power penalty method for discrete HJB equations, Optim. Lett., 14 (2020), 1419-1433.  doi: 10.1007/s11590-019-01517-7.
    [17] K. ZhangX. Q. YangS. Wang and K. L. Teo, Numerical performance of penalty method for American option pricing, Optim. Methods Softw., 25 (2010), 737-752.  doi: 10.1080/10556780903051930.
    [18] J.-X. Zhao and S. Wang, An interior penalty approach to a large-scale discretized obstacle problem with nonlinear constraints, Numer. Algorithms, 85 (2020), 571-589.  doi: 10.1007/s11075-019-00827-2.
    [19] Y. Y. ZhouS. Wang and X. Q. Yang, A penalty approximation method for a semilinear parabolic double obstacle problem, J. Glob. Optim., 60 (2014), 531-550.  doi: 10.1007/s10898-013-0122-6.
  • 加载中

Figures(3)

Tables(3)

SHARE

Article Metrics

HTML views(702) PDF downloads(517) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return